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METHODOLOGY
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Abstract 

Background:  Rice is a major staple food crop for more than half the world’s population. As the global population 
is expected to reach 9.7 billion by 2050, increasing the production of high-quality rice is needed to meet the antici-
pated increased demand. However, global environmental changes, especially increasing temperatures, can affect 
grain yield and quality. Heat stress is one of the major causes of an increased proportion of chalkiness in rice, which 
compromises quality and reduces the market value. Researchers have identified 140 quantitative trait loci linked to 
chalkiness mapped across 12 chromosomes of the rice genome. However, the available genetic information acquired 
by employing advances in genetics has not been adequately exploited due to a lack of a reliable, rapid and high-
throughput phenotyping tool to capture chalkiness. To derive extensive benefit from the genetic progress achieved, 
tools that facilitate high-throughput phenotyping of rice chalkiness are needed.

Results:  We use a fully automated approach based on convolutional neural networks (CNNs) and Gradient-weighted 
Class Activation Mapping (Grad-CAM) to detect chalkiness in rice grain images. Specifically, we train a CNN model to 
distinguish between chalky and non-chalky grains and subsequently use Grad-CAM to identify the area of a grain that 
is indicative of the chalky class. The area identified by the Grad-CAM approach takes the form of a smooth heatmap 
that can be used to quantify the degree of chalkiness. Experimental results on both polished and unpolished rice 
grains using standard instance classification and segmentation metrics have shown that Grad-CAM can accurately 
identify chalky grains and detect the chalkiness area.

Conclusions:  We have successfully demonstrated the application of a Grad-CAM based tool to accurately capture 
high night temperature induced chalkiness in rice. The models trained will be made publicly available. They are easy-
to-use, scalable and can be readily incorporated into ongoing rice breeding programs, without rice researchers requir-
ing computer science or machine learning expertise.

Keywords:  Rice grain chalkiness detection, Image segmentation, Convolutional neural networks, Gradient-weighted 
class activation mapping, High night temperature
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Background
Rice (Oryza sativa) is a staple food crop for nearly half 
the world population [1]. In 2019, the world produced 
over 750 million tonnes of rice [2], which placed rice as 
the third highest amongst cereals, only trailing wheat 
(Triticum aestivum) (765 million tonnes) and maize (Zea 
mays) (1.1 billion tonnes). As the global population is 
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expected to reach 9.7 billion by 2050 [3], agricultural pro-
duction must be doubled in order to meet this demand 
[4]. As of 2008, rice yields are increasing on average by 
1% annually and, at this rate, the production will only 
increase by 42% by 2050 which falls well short of the 
desired target [5].

In addition to the required increase in production, 
climate variability threatens future rice grain yields and 
quality attributes [6, 7]. Temperatures above 33 °C dur-
ing anthesis can cause significant spikelet sterility [8–11]. 
It is predicted that approximately 16% of the global har-
vested area of rice will be exposed to at least 5 days of 
elevated temperature during the reproductive period by 
2030s [12]. In addition to yield losses, heat stress during 
the grain-filling period is shown to increase grain chalki-
ness in rice [13–15]. Disaggregating the mean increase 
in global temperature has resulted in identifying a more 
rapid increase in the average minimum night tempera-
ture than the average maximum day temperature [16]. 
High night temperature stress during the grain-filling 
period can lead to severe yield and quality penalties, 
primarily driven by increased night respiration [17–19]. 
An increased rate of night respiration during grain-fill-
ing ultimately impairs grain yield and quality through 
reduction in 1000 grain weight, grain width, reduced 
sink strength with lowered sucrose and starch synthase 
activity resulting in reduced grain starch content, and an 
increase in rice chalkiness [13, 19–21].

“Chalkiness is the opaque part of the milled rice grain 
and is one of the key factors that determines rice grain 
quality1.” More specifically, chalkiness is the visual 
appearance of loosely packed starch granules [13, 22]. The 
poor packaging of starch granules leads to an increased 
number of oversized air pockets within the grain. The air 
pockets prevent reflection, giving the chalky portions of 
the grains an opaque appearance [23]. Chalkiness is an 
undesirable trait, and an increased proportion of chalk 
leads to a linear decrease in the market value of rice [15]. 
In addition, high levels of chalk lead to increased break-
age during milling and degrade cooking properties, and 
lower palatability [14, 15, 22, 24].

Three different processes have been considered to 
explain the cause of increased chalkiness under heat 
stress: (1) a reduction in carbon capture, photosynthetic 
efficiency, or the duration of the grain-filling period 
inhibits the plant’s ability to provide a sufficient amount 
of assimilates to the seed, (2) reduced activity of starch 
metabolism enzymes, which are used to convert sugars 
to starch, and (3) hormonal imbalance between ABA and 

ethylene as a high ABA-to-ethylene ratio is vital during 
grain-filling [25]. Physiologically, the level of chalkiness 
is dependent on the source-sink relationships, with the 
primary tillers in rice having greater advantage of access-
ing the carbon pool compared to later formed tillers. 
We tested the hypothesis that, under higher night tem-
peratures, increased carbon loss due to higher respiration 
would lead to different levels of grain chalkiness among 
the tillers with the least chalkiness from primary pani-
cles and the highest chalkiness in the later formed tillers. 
Regardless of the cause or differential chalkiness among 
tillers, the ability to quickly and accurately identify and 
quantify the chalkiness in rice is extremely important to 
help not only to understand the cause of chalkiness, but 
also to breed for heat tolerant nutritional rice varieties 
[19, 26–28].

Traditional grain phenotyping has been performed by 
manual inspection [29]. As such, it is subjective, ineffi-
cient, tedious, and error-prone despite the fact that it is 
performed by a highly skilled workforce [30]. Over the 
past decade, interest has grown in applying image-based 
phenotyping to provide quantitative measurements of 
plant-environment interactions with a higher accuracy 
and lower labor-cost than previously possible [31].

In particular, several automated approaches for rice 
grain chalkiness classification, segmentation and/or 
quantification have been developed. For example, the 
K-means clustering approach performs instance seg-
mentation (i.e., identifies the pixels that belong to each 
instance of an object of interest, in our case “chalki-
ness”) by grouping pixels based on their values [32]. One 
advantage of the K-means clustering approach is that it 
works in an unsupervised manner and does not require 
manually labeled ground truth [33]. However, one disad-
vantage is that it involves extensive parameter tuning to 
identify good clusters corresponding to objects of inter-
est in an image. Furthermore, the final clusters depend 
on the initial centroids and the algorithm needs to be run 
several times with different initial centroids to achieve 
good results [34].

In addition to the K-means clustering approach, thresh-
old based approaches have been used for chalkiness 
identification and quantification. For example, a multi-
threshold approach based on maximum entropy was used 
for chalky area calculation [35] and another threshold-
based approach was used to detect broken, chalky and 
spotted rice grains [36]. However, such approaches need 
extensive fine-tuning to identify the right thresholds and 
are not easily transferable to seeds of different types or to 
images taken under different conditions. Support vector 
machine (SVM) approaches have been used to classify 
grains according to the location of the chalkiness [37], 
and to estimate rice quality by detecting broken, chalky, 

1  http://​www.​knowl​edgeb​ank.​irri.​org/​riceb​reedi​ngcou​rse/​Grain_​quali​ty.​htm.

http://www.knowledgebank.irri.org/ricebreedingcourse/Grain_quality.htm


Page 3 of 23Wang et al. Plant Methods            (2022) 18:9 	

damaged and spotted grains in red rice based on infrared 
images [38]. Similar to the threshold-based approaches, 
the SVM classifiers are not easily transferable to images 
containing different types of seeds or taken under differ-
ent illumination conditions. Furthermore, they require 
informative image features to be identified and provided 
as inputs to produce accurate results. Rice chalkiness 
has also been addressed using specially designed imag-
ing instruments. For example, Armstrong et  al. used a 
single–kernel near–infrared (SKNIR) tube instrument 
and a silicon–based light–emitting diode (SiLED) high–
speed sorter to classify single rice grains based on the 
percentage of chalkiness [39]. Unfortunately, the single-
kernel approach is limited in scope and cannot be used to 
develop a high-throughput phenotyping method. More 
recently, volume based quantification technologies, such 
as X-ray microcomputed tomography, have been used to 
quantify rice chalkiness [27]. However, such technologies 
are extremely expensive and, thus, are beyond the reach 
of routine crop improvement programs and for traders 
and millers who regularly estimate chalkiness and estab-
lish a fair market price.

In recent years, the use of deep learning approaches for 
image classification and segmentation crop science tasks 
have led to state-of-the-art high-throughput tools that 
outperform the results from traditional machine learning 
and image analysis techniques [40, 41], enabling research-
ers to capture a wide range of genetic diversity [42]. To 
the best of our knowledge, deep learning approaches have 
not been used to detect chalkiness despite being used to 
address other challenging problems in crop science. To 
address this need, we investigated modern deep learning 
techniques to create a tool that facilitates high-through-
put phenotyping of rice chalkiness to support genetic 
mapping studies and enable development of rice varieties 
with minimal chalkiness under current and future warm-
ing scenarios. One possible solution to rapidly and accu-
rately phenotype chalkiness is provided by Mask R-CNN 
[43]. Mask R-CNN is a widely used instance detection 
and segmentation approach, which employs a convolu-
tional neural network (CNN) as its backbone architec-
ture. One limitation of the Mask R-CNN approach is 
that it requires pixel-level ground truth with respect to 
the concept of interest, in our case, chalkiness. Acquiring 
pixel-level ground truth is laborious and expensive [44]. 
Furthermore, the Mask R-CNN segmentation approach 
labels the pixels of a rice grain as chalky or non-chalky, 
while sometimes it may be preferable to characterize the 
pixels based on the chalkiness intensity, i.e., on a continu-
ous scale as opposed to a binary scale.

To address the limitations of the Mask R-CNN 
approach, we framed the problem of detecting chalki-
ness as a binary classification problem (i.e., a grain is 

chalky or non-chalky) and used CNNs combined with 
class activation mapping, specifically Grad-CAM [45], 
to identify the chalkiness area in an image. Grad-CAM 
works on top of a CNN model for image classifica-
tion. It makes use of the gradients of a target category 
to produce a heatmap that identifies the discriminative 
regions for the target category (i.e., regions that explain 
the CNN model prediction) and implicitly localizes 
the category in the input image. By framing the prob-
lem as an image classification task, Grad-CAM can 
help reduce the laborious pixel-level labeling task to 
a relatively simpler image labeling task, i.e., an image 
is labeled as chalky or non-chalky. Furthermore, the 
heatmaps produced by Grad-CAM have soft bounda-
ries showing different degrees of chalkiness intensity. 
The values of the pixels in a heatmap can be used to 
calculate a chalkiness intensity score corresponding 
to an image. This weakly supervised approach to seg-
mentation was originally proposed by Oquab et  al. 
[46] and has been used in other application domains 
[47–51], including in the agricultural domain for seg-
mentation of citrus pests [52] and for remote sensing 
imagery [53], among others. Such approaches are gen-
erally called weakly supervised semantic segmentation 
approaches, given that they only require image-level 
labels as opposed to pixel-level labels.

The Grad-CAM based approach to rice chalkiness 
detection has the potential to help rice phenomics catch 
up with the developments in rice genomics [54] as well as 
help implementing new advances in achieving the target 
of nutritious food production goals by 2050 [55]. To sum-
marize, the contributions of this research are:

•	 We proposed to use a weakly supervised approach, 
Grad-CAM, to classify rice grains as chalky or non-
chalky and subsequently detect the chalkiness area in 
chalky grains.

•	 We experimented with the Grad-CAM approach 
(with a variety of CNN networks as backbone) on 
polished rice seeds and evaluated the performance 
using both instance classification and segmentation 
metrics as well as time and memory requirements.

•	 We compared the weakly supervised Grad-CAM 
approach with the Mask R-CNN segmentation 
approach on polished seeds and studied its trans-
ferability to unpolished rice seeds (i.e., to rice seeds 
that have not been polished after the removal of the 
husk).

•	 We tested the applicability of the tool in determining 
the level of chalkiness in rice plants exposed to high 
night temperature (HNT) and quantified the differ-
ential level of chalkiness among tillers within a plant 
exposed to HNT stress.
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Methods and materials
Deep learning methods for rice chalkiness segmentation
We address the rice chalkiness segmentation problem 
using a weakly supervised Grad-CAM approach, which 
requires binary (chalky or non-chalky) image-level labels 
as opposed to more expensive pixel-level labels.

Overview of the approach
The Grad-CAM approach includes two main compo-
nents: (i) a deep CNN network (e.g., VGG or ResNet) 
that is trained to classify seed images into two classes, 
chalky or non-chalky; and (ii) a class activation mapping 
component, which generates a rice chalkiness heatmap as 
a weighted average of the feature maps corresponding to 
a specific layer in the CNN network. The chalkiness heat-
map can be further used to calculate a chalkiness score, 
which quantifies the degree of chalkiness in each indi-
vidual grain, and to estimate the chalkiness area for each 
grain. An overview of the approach is shown in Fig.  1. 
Details for the components of the model are provided 
below.

CNNs
Models based on CNNs have been successfully used 
for many image classification and segmentation tasks 

[56–58]. A CNN consists of convolutional layers (which 
apply filters to produce feature maps), followed by non-
linear activations (such as Rectified Linear Unit, or 
ReLU), pooling layers (used to reduce the dimensional-
ity), and fully connected layers (that capture non-linear 
dependencies between features). The last fully connected 
layer in a classification network generally uses a softmax 
activation function and has as many output neurons as 
the number of target classes (in our case, two classes: 
chalky and non-chalky).

The ImageNet competition (where a dataset with 1.2 
million images in 1000 categories was provided to partic-
ipants) has led to many popular architectures, including 
highly competitive architectures in terms of performance 
as well as cost-effective architectures designed to be 
run efficiently on low-cost platforms generally present 
in embedded systems [59]. We anticipate that our rice 
chalkiness detection models could be useful in both envi-
ronments with rich computational resources and also 
environments with more limited resources. Thus, given 
the trade-off between model performance (i.e., accu-
racy) and model complexity (e.g., number of parameters, 
memory and time requirements), we consider a variety 
of networks (and variants) published between 2012 and 
2019 including AlexNet [60], Very Deep Convolutional 

Fig. 1  Model Architecture. a A backbone CNN (e.g., ResNet-101) is trained to classify (resized) input grain images as chalky or non-chalky. 
ResNet-101 has four main groups of convolution layers, shown as Layer1, Layer2, Layer3, and Layer4, consisting of 3, 4, 23 and 3 bottleneck blocks, 
respectively. b Each bottleneck block starts and ends with a 1× 1 convolution layer, and has a 3× 3 layer in the middle. The number of filters in each 
layer is shown after the kernel dimension. c Grad-CAM uses the gradients of the chalky category to compute a weight for each feature map in a 
convolution layer. The weighted average of the features maps, transformed using the ReLU activation, is used as the heatmap for the current image 
at inference time
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Networks (VGG) [61], Deep Residual Networks (ResNet) 
[62], SqueezeNet [63], Densely Connected Convolutional 
Networks (DenseNet) [64], and EfficientNet [65].

Grad‑CAM approach
The Grad-CAM approach was originally proposed by 
Selvaraju et al. [66] in the context of understanding the 
predictions of a CNN model. In recent years, this 
approach and its variants have been frequently used for 
weakly supervised object localization [67]. Given a 
trained CNN model and an input image at inference 
time, the Grad-CAM approach uses the gradients of a 
category of interest (specifically, the corresponding logit 
provided as input to the softmax function) to compute a 
category-specific weight for each feature map in a 
selected convolution layer. Formally, let f k (with 
k = 1, . . . ,K  ) be a feature map in a particular convolu-
tional layer, which consists of a total of K feature maps. 
Let yc be the logit (i.e., input to the softmax function) of 
the class of interest, c (e.g., chalky). Grad-CAM averages 
the gradients of yc with respect to all N pixels f kij  of the 
features map f k to calculate a weight wc

k representing 
the importance of the feature map f k . Specifically, 
wc
k =

1

N

∑

i,j

∂yc

∂f ki,j
 . The feature maps f k of the selected 

convolutional layer are averaged into one final heatmap 
for the category of interest, c, according to the impor-

tance weights wk
c  , i.e., Hc

= F

(

∑

k

wk
c f

k

)

 , where F is a 

non-linear activation function. Traditionally, ReLU has 
been used as the activation function to cancel the effect 
of the negative values while emphasizing areas that pos-
itively contribute to the category c. The heatmap, Hc , is 
resized to the original input size using linear interpola-
tion. The resized heatmap, Hc

final , can be used to identify 
the discriminative regions for the category of interest, c, 
and implicitly to localize the category in the input 
image. More specifically, the localization is obtained by 
binarizing the input image using a threshold T on the 
values of the pixels in the heatmap as first proposed by 
Zhou et al. [68]. The value of the threshold T is depend-
ent on the data and task at hand, but can be found using 
a trial-and-error process as shown in related prior 
works [69–72]. Regarding the convolutional layer used 
to produce the heatmao, the last layer was originally 
used by Selvaraju et al. [66], under the assumption that 
the last layer captures the best trade-off between high-
level semantic features and spatial information. How-
ever, in this study, we experimented with a variety of 
convolutional layers, from lower level convolutional lay-
ers (more general) to higher level convolutional layers 

(more specific), to identify sets of features maps that 
best capture chalkiness.

Variants of the Grad‑CAM approach
Grad-CAM is a strong candidate for being used as an 
explainability/localization approach in the weakly 
supervised framework, as evidenced by many recent 
studies that have employed Grad-CAM [48, 52, 73–
76]. However, several extensions and variants of the 
Grad-CAM approach have been proposed, e.g. Grad-
CAM++ [77] and Score-CAM [78]. Grad-CAM++ is 
a direct extension of Grad-CAM which was designed 
to address two limitations: (1) the fact that Grad-CAM 
does not properly identify/localize all occurrences of a 
class object; and (2) the fact that Grad-CAM may not 
always localize the whole object instance, but only parts 
of it. Score-CAM is an alternative class activation map-
ping approach which aims to get away with the use of 
gradients, as they can be noisy or may vanish when 
dealing with deep neural networks. Instead of using gra-
dients to weight activation maps, Score-CAM proposes 
to use weights that correspond to the forward pass 
scores of the original images perturbed with upsampled 
activation maps on the target class. We compared Grad-
CAM with the Grad-CAM++ and Score-CAM variants 
to understand if a newer approach can be used to fur-
ther improve the results obtained using Grad-CAM.

Application of Grad‑CAM to rice chalkiness detection
 We used the Grad-CAM approach to generate chalki-
ness heatmaps for rice grain images. The heatmaps 
show the concept of chalkiness using soft boundaries 
through a color gradient. This representation is very 
appropriate for localizing the concept of chalkiness, 
which exhibits different levels of intensity and, thus, has 
inherently soft boundaries that separate the chalky area 
from the non-chalky area. The heatmap, Hchalky

final  , corre-
sponding to a particular convolutional layer (deter-
mined using validation data) is the final rice chalkiness 
heatmap and can be used to visualize the area of a seed 
that is discriminative with respect to chalkiness. This 
heatmap can further be converted into a chalkiness 
score corresponding to a rice grain as follows: 
ChalkyScore = 1

Z

∑

i

∑

j(H
chalky
final ∩ GrainArea) , where Z 

represents the total number of pixels in the GrainArea 
in the original image. The resulting chalkiness score has 
a numerical value between 0 and 1, where 0 means that 
the grain shows no chalkiness and 1 means that the 
grain has severe chalkiness all over its surface. Finally, 
the heatmap is used to create a binary mask for the 
chalkiness area using a threshold on the intensityof the 
pixels(determined based on validation data). The 
masked area can be used to estimate the area of the 
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chalkiness as a percentage of the total grain area. The 
numeric scores, including the chalkiness score and the 
chalkiness area, obtained from large mapping popula-
tions can be used in determining the genetic control of 
chalkiness in rice.

Baseline approach—mask R‑CNN
Mask R-CNN is an object instance segmentation 
approach, i.e., an approach that identifies instances of 
given objects in an image (in our case, the chalkiness con-
cept) and labels their pixels accordingly. Mask R-CNN 
extends an object detection approach, specifically Faster 
R-CNN [79], to perform instance segmentation. The 
Faster R-CNN network first identifies Regions of Interest 
(ROI, i.e., regions that may contain objects of interest) and 
their locations (represented as bounding box coordinates) 
using a Region Proposal Network (RPN). Subsequently, 
the Faster R-CNN network classifies the identified regions 
(corresponding to objects) into different classes (e.g., 
chalkiness and background) and also refines the location 
parameters to generate an accurate bounding box for each 
detected object. In addition to the object classification and 
the bounding box regression components of the Faster 
R-CNN, the Mask R-CNN network has a component for 
predicting instance masks for ROIs (i.e., identifying all 
pixels that belong to an object of interest). One advan-
tage of the Mask R-CNN approach is that it is specifi-
cally trained to perform instance segmentation and, thus, 
produces a precise mask for objects of interest. The main 
disadvantage of the Mask R-CNN baseline, as compared 
to the weakly supervised Grad-CAM approach, is that it 
requires expensive pixel-level annotation for training. We 
compared the weakly supervised Grad-CAM approach to 
chalkiness segmentation with Mask R-CNN in terms of 
performance and also time and memory requirements. 
We have selected the Mask R-CNN approach as a strong 
baseline for the weakly supervised Grad-CAM approach, 
given that Mask R-CNN has been shown to be a very 
competitive approach for instance segmentation in many 
application domains [80–85].

High night temperature stress experiment
In this section, we describe plant materials and the bio-
logical experiment that generated the data (i.e., rice 
grains) used in this study.

Plant materials
Six genotypes (CO-39, IR-22, IR1561, Oryzica, WAS-174, 
and Kati) with contrasting chlorophyll index responses 
to a 14-day drought stress initiated at the agronomic 
panicle-initiation stage were used in this study [86]. The 
experiment was carried out in controlled environment 
chambers (Conviron Model CMP 3244, Winnipeg, MB) 

at the Department of Agronomy, Kansas State University, 
Manhattan, KS, USA.

Crop husbandry and high night temperature stress 
imposition
Seeds obtained from the Germplasm Resources Informa-
tion Network (GRIN) database were sown at a depth of 2 
cm in pots (1.6-L, 24 cm tall and 10 cm diameter at the 
top, MT49 Mini-Treepot) filled with farm soil. Seedlings 
were thinned to one per pot at the three-leaf stage. Con-
trolled-release Osmocote (Scotts, Marysville, OH, USA) 
fertilizer (19% N, 6% P2O5, and 12%K2O) was applied (5 g 
per pot) before sowing along with 0.5 g of Scotts Micro-
max micronutrient (Hummert International, Topeka, 
KS) at the three-leaf stage. The plants were well-watered 
throughout the experiment and a 1–cm water layer was 
maintained in the trays holding the pots. Seventy-two 
plants were grown with at least 12 plants per genotype 
wherein 6 plants were used for control and the remain-
der for HNT. Plants were grown in controlled environ-
ment chambers maintained at control temperatures of 
30/21 °C (maximum day/minimum night temperatures; 
actual inside the chamber: 32.6 °C [SD±1.0]/21.1 °C 
[SD±0.3]) and relative humidity (RH) of 70% until treat-
ment imposition. Both control and HNT chambers were 
maintained at a photoperiod of 11/13 h (light/dark; lights 
were turned on from 0700 to 1800 h, with a dark period 
from 1800 to 0700 h) with a light intensity of  850 µmol 
m−2 s−1 above the crop canopy. Temperature and RH 
were recorded every 15 min using HOBO UX 100-011 
temperature/RH data loggers (Onset Computer Corp., 
Bourne, Massachusetts) in all growth chambers. At the 
onset of the first spikelet opening, the main tiller, primary 
tillers and other tillers of the flowering genotype were 
tagged and readied for treatment imposition. The same 
approach was followed for all six genotypes and repli-
cates. Tagged replicate plants were moved to HNT (30/28 
°C) chambers and equal numbers of plants were similarly 
tagged and maintained in control conditions. Six inde-
pendent plants for each genotype were subjected to HNT 
stress (30/28 °C- day/night temperatures; actual: 31.8 °C 
[SD±0.8]/27.9 °C [SD±0.1]) after initiation of flowering 
on the main tiller until maturity to determine the impact 
of HNT on chalkiness while the other six plants were 
maintained under control conditions.

Data collection
At physiological maturity, the plants were harvested 
from both the control and HNT treatments. The pani-
cles were separated into main panicles (the panicle on the 
main tiller), two primary panicles (tillers that followed 
the main panicle), and other remaining panicles for each 
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plant from each treatment and hand threshed separately. 
Subsequently, the grains were de-husked using the Kett, 
Automatic Rice Husker TR-250.

In addition to the unpolished grains, polished grains 
were also used in the initial model development and 
testing, as polished grains are easier to analyze and label 
with respect to chalkiness and could potentially be ben-
eficial in terms of knowledge transfer to unpolished rice. 
The polished grains were obtained from Rice Research 
and Extension Center in Stuttgart Arkansas, Univer-
sity of Arkansas for preliminary testing and to establish 
the model. The polished rice grains composed of both 
medium and long grain rice. For each grain size, there are 
three degrees of grain chalkiness (roughly estimated by a 
domain expert): low, medium, and high chalkiness. Thus, 
based on grain size and degree of chalkiness, the grains 
were grouped into six categories: (1) long grain, low 
chalkiness; (2) long grain, medium chalkiness; (3) long 
grain, high chalkiness; (4) medium grain, low chalkiness; 
(5) medium grain, medium chalkiness; and (6) medium 
grain, high chalkiness.

Rice grain image acquisition and processing
Image acquisition
Both polished and unpolished grain samples were 
arranged in transparent 90 mm Petri-plates with three 
Petri-plates for each sample. A sample corresponds to a 
size/chalkiness combination in the case of polished rice 
and a genotype/tiller/condition combination in the case 
of unpolished rice. Three replicates (i.e., sets of grains to 
be used in one scan) were randomly selected (without 
replacement) for each sample. The grains were scanned 
using an Epson Perfection V800 photo scanner attached 
to a computer (see Additional file 1: Fig. S1). Images were 
scanned at a resolution of 800 dots per inch (dpi) and 
saved in the TIFF (.tif ) file format for further image anal-
ysis. A total of 18 (i.e., 3× 2× 3 ) images were acquired 
for polished rice, and 108 (i.e., 3× 6× 3× 2 ) images for 
unpolished rice. The scanned images included all borders 
of the three Petri-plates but not excessive blank area out-
side of the dishes, as shown in Additional file 2: Fig. S2.

Image preprocessing
Each scanned image (for both polished and unpolished 
rice grains) was approximately 6000× 6000 pixels. This 
size is extremely large for deep learning approaches, 
which require GPU acceleration [87]. Furthermore, as 
we aim to perform chalkiness detection at grain level 
using a weakly supervised approach, we need images 
that contain individual seeds. To reduce the size of the 
images and to enable grain level labeling and analysis, we 
resorted to cropping individual grains from the original 
Petri-plate images (which contain approximately 25–30 

rice grains per plate). The following steps, illustrated in 
Fig. 2, were used to crop individual grain images: (i) we 
first converted original images from .tif to .jpg format; 
(ii) converted RGB images to grayscale images; (iii) per-
formed canny edge detection; (iv) identified bounding 
boxes corresponding to individual seeds; (v) extracted 
ROIs defined by the bounding boxes and saved each ROI/
grain as an image into a file with unique file name. 

The total number of individual seeds extracted from the 
images containing Petri-plates with polished rice grains 
was 1645 out of the total of 1654 grains in the original set 
of 18 images. Nine seeds got truncated and were removed 
from the dataset. The exact number of polished seeds in 
each image and the corresponding number of extracted 
seed images are shown in Additional file  3: Table  S1 in 
columns 4 (Grains original) and 5 (Grains used). Simi-
larly, the total number of individual seeds extracted from 
the images containing Petri-plates with unpolished rice 
grains was 13,101 out of the total of 13,149 seeds in the 
original set of 108 high resolution images. In this case, 48 
seeds got truncated and were not included in the final set. 
The exact number of unpolished seeds in each of the 108 
images and the corresponding number of individual seed 
images extracted are shown in Additional file 4: Table S2 
in columns 5 (Grains original) and 6 (Grains used).

Image annotation and benchmark datasets
Ground truth labeling
Two types of manual annotations were performed and 
used as ground truth in our study, as shown in Fig.  3. 
First, for the Grad-CAM weakly supervised approach 
to chalkiness segmentation, we labeled each rice grain 
image as chalky or non-chalky. The labeling was done 
based on visual inspection of the images by a domain 
expert. Second, to train Mask R-CNN models, which 
inherently perform instance segmentation, and to evalu-
ate the ability of the Grad-CAM approach to accurately 
detect the chalkiness area in a rice grain, we manually 
marked the chalkiness area using polygons. The polygon 
annotation was performed by a domain expert using the 
VGG Image Annotator [88], a web-based manual annota-
tion software. Compared to the image-level labeling (i.e., 
chalky/non-chalky), the polygon annotation is signifi-
cantly more expensive, as it requires 10 to 100 clicks to 
draw the polygons, given the irregular shape of the chalk-
iness area. 

Out of 1645 polished grains used in our study, 660 
grains were labeled as chalky and 985 grains were labeled 
as non-chalky. The exact numbers of chalky and non-
chalky grains in each of the eighteen high-resolution 
images with polished rice are shown in Additional file 3: 
Table  S1 in columns 6 (Chalky) and 7 (Non-chalky). To 
be able to evaluate segmentation performance and to 
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compare the Grad-CAM approach with Mask R-CNN, 
we also labeled the 660 chalky grains in terms of chalki-
ness area (represented as a polygon).

Similarly, out of 13,101 unpolished grains, 4085 grains 
were labeled as chalky and 9,016 grains were labeled 
as non-chalky. The exact numbers of chalky and non-
chalky grains in each of the 108 high-resolution images 
of unpolished rice are shown in Additional file  4: 
Table S2 in columns 7 (Chalky) and 8 (Non-chalky). We 
note that many of the 36 possible genotype/tiller/condi-
tion combinations have a small number of chalky grains 
(or do no have any chalky grain at all). Specifically, 12 
combinations corresponding to genotypes CO-39 and 
Kati contain 4085 chalky grains and 1299 non-chalky 
grains, while the remaining 24 combinations contain 
151 chalky grains and 7717 non-chalky grains. Thus, 
we used only the 12 chalky prevalent combinations for 
training, tuning and evaluating the models designed 
in this study. Twenty chalky grain images from each of 
these 12 combinations (for a total of 240 images) were 
used as test set. To estimate the chalkiness segmen-
tation performance on unpolished rice, the 240 test 
images were labelled also in terms of chalkiness area 
using polygons. We did not label all the chalky images 

Fig. 2  Image preprocessing. Steps used to crop individual rice seeds from the original scanned images, each with approximately 25–30 seeds. Five 
steps (i. to v.) are depicted below each image that illustrate the action achieved in each respective step

Fig. 3  Manual annotations. a Image-level annotation: each seed is 
labeled as chalky or non-chalky (technically, the label was created 
by dragging each rice seed image into chalky or non-chalky folder, 
respectively). b Specific chalkiness annotation: chalkiness area is 
marked with polygons using VGG Image Annotator (each red dot in 
the image represents a click). The dark white opaque region in panel 
“a” is the chalk portion while the non-chalky region is translucent
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in terms of chalkiness area due to the cost associated 
with this annotation. The number of images labeled as 
chalky and non-chalky and also the number of chalky 
images annotated in terms of chalkiness area are sum-
marized in Table 1.

Training, development and test datasets
To train, fine-tune and evaluate our models, we created 
training, development and test datasets for both polished 
and unpolished (12) grain images. In the case of polished 
grain images, for each grain size and chalkiness degree 
combination, we aimed to use one of the three repli-
cates for training, another one for development and the 
last one for testing. However, to ensure a larger number 
of images in the training set (which is common practice 
in machine learning), we moved some of the instances 
from the development and test replicates/subsets to the 
training subset, so that the final distribution of the data 
split was approximately 2:1:1. In the case of unpolished 
seed images, for each genotype, tiller and condition com-
binations, we used a similar procedure to split the three 
replicates into training training, development and test 
subsets. The specific distribution of chalky/non-chalky 
grain images in the training/development/test subsets is 
shown in Table 2 for both polished and unpolished rice. 
It should be noted that our splitting process ensures that 
the training subset contain all types of grains considered 
and there is no grain that belongs to at least two subsets. 
We used the training subsets to train the models (both 
Grad-CAM networks for binary chalky/non-chalky clas-
sification and the Mask R-CNN networks for chalkiness 
segmentation). We used the development subsets to 
fine-tune hyper-parameters for the models. Finally, the 

performance of the models is evaluated on the test sub-
sets. The subsets are made publicly available to ensure 
reproducibility and to enable further progress in this 
area.

Experimental setup
In this subsection, we state several research questions 
that we aim to address and describe the experiments per-
formed to answer these questions. We also discuss the 
metrics used to evaluate the models trained in our exper-
iments and the hyper-parameters that were fine-tuned to 
obtain the most accurate models.

Research questions
We aim to answer the following research questions (RQ): 

RQ1	� Among different CNN networks used as the 
backbone in the Grad-CAM models for polished 
rice, what network is the best overall in terms of 
chalky/non-chalky classification performance 
versus time and memory requirements? Also, 
what network is the best overall in terms of 
chalkiness segmentation?

RQ2	� How does the Grad-CAM weakly supervised 
approach to chalkiness segmentation compare 
with the Mask R-CNN segmentation approach to 
chalkiness detection in polished rice?

RQ3	� What is the performance of the Grad-CAM 
models for unpolished rice? What is the perfor-
mance of the polished rice models when used to 
make predictions on unpolished rice? Does the 
performance improve if we fine-tune the pol-
ished rice models with unpolished rice?

Experiments
To answer RQ1, we trained Grad-CAM models with 
several CNN networks as backbone, including vari-
ants of AlexNet, DenseNet, ResNet, SqueezeNet, VGG 
and EfficientNet pre-trained on ImageNet. We com-
pared the models in terms of classification performance, 
memory and time requirements. We also identified 
the best model/network for each type of architecture. 

Table 1  Statistics on manual image annotation, specifically, 
the number of images labeled as chalky and non-chalky, and 
also the number of chalky images annotated in terms of chalky 
area, for polished images, and unpolished images from 12 chalky 
combinations, respectively

Set of seeds Chalky Non-chalky Total Chalky area

Polished 660 995 1645 660

Unpolished (12) 3934 1299 5233 240

Table 2  Distribution over Training/Development/Test subsets

Set of seeds Training Development Test Total

Chalky Non-chalky Chalky Non-chalky Chalky Non-chalky

Polished 326 497 168 243 166 245 1645

Unpolished (12) 1856 830 483 229 1595 240 5233
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Subsequently, we study the variation of those best models 
with respect to the layer used to generate the heatmaps 
and the threshold used to binarize the heatmaps when 
calculating the average Intersection-over-Union (IoU). 
The goal is to identify the best overall layer and thresh-
old for each type of network. The best models (with the 
best layer and threshold) are used to evaluate the locali-
zation accuracy, both quantitatively and qualitatively, for 
chalkiness detection in polished rice. To answer RQ2, 
we also trained Mask R-CNN models (with the default 
ResNet-101 as backbone) and compared them with the 
best weakly supervised Grad-CAM approach. Finally, to 
answer RQ3, we first trained and evaluated a Grad-CAM 
model (with ResNet-101 as backbone) on unpolished 
rice. We compared the performance of the resulting 
model with the performance of a model trained on pol-
ished rice and also with the performance of the polished 
rice model fine-tuned on unpolished rice.

Evaluation metrics
We evaluated the performance of the Grad-CAM 
approach along two main dimensions. First, we evaluated 
the ability of the approach to correctly classify seeds as 
chalky and non-chalky using standard classification met-
rics such as accuracy, precision, recall and F1 measure. 
Second, we evaluated the ability of the approach to per-
form chalkiness segmentation (i.e., the ability to identify 
the chalky area in the chalky seed images) using standard 
segmentation metrics. Specifically, we calculated average 

IoU [89], as well as localization accuracy and ground 
truth known (GT-known) localization accuracy [90] for 
the chalky class. Figure 4 illustrates the process of calcu-
lating IoU between the ground truth mask for the chalki-
ness area and the predicted chalkiness mask. As opposed 
to classification accuracy, which considers a prediction to 
be correct if it exactly matches the ground truth label, the 
localization accuracy considers a prediction to be correct 
if both the image label and the location of the detected 
object are correct. For the location of the object to be 
correct, the object mask needs to have more than 0.5 
overlap with the ground truth mask. The overlap is meas-
ured as the IoU. In our case, we calculated the localiza-
tion accuracy for the chalky class as the fraction of seed 
images for which the predicted mask for the chalky area 
has more than 50% IoU with the ground-truth mask. 
We also calculated the GT-known localization accu-
racy, which eliminates the influence of the classification 
results, as it considers a prediction to be correct when 
the IoU between the ground truth mask and estimated 
mask (in our case, for the chalky class seed images) is 0.5 
or more.

Hyper‑parameter tuning
Deep learning models, in general, and the ResNet, VGG, 
SqueezeNet, DenseNet EfficientNet networks, in par-
ticular, have many configurable hyper-parameters. We 
tuned several hyper-parameters shown to affect the per-
formance of all models. More specifically, we tuned the 

Fig. 4  Calculating the IoU between binarized ground truth and prediction: a chalky seed; b corresponding ground truth chalkiness area; c 
binarized ground truth area; d predicted chalkiness area; e corresponding predicted binarized area; f intersection between the binarized ground 
truth (c) and prediction (e): the number of white pixels in the intersection is 5167; g union between the binarized ground truth (c) and prediction 
(e): the number of white pixels in the union is 6370; h Calculation of IoU
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batch size used in gradient descent to control the num-
ber of rice seeds processed before updating the internal 
model weights. Furthermore, we tuned the learning rate 
which controls how much we are adjusting the network 
weights with respect to the gradient of the loss function. 
The specific values that we used to tune the batch size 
were 16, 32 and 64. The values used to tune the learn-
ing rate were 0.1, 0.01, 0.001, 0.0001 and 0.00001. For 
each network, the best combination of parameters was 
selected based on the F1 score observed on the validation 
subset. Each model was run for 200 epochs and the best 
number of epochs for a model was also selected based on 
the validation subset. Overall, our hyper-parameter tun-
ing process revealed that the performance did not change 
significantly with the parameters considered. All the 
models were trained on Amazon Web Services (AWS) 
p3.2xlarge instances. According to AWS2, the configu-
ration of the p3.2xlarge instance is as follows: 1 GPU, 8 
vCPUs, 61 GiB of memory, and up to 10 Gbps network 
performance.

As opposed to the models used as backbone for the 
Grad-CAM approach, the Mask R-CNN network with 
ResNet-101 as backbone could only be trained with a 
batch size of 8 images on AWS p3.2xlarge instances. The 
same learning rate values as for the CNN networks were 
used for tuning. However, this network was trained for 
a total of 600 epochs, as opposed to just 200 epochs for 
the other models. No other hyper-parameters specific to 
Mask R-CNN network were fine-tuned.

Results and discussion
Chalkiness classification and detection in polished rice 
using Grad‑CAM models
Chalkiness classification in polished rice
Table  3 shows classification results for a variety of net-
work architectures (and variants within one type of 
architecture) that were used as backbone for the Grad-
CAM models. Specifically, we experimented with vari-
ants of the DenseNet, ResNet, SqueezeNet, VGG, and 
EfficientNet architectures. All the variants that we used 
have models pre-trained on ImageNet, which allowed us 
to perform knowledge transfer and train weakly super-
vised models for chalkiness detection with a relatively 

Table 3  Classification results on polished rice with various networks as backbone in the weakly supervised Grad-CAM approach

The number following a network’s name denotes the number of layers in the network (as in DenseNet-121 or ResNet-101) or the version of the network (as in 
SqueezeNet-1.0 or EfficientNetB0). Performance is reported in terms of Accuracy (Acc.), Precision (Pre.), Recall (Rec.) and F1 measure (F1). Precision, Recall and F1 
measure values are reported separately for the Chalky and Non-Chalky classes. All models are trained/tuned/evaluated on the same training/development/test splits. 
The results reported are obtained on the test set. The best performance for each type of model for each metric is highlighted using bold font

Model Acc.(%) Chalky Non-chalky

Pre.(%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)

DenseNet-121 95.61 94.58 94.58 94.58 96.31 96.31 96.31
DenseNet-161 95.12 92.44 95.78 94.08 97.06 94.67 95.85

DenseNet-169 94.63 92.86 93.98 93.41 95.87 95.08 95.47

ResNet-18 94.63 94.44 92.17 93.29 94.76 96.31 95.53

ResNet-34 94.15 93.29 92.17 92.73 94.72 95.49 95.10

ResNet-50 94.88 95.03 92.17 93.58 94.78 96.72 95.74

ResNet-101 95.12 93.45 94.58 94.01 96.28 95.49 95.88
ResNet-152 94.88 93.94 93.37 93.66 95.51 95.90 95.71

SqueezeNet-1.0 95.12 93.45 94.58 94.01 96.28 95.49 95.88
SqueezeNet-1.1 94.39 91.33 95.18 93.22 96.62 93.85 95.22

VGG-11 94.88 93.94 93.37 93.66 95.51 95.90 95.71

VGG-13 94.39 92.31 93.98 93.13 95.85 94.67 95.26

VGG-16 95.12 92.94 95.18 94.05 96.67 95.08 95.87
VGG-19 94.15 90.34 95.78 92.98 97.01 93.03 94.98

EfficientNetB0 95.13 93.98 93.98 93.98 95.92 95.92 95.92

EfficientNetB1 95.13 94.51 93.37 93.94 95.55 96.33 95.93

EfficientNetB2 93.67 90.23 94.58 92.35 96.20 93.06 94.61

EfficientNetB3 95.13 95.06 92.77 93.90 95.18 96.73 95.95

EfficientNetB4 95.38 96.82 91.57 94.12 94.49 97.96 96.19
EfficientNetB5 93.67 91.67 92.77 92.22 95.06 94.29 94.67

EfficientNetB6 94.16 92.77 92.77 92.77 95.10 95.10 95.10

2  https://​www.​amazo​naws.​cn/​en/​ec2/​insta​nce-​types/.

https://www.amazonaws.cn/en/ec2/instance-types/
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small number of chalky/non-chalky seed images. Only 
models that we could train on AWS p3.2xlarge instances 
were included in the table to allow for a fair compari-
son in terms of training time. Each model is trained and 
fine-tuned on the training and development subsets 
consisting of polished rice seed images. Performance is 
reported in terms of overall accuracy and also precision, 
recall and F1 measure for both the chalky and non-chalky 
classes. The best results for one type of architecture are 
highlighted with bold font. For each model included in 
Tables 3, 4 shows the training time (seconds), number of 
parameters, and size (MB) of the models versus the clas-
sification accuracy of the model.

As can be seen from Table  3, the overall classifica-
tion accuracy varies from 93.67% (for EfficientNetB2 
and EfficientNetB5) to 95.61% (for DenseNet-121). The 
DenseNet-121 model, which has the highest classifica-
tion accuracy, also has the highest F1 measure for both 
chalky and non-chalky classes, although there is at least 
one competitive variant for each architecture type, e.g., 
ResNet-101 for ResNet, SqueezeNet-1.0 for SqeezeNet, 
VGG-16 for VGG, and EfficientNetB4 for EfficientNet. 
Furthermore, the DenseNet-121 model has a relatively 

small size (28 MB) and average training time (approxi-
mately 1500 s). Surprisingly, the SqueezeNet architecture, 
which is highly competitive in terms of performance, 
has the smallest size (3.0/2.9 MB for SqueezeNet-1.0/
SqueezeNet-1.1, respectively) and smallest training time 
(approximately 500 s). The VGG models have the larg-
est size (more than 500 MB) and relatively large train-
ing time (in the range of 2400 to 3000 s), and the best 
EfficientNet variant (EfficientNetB4) has moderate size 
(approximately 140 MB) but relatively large training time 
(approximately 3500 s). Finally, the ResNet-101 vari-
ant, which is the best in the ResNet group, has moderate 
size (170 MB) and training time (close to 1700 s). Based 
on these results, we selected one model for each type of 
architecture and used those selected models for further 
analysis.

Chalkiness detection in polished rice
To produce accurate detection of chalkiness area, we first 
studied the variation of the average IoU with respect to 
the layer used to generate the heatmaps and the thresh-
old, T, used to binarize the heatmaps when calculat-
ing the IoU. The best layer/threshold combination was 

Table 4  Classification networks: training time and model size

The number following a network’s name denotes the number of layers in the network (as in DenseNet-121 or ResNet-101) or the version of the network (as in 
SqueezeNet-1.0 or EfficientNetB0). All models are trained on AWS p3.2xlarge instances. The training time it took to train each model for 200 epochs is reported in 
seconds (s). Model complexity is reported as the number of trainable parameters of the model, as well as the size of the model in MB. The accuracy of each model is 
also shown, and the best accuracy (Acc.) obtained for each type of model is highlighted in bold font

Model Training time (s) Number of parameters Size (MB) Acc. (%)

DenseNet-121 1522.88 6955906 28.4 95.61
DenseNet-161 2157.04 26,476,418 107.1 95.12

DenseNet-169 1306.20 12,487,810 50.9 94.63

ResNet-18 546.77 11,177,536 44.8 94.63

ResNet-34 719.41 21,285,696 85.3 94.15

ResNet-50 1011.85 23,512,128 94.4 94.88

ResNet-101 1668.41 42,504,256 170.6 95.12
ResNet-152 2172.97 58,147,904 233.4 94.88

SqueezeNet-1.0 533.15 736,450 3.0 95.12
SqueezeNet-1.1 481.53 723,522 2.9 94.39

VGG-11 2382.44 128,774,530 515.1 94.88

VGG-13 2641.00 128,959,042 515.9 94.39

VGG-16 2745.00 134,268,738 537.1 95.12
VGG-19 3079.89 139,578,434 558.4 94.15

EfficientNetB0 1198.53 4,052,126 33.0 95.13

EfficientNetB1 2243.48 6,577,794 53.4 95.13

EfficientNetB2 1882.26 7,771,380 62.9 93.67

EfficientNetB3 2696.21 10,786,602 87.1 95.13

EfficientNetB4 3476.74 17,677,402 142.3 95.38
EfficientNetB5 3584.68 28,517,618 229.1 93.67

EfficientNetB6 4946.95 40,964,746 328.3 94.16

Mask R-CNN 14863.00 42,504,256 255.9 N/A
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selected independently for each type of network using 
both qualitative and quantitative evaluations. Based 
on preliminary visual inspection of the heatmaps, we 
observed that heatmaps corresponding to lower level lay-
ers in a network result in better approximations of the 
chalkiness area, possibly because the progressive down-
sampling along the convolutional layers of the backbone 
CNN makes it hard to precisely recover the chalkiness 
information from the higher level feature maps [91]. 
Therefore, for each type of network, we evaluated a 
lower-level layer (e.g., layer1_2_conv2 for ResNet-101), 
two intermediate layers (e.g., layer2_0_conv2 and 
layer3_1_conv2 for ResNet-101), and one high-level layer 
(e.g., layer4_1_conv3 for ResNet-101). The threshold, T, 
varied from 10% to 80% in increments of 10. We focused 
our analysis on ResNet-101 moving forward as this net-
work produced the best segmentation results overall. 
Table 5 shows the variation of performance (i.e., average 
IoU over the set of chalky seed images) with the layer and 
the threshold for ResNet-101.

As shown in Table 5, for ResNet-101 we obtained better 
performance with a lower-intermediate layer (layer2_0_
conv2) as opposed to a higher layer as reported in other 
studies [66, 68], and a threshold of T = 60% of the high-
est pixel value, which is larger than the standard T = 15% 
[66] or T = 20% [68] thresholds frequently used in prior 
studies. A similar pattern is observed in terms of thresh-
old with the other four networks. As for the layer, the 
DenseNet-121 and VGG-16 give the best results using 
a lower layer, while SqueezeNet-1.0 and EfficientNetB4 
networks give best results with a higher layer. More 
details can be seen in Additional file 5: Table S3.

To gain more insights into the heatmap layer and 
threshold, Fig.  5 shows qualitative and quantitative 
results obtained with Grad-CAM using ResNet-101 as 
backbone for 10 sample seed images in the test data-
set when considering three thresholds ( 20% , 40% , 60% ) 
and four convolution layers. As can be seen in the fig-
ure, seeds with a larger chalky area (e.g., seeds 6 and 10) 
are less sensitive to the layer chosen, i.e., several layers 

produce heatmaps with high IoU scores. However, for 
seeds with a smaller or narrow chalky area, the results are 
more sensitive to the layer selected and the best results 
are obtained with the intermediate layer, layer2_0_conv2. 
Another observation that can be made from Fig. 5 is that, 
overall, the lower layers tend to have sharper boundaries 
as opposed to the higher levels that have softer bounda-
ries, making it harder to find a good threshold. This may 
be due to the fact that higher levels in the network cor-
respond to lower dimensional feature maps, which no 
longer preserve boundary details when interpolated 
back to higher dimensions. Additional files 6, 7, 8: Figs. 
S3–S5 show similar quantitative and qualitative results 
produced by SqueezeNet-1.0, DenseNet-121 and VGG-
16 networks, respectively, on the same 10 seeds shown 
in Fig. 5. Despite the good classification results obtained 
with these networks, the heatmaps show lighter colors 
and softer boundaries for the chalkiness area and overall 
poor chalkiness detection results as compared with the 
results of ResNet-101. A better understanding regarding 
this can be gained from Fig. 6 which shows a side-by-side 
comparison of the heatmaps produced by different net-
works and the corresponding binarized chalkiness masks. 
The masks obtained with Mask R-CNN are also shown. 

The same conclusions regarding the superiority of 
ResNet-101 for chalkiness segmentation are supported 
by a quantitative evaluation of the networks in terms of 
localization metrics computed over the whole test set. 
The results of this evaluation are shown in Table  6 for 
the best performing models for each type of architecture 
considered as backbone (DenseNet-121, ResNet-101, 
SqueezeNet-1.0, VGG-19, and EfficientNetB4). For each 
network, the specific convolution layer and the threshold 
used to produce the results are shown in the last two col-
umns of the table, respectively. The results obtained with 
the Mask R-CNN network, which has ResNet101 as its 
backbone, are also shown in Table 6. As can be seen, the 
best results are obtained using the ResNet-101 network 
(for all metrics considered), while the next best results 
are obtained with DenseNet-121. Among the weakly 

Table 5  Variation of the Average IoU (%) with the layer and threshold used for ResNet-101

The layer is used to generate the heatmaps and the threshold T is used to binarize the heatmaps (e.g., T = 20% means that only pixels with values at least 20% of the 
max pixel value in the image are included in the binary mask). The layers were sampled to include a low-level layer (layer1_2_conv2), a high-level layer (layer4_1_
conv3) and two intermediate layers (layer2_0_conv2 and layer3_1_conv2) that showed good results based on a qualitative inspection of the maps. The threshold T is 
varied from 20% to 80% in increments of 10. The best result and the corresponding layer and threshold are highlighted in bold font

Layer T = 20% T = 30% T = 40% T = 50% T = 60% T = 70% T = 80%

layer1_2_conv2 0.20 9.90 18.41 26.08 37.53 18.55 18.55

layer2_0_conv2 3.81 19.86 31.53 44.90 68.11 18.55 18.55

layer3_1_conv2 1.77 9.59 18.92 28.22 41.59 18.55 18.55

layer4_1_conv3 0.15 10.26 15.43 21.10 29.68 18.55 18.55
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supervised Grad-CAM networks, the ones that have 
SqueezeNet-1.0 and VGG-16 as backbones, produce the 
worst results. The results of the Mask R-CNN network 
are extremely poor when compared with the results of 
the Grad-CAM with ResNet-101, DenseNet-121 and 
EfficientNetB4 backbones but they are better than those 
of the Grad-CAM with SqueezeNet-1.0 and VGG-16 

as backbones. This shows that the weakly supervised 
approach is more effective for the chalkiness detection/
segmentation problem in addition to being less labori-
ous in terms of data labeling, as compared to the Mask 
R-CNN segmentation approach.

To understand if the results obtained with Grad-
CAM and ResNet-101 can be further improved with an 

Fig. 5  Examples of Grad-CAM (ResNet-101) heatmaps for 10 sample chalky seed images (5 on the left side and 5 on the right side). For each seed, 
heatmaps corresponding to the following four layers are shown: (1) ResNet101 layer1_2_conv2; (2) ResNet101 layer2_0_conv2; (3) ResNet101 
layer3_1_conv2; (4) ResNet101 layer4_1_conv3. The IoU values obtained for three thresholds T (20%, 40% and 60%, respectively) are shown under 
each heatmap
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alternative localization approach, we compared Grad-
CAM with Grad-CAM++ and Score-CAM (using 
ResNet-101 as the backbone CNN). The results of the 
comparison are shown in Table  7 and show that Grad-
CAM consistently outperforms its Grad-CAM++ vari-
ant and the Score-CAM approach. While this may seem 
surprising at first, we note that Grad-CAM++ has been 
designed to handle multiple occurrences of an object in 
an image. However, in our task, chalkiness is a concept 

with soft boundaries and doesn’t present multiple occur-
rences. Thus, Grad-CAM++ may highlight additional 
regions that are not representative of chalkiness, as 
marked by human annotators. As for Score-CAM, this 
approach has been shown to find firmer, less fuzzy locali-
zations of the objects of interests. However, as chalkiness 
inherently has relatively fuzzy, soft boundaries, Score-
CAM usually highlights a smaller area as compared 
with the manual annotations, resulting in worse overall 

Fig. 6  Examples of Grad-CAM heatmaps and corresponding binarized chalkiness masks. (a) Five sample chalky seed images; (b1) SqueezeNet-1.0 
Heatmaps; (b2) SqueezeNet-1.0 Masks; (c1) DenseNet-121 Heatmaps; (c2) DenseNet-121 Masks; (d1) ResNet-101 Heatmaps; (d2) ResNet-101 Masks; 
(e1) VGG-19 Heatmaps; (e2) VGG-19 Masks; (f1) EfficientNetB4 Heatmaps; (f2) EfficientNetB4 Masks; (g1) Mask R-CNN Original Masks ; (g2) Mask 
R-CNN Binary Masks

Table 6  Chalkiness Segmentation: results of the weakly supervised Grad-CAM approach with the best performing classification 
models as backbone

The results of Mask R-CNN with ResNet-101 as backbone are also shown. Only the 166 chalky seed images in the test set were used for chalkiness segmentation 
evaluation. Performance is reported using the following metrics (as applicable): Ground-Truth Localization Accuracy (GT-known Loc. Acc.), which represents the 
fraction of ground-truth chalky seed images with IoU ≥ 0.5 ; Localization Accuracy (Loc. Acc.), which represents the fraction of ground-truth chalky images, with 
IoU ≥ 0.5 , correctly predicted by the model; Average IoU (Avg. IoU), which represents the average IoU for the set of chalky seed images. To calculate the IoU, the mask 
of the predicted chalkiness is obtained using a threshold T = 60% of the maximum pixel intensity. The last two columns show the layer that was used for generating 
the heatmap and the threshold used to binarize the heatmap when calculating IoU, respectively

Model GT-known Loc. Acc. (%) Loc. Acc. (%) Avg. IoU (%) Layer T (%)

Grad-CAM (DenseNet-121) 51.20 = 085/166 51.20 = 085/166 47.44 Features_
denseblock2_
denselayer7_
conv2

60

Grad-CAM (ResNet-101) 84.34 = 140/166 83.13 = 138/166 68.11 Layer2_0_
conv2

60

Grad-CAM (SqueezeNet-1.0) 15.06 = 025/166 0 = 00/166 31.01 Features_12
_expand1x1

60

Grad-CAM (VGG-16) 7.23 = 012/166 7.23 = 012/166 24.92 Features_
module_5

60

Grad-CAM (EfficientNetB4) 28.92 = 048/166 28.92 = 048/166 35.40 Stem
_conv

50

Mask R-CNN (ResNet-101) 18.67 = 031/166 N/A 29.63 N/A N/A
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results compared with Grad-CAM, although better than 
Grad-CAM++. Additional file 9: Fig. S6 shows the heat-
maps found by the three approaches (Grad-CAM, Grad-
CAM++ and Score-CAM) by comparison with the 
manually annotated chalkiness area for four sample seeds. 
The heatmaps support our conclusions regarding Grad-
CAM++ and Score-CAM results (shown in Table 7).

Chalkiness classification and detection in unpolished rice
Another objective of this study is to explore the appli-
cability of the Grad-CAM approach to unpolished rice 
seeds and to study the transferability of the models 
trained on polished rice to unpolished rice (as unpolished 
rice seeds can be harder to annotate manually). This is 
important as researchers working on large breeding pop-
ulations involving hundreds of lines do not obtain large 
sample sizes and would not have access to polish a small 
amount of seeds, which requires models that can effec-
tively operate on unpolished seeds. To address this objec-
tive, we performed experiments with three models that 
use ResNet-101 as their backbone: (1) a model trained on 
polished seed images, called polished model; (2) a model 
trained on unpolished seed images, called unpolished 
model; and (3) a model originally trained on polished 
seed images and subsequently fine-tuned on unpolished 
seed images, called mixed model. All models were evalu-
ated on the 240 seed images in the unpolished test set, 
which were manually annotated in terms of chalkiness 

area. These images belong to one of the 12 combinations 
corresponding to the Kati and CO-39 genotypes, i.e., 
unpolished (12) set. The training and developments sets 
used to train the unpolished and mixed models belong to 
the unpolished(12) set as well (see Table 2). Classification 
results for the three models are shown in Table 8, while 
segmentation results are shown in Table  9. As can be 
seen in Table 8, the mixed model performs the best over-
all in terms of classification metrics, although the unpol-
ished model has similar performance for both chalky 
and non-chalky classes. However, as Table  9 shows, the 
unpolished model is by far the most accurate in terms of 
segmentation metrics, while the polished model is the 
worst.

To visually illustrate the output of each model, Fig.  7 
shows the chalkiness prediction masks of the polished, 
unpolished and mixed models for four unpolished seeds. 
The polished model largely over-estimates the chalkiness 
area given the opaque nature of the unpolished seeds, as 
opposed to the translucent appearance of the polished 
seeds. The mixed model improves the masks but not as 
much as the unpolished model that is trained specifically 
on unpolished rice seeds. Together, these results sug-
gest that not much knowledge can be transferred directly 
from the polished images to unpolished images, as the 
appearance of the chalkiness is different between pol-
ished and unpolished seeds. The results can be improved 
with the mixed model which fine-tunes the polished 

Table 7  Comparison between the chalkiness segmentation results of the weakly supervised approaches Grad-CAM, Grad-CAM++ 
and Score CAM with ResNet-101 as backbone on polished rice

Only 166 chalky seed images in the polished test set were used for chalkiness segmentation evaluation. Performance is reported using the following metrics: Ground-
Truth Localization Accuracy (GT-known Loc. Acc.), which represents the fraction of ground-truth chalky seed images with IoU ≥ 0.5 ; Localization Accuracy (Loc. Acc.), 
which represents the fraction of ground-truth chalky images, with IoU ≥ 0.5 , correctly predicted by the model; Average IoU (Avg. IoU), which represents the average 
IoU for the set of chalky seed images. To calculate the IoU, the mask of the predicted chalkiness is obtained using a threshold T = 60% of the maximum pixel intensity. 
The last two columns show the layer that was used for generating the heatmap and the threshold used to binarize the heatmap when calculating IoU, respectively

Approach GT-known Loc. Acc. (%) Loc. Acc. (%) Avg. IoU (%) Layer T (%)

Grad-CAM 84.43 84.13 68.11 layer2_0_conv2 60

Grad-CAM++ 48.19 48.19 43.98 layer2_0_conv2 60

Score-CAM 68.07 66.87 55.02 layer2_2_conv3 60

Table 8  Classification results on unpolished rice when ResNet-101 is used as backbone in the weakly supervised Grad-CAM approach

Three models are evaluated: 1) polished model trained on polished rice images; 2) unpolished model trained on Unpolished (12); 3) mixed model, obtained by further 
training the polished model using the Unpolished (12) images. Performance is reported in terms of Accuracy (Acc.), Precision (Pre.), Recall (Rec.) and F1 measure 
(F1). Precision, Recall and F1 measure values are reported separately for the Chalky and Non-Chalky classes. All three models are evaluated on the test subset 
corresponding to the Unpolished (12) rice images. The best performance for each type of model for each metric is highlighted using bold font

ResNet-101 Acc.(%) Chalky Non-chalky

Pre.(%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)

Polished 63.01 0.00 0.00 0.00 63.01 100.00 77.31
Unpolished 83.43 98.50 82.19 89.61 43.65 91.67 59.14

Mixed 84.20 98.08 83.45 90.18 44.77 89.17 59.61



Page 17 of 23Wang et al. Plant Methods            (2022) 18:9 	

models on unpolished rice, although the fine-tuned mod-
els still lag behind the models trained directly on unpol-
ished rice. Hence, models developed using polished or 
unpolished grains needs to be used based on the objec-
tive with poor transferability across these two categories. 

Answers to the Research Questions and Error Analysis
As mentioned in Section "Experimental setup", we set 
to answer three main research questions: [RQ1] aims to 
identify the best Grad-CAM models for polished rice, in 
terms of classification and segmentation performance; 
[RQ2] is focused on the segmentation performance of the 
weakly supervised Grad-CAM approach by comparison 
with Mask R-CNN; and [RQ3] is focused on the perfor-
mance of models for classifying unpolished rice and trans-
ferability of information from polished to unpolished rice.

To answer RQ1, we evaluated several CNN archi-
tectures in terms of classification accuracy, memory 
and time requirements, and also chalkiness detection 
performance in polished rice. While the architectures 
studied have comparable classification performance, 
the ResNet-101 network was found to be superior with 
respect to chalkiness detection in polished rice and has 
relatively small memory and time requirements. Fur-
thermore, we compared the best weakly supervised 
Grad-CAM models with the Mask R-CNN segmentation 
model to answer RQ2 and found that the Grad-CAM 
models performed better than Mask R-CNN, which 
needs more expensive pixel level annotation. Overall, 
the chalkiness detection results obtained for polished 
rice are remarkably good, with an average IoU of 68.11%, 
GT-known accuracy of 83.34% and localization accuracy 
of 83.13%. Finally, to answer RQ3, we used Grad-CAM 
models trained on polished rice, unpolished rice, and a 
mix of polished and unpolished rice and evaluated them 
on unpolished rice. When studying the transferability of 
the models trained on polished rice to unpolished rice, 
we found that fine-tuning on unpolished rice is neces-
sary. In fact, models trained directly on the unpolished 
rice performed the best in our study. More specifically, 
our evaluation on unpolished rice grain images showed 
that the best model trained directly with unpolished rice 
had an average IoU of 51.76%, while both the GT-known 

Table 9  Chalkiness segmentation results of the weakly supervised Grad-CAM approach with ResNet-101 as backbone on unpolished 
rice

Only 240 chalky seed images in the Unpolished (12) test set were used for chalkiness segmentation evaluation. Performance is reported using the following metrics: 
Ground-Truth Localization Accuracy (GT-known Loc. Acc.), which represents the fraction of ground-truth chalky seed images with IoU ≥ 0.5 ; Localization Accuracy 
(Loc. Acc.), which represents the fraction of ground-truth chalky images, with IoU ≥ 0.5 , correctly predicted by the model; Average IoU (Avg. IoU), which represents 
the average IoU for the set of chalky seed images. To calculate the IoU, the mask of the predicted chalkiness is obtained using a threshold T = 60% of the maximum 
pixel intensity. The last two columns show the layer that was used for generating the heatmap and the threshold used to binarize the heatmap when calculating IoU, 
respectively

Grad-CAM (ResNet-101) GT-known Loc. Acc. (%) Loc. Acc. (%) Avg. IoU (%) Layer T (%)

polished model 7.92 = 019/240 7.92 = 19/240 26.79 layer2_0_
conv2

60

unpolished model 63.75 = 153/240 63.75 = 153/240 51.76 layer2_0_
conv2

60

mixed model 20.42 = 049/240 20.42 = 049/240 29.91 layer2_3_
conv2

60

Fig. 7  Examples of chalkiness binary masks for four unpolished rice 
grains. The binary masks obtained from the Grad-CAM heatmaps 
(with ResNet-101 as backbone) using a threshold T = 60% are shown 
form the polished, unpolished and mixed models, respectively, by 
comparison with the ground truth binary mask
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accuracy and the localization accuracy were 63.75%. It 
is not surprising that the models perform better on pol-
ished rice as chalkiness is easier to detect after the inter-
fering aluerone layer is removed through milling.

While the use of the Grad-CAM approach for rice 
chalkiness segmentation was extremely successful, one 
challenge that we encountered was the tuning of the 
layer to be used for generating the heatmaps as well as 
the threshold for producing the binary masks for chalki-
ness area. Our goal was to find a good overall layer and 
threshold for a model to avoid the pitfall of tuning the 
threshold for each type of rice seed. Our analysis showed 
that a lower layer generally results in better chalkiness 
detection. One explanation for this is that higher levels 
undergo more extensive down-sampling (through succes-
sive applications of pooling layers) and this causes loss of 
information that cannot be recovered in the chalkiness 
heatmaps. Regarding the threshold for binarization, our 
results showed that a higher threshold (e.g., T = 60% ) 
produces better overall results. One possible reason for 
the higher threshold may be given by the fact that our 
images have relatively low contrast between the chalky 
area and its neighboring area, as compared to other seg-
mentation tasks for which weakly supervised approaches 

have been used. However, a threshold of 60% has also 
been used for binarizing gray images, e.g. fingerprint 
images [92] or textile pilling images [93], which are simi-
lar in nature to our chalkiness images.

Error analysis of the polished models revealed sev-
eral sources of errors that lead to disagreement between 
model predictions and ground truth annotations. Such 
sources are illustrated in Fig. 8 and include: (a) inconsist-
encies in the way chalkiness is manually annotated due 
to the soft/fuzzy boundaries of chalkiness (as opposed 
to binary chalky versus non-chalky boundaries); (b) 
scratches or marks (referred to as noise) on the chalki-
ness area are interpreted as non-chalkiness and lead to 
mismatches with the ground truth annotations in terms 
of IoU metric; (c) irregular chalkiness shapes also make 
it hard to annotate chalkiness very precisely; (d) abra-
sion stains that are recognized as chalkiness (white 
dots on the right in the figure) despite the fact that the 
Grad-CAM model uses deeper feature maps that pre-
sumably miss some “details”; (e) irregular shape and 
fuzzy boundaries affect the ground truth annotations 
and consequently the predictions in unpolished rice as 
well. Despite such errors, we found that the best Grad-
CAM model for unpolished rice, trained on the Kati and 

Fig. 8  Sources of errors for the Grad-CAM models. Images (a–d) correspond to polished rice, while image (e) corresponds to unpolished rice. 
The sources of error can be summarized as: a Inconsistencies in the way chalkiness is manually annotated, due to the white gradient nature of 
chalkiness; b Scratches or marks (referred as noise) on the chalkiness area can be interpreted as non-chalkiness; c Irregular chalkiness shape makes 
it hard to annotate chalkiness very precisely; d Abrasion stains can be recognized as chalkiness (white dots on the right in the figure); e Irregular 
shape and fuzzy boundaries affect the ground truth annotations and the predictions in unpolished rice as well
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CO-39 genotypes, can generalize well to unpolished rice 
grains from the other genotypes included in the bio-
logical experiment. Additional file 10: Fig. S7 shows the 
prediction results of the unpolished model on 12 rice 
grains randomly selected from the genotypes not used 
in the training, together with their manual annotations. 
When analyzing images predicted as false positives by 
the model with ResNet-101 as backbone, we observed 
that the main reason for the model to predict non-chalky 
images as chalky is the presence of larger abrasion stains 
or damaged seed ends that are recognized as chalkiness, 
although not considered to be chalkiness by manual 
annotators. Some examples of false positive seed images, 
together with their corresponding chalkiness heatmaps 
produced by Grad-CAM are shown in Additional file 11: 
Fig. S8.

Tool availability and time requirements
In terms of time requirements, our experiments showed 
the average time for training a ResNet-101 model on an 
EC2 p3-2xlarge instance available from AWS is 1668.41 
s, as shown in Table  4, and no human intervention is 
required during that time. Once the model is trained, 
the average time to predict the label of a new image and 
create a chalkiness heatmap is less than 1 s using an EC2 
p2-xlarge instance. Given these time requirements and 
assuming that thousands of images need to be anno-
tated for genetic mapping studies, our models could be 
extremely cost-effective and help save significant human 
efforts and time that would otherwise be invested in the 
manual annotation.

Development of rice with less chalk under future hotter 
climate
Quantifying rice chalkiness rapidly and accurately con-
tinues to be a limitation for capturing the degree of chalk-
iness across a wide range of genetic backgrounds due to 
the lack of a high throughput phenotyping tool. Develop-
ing such a tool is important and timely as the proportion 
of chalky grains are bound to increase under warm-
ing scenarios, particularly with increasing night tem-
peratures [19, 94]. We used the tool developed based on 
Grad-CAM to determine the percent chalkiness area and 
the chalkiness score for each of the 13,101 unpolished 
rice grains extracted from the original scanned images. 
As opposed to the chalkiness area, which is obtained 
based on a binary map, the chalkiness score considers the 
intensity of chalkiness for each pixel, with red indicating 
greater proportion of chalk per pixel and blue indicat-
ing the least proportion of chalk per pixel (Figs. 5 and 6). 
Subsequently, we aggregated the percent chalkiness and 
the chalkiness score per sample (i.e., for each combina-
tion genotype/tiller/treatment). Using the aggregates, 

we analyzed differences between genotypes, tiller and 
treatment in terms of chalkiness in three scenarios. In 
scenario 1, where the chalkiness was determined using 
the coarse chalky versus non-chalky classification of the 
grains, analysis based on the number of grains with and 
without chalk resulted in a poor analytical resolution 
and failed to detect any differences or significant inter-
action effects (Additional file  12: Table  T4). In scenario 
2, analysis based on the proportion of area of chalkiness 
determined from the Grad-CAM binarized heatmaps 
improved the prediction power where apart from geno-
type (G) main effect, the interaction effects of HNT treat-
ment (T) *G, G* panicle type (P), and T*G*P interaction 
effects were significant (Table 10). This finding indicated 
that the approach was able to detect the differential pro-
portion of chalkiness in different tillers across genotypes 
under HNT exposure during grain-filling. Using this 
approach, genotypic differences in the proportion of 
accumulation of chalkiness were observed with IR1561 
and WAS-174 which recorded an increase of chalkiness 
in grains in primary and other panicles as compared to 
main tiller under HNT, while the same was reduced in 
IR-22 and Kati and was not affected in CO-39 and Ory-
zica (Table  10). Percent change in proportion of chalki-
ness under HNT in primary and other panicles compared 
to main panicle ranged from −0.89% in IR1561 to 122% 
in WAS-174. Grains from both primary and other pani-
cles recorded an increase in proportion of chalkiness 
by 63 and 122%, respectively, compared to main panicle 
under HNT in WAS-174 (Table  10). In scenario 3, the 
chalkiness score was calculated using the pixel intensity 
in the chalkiness heatmaps produced by Grad-CAM and 
analysis of variance for chalkiness score revealed a signif-
icant effect of G, T*G, G*P and T*G*P further indicating 
an improvement in prediction potential for chalkiness 
among genotypes, treatments and tiller types (Table 10).

Similar to proportion of chalkiness area, chalkiness 
score showed an increase under HNT compared to 
control in IR1561 and WAS-174 in primary and other 
panicles, while the same was reduced in IR-22 and Kati 
(Table  10). Among the genotypes, WAS-174 recorded 
highest percent increase in chalkiness score under HNT 
in grains from primary (74%) and other panicles (59%) 
compared to main panicle (Table  10). In contrast, Ory-
zica recorded an increase in chalkiness score under 
HNT in grains from primary (46%) and other panicles 
(99%) compared to main panicle. Genotypes like CO-39, 
IR1561 and IR-22 showed minimal changes in chalki-
ness score between tillers under HNT (Table  10). In 
summary, identifying and using such germplasm (for 
example, CO-39 and Oryzica) with minimal chalki-
ness, even under HNT, will help develop rice varieties 
that can sustain quality under future warming scenarios 
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without having a negative impact of economic revenue 
of the rice farmers. In addition, the ability to obtain the 
level of chalkiness in less than 1 s per image and in batch 
mode allows these models to be used efficiently as a high-
throughput phenotyping tool for capturing chalkiness in 
large breeding populations and to efficiently incorporate 
genetics leading to low grain chalkiness into ongoing 
global rice breeding programs.

Limitations of the study
While the methodology proposed in this study provides 
tremendous benefits to global rice breeding programs, 
we would also like to point out its limitations:

•	 We have shown that the weakly supervised approach, 
Grad-CAM, can be used to detect chalkiness in 
white rice (both polished and unpolished grains, with 
higher accuracy for polished grains, as expected). 
However, the approach may not work as well for 
coloured rice such as brown or black rice, given the 
more opaque nature of coloured rice grains.

•	 Our experiments showed that models cannot effec-
tively be transferred from polished rice to unpolished 
rice. Instead, models trained specifically on unpol-
ished rice have better accuracy. This result suggests 
that new models may need to be trained and fine-
tuned (in terms of threshold T for binarization and 
convolution layer to be used for the heatmap) for 

other types of rice, or for images taken under differ-
ent conditions.

•	 The sets of images that were used in this study con-
tained mostly seeds that did not touch each other. 
The ability of the tool to determine chalkiness in 
samples without physical separation of grains was 
not tested in this study. Hence, the tool would require 
additional training to be able to quantify chalkiness 
under different proportions of overlap of grains.

•	 Our approach was designed to determine the global 
chalkiness in grains, but it does not consider specific 
chalkiness types such as white-belly, white core, or 
white-base. However, the developed models set the 
stage for further refinement to determine the differ-
ent proportions of chalky types in future work.

Conclusions
In this study, we presented the application of a high 
throughput deep learning tool to detect the chalki-
ness area in polished and unpolished rice grains. To 
avoid the need for cumbersome pixel-level annotation, 
we used a weakly supervised segmentation approach, 
Grad-CAM, which addresses the problem as a binary 
classification task and subsequently uses the gradients 
of the grain chalk to produce a chalkiness heatmap. 
Experimental results showed that it is possible to use 
the Grad-CAM model with ResNet-101 as a backbone 

Table 10  Percentage chalkiness area and chalkiness score were obtained for individual seeds randomly selected across treatments 
and genotypes

A three-way analysis of variance for these traits (Chalkiness Area (%) and Score) were performed under completely randomized design (CRD) using PROC GLM 
procedure in SAS. Means were separated using HSD (Tukey’s Studentized Range ) test at p = 0.05. Table includes mean and ± SEM for three way comparison. 
Chalkiness area (%) was significantly affected by genotype (G) ( p < 0.001 ), treatment (T) × G ( p < 0.001 ) and G × panicle type (P) ( p < 0.001 ) and T × G × P 
( p < 0.001 ) interaction effects. Chalkiness score was significantly affected by G ( p < 0.001 ), T × G ( p < 0.016 ), G × P ( p < 0.001 ) and T × G × P ( p = 0.03 ) interaction 
effects

Chalkiness (% area) Main panicle Primary panicle Other panicle

CNT HNT CNT HNT CNT HNT

CO-39 7.54 ±0.8 8.17 ±1.0 6.95 ±0.6 7.73 ±0.3 8.00 ±1.8 7.19 ±1.1

IR1561 13.35 ±2.5 16.22 ±3.0 8.21 ±0.2 16.37 ±2.4 8.52 ±1.1 12.35 ±1.2

IR-22 8.02 ±0.8 6.33 ±0.5 9.36 ±2.2 5.27 ±0.5 5.89 ±0.9 5.30 ±0.6

Kati 7.39 ±0.7 7.44 ±0.4 13.56 ±1.2 10.34 ±2.5 14.32 ±1.9 10.70 ±2.5

Oryzica 10.61 ±1.4 10.75 ±1.8 5.32 ±0.5 5.64 ±0.6 5.05 ±0.6 4.83 ±1.4

WAS-174 7.25 ±2.0 5.76 ±1.7 5.91 ±0.4 9.39 ±2.6 4.44 ±0.8 12.81 ±1.4

Chalkiness score CNT HNT CTN HNT CTN HNT

CO-39 0.07518 ±0.008 0.06827 ±0.009 0.07157 ±0.004 0.07780 ±0.003 0.07449 ±0.016 0.07119 ±0.010

IR1561 0.10415 ±0.015 0.12933 ±0.026 0.07026 ±0.002 0.14653 ±0.032 0.07006 ±0.006 0.11615 ±0.012

IR-22 0.07276 ±0.003 0.06294 ±0.006 0.09692 ±0.017 0.05694 ±0.006 0.05916 ±0.012 0.05686 ±0.007

Kati 0.09238 ±0.009 0.09252 ±0.002 0.17087 ±0.017 0.13309 ±0.032 0.16940 ±0.018 0.13586 ±0.029

Oryzica 0.14890 ±0.024 0.16370 ±0.029 0.08302 ±0.011 0.08862 ±0.006 0.07928 ±0.014 0.08246 ±0.026

WAS-174 0.09386 ±0.024 0.07700 ±0.023 0.08449 ±0.005 0.13393 ±0.038 0.06039 ±0.011 0.18932 ±0.018
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to generate accurate chalkiness heatmaps for both pol-
ished and unpolished rice grains. However, the analy-
sis also showed that detecting rice chalkiness is easier 
in polished rice as compared to unpolished rice and 
that the polished models are not directly transfer-
able to unpolished rice. Our study shows that weakly 
supervised deep learning models can be used to assist 
research in both phenotyping and rice quality control 
in several ways: (i) perform high-throughput rice seed 
image analysis to identify chalky seeds and generate 
chalkiness maps, (ii) replace the expensive error-prone 
human annotations with rapid and continuous anno-
tations without compromising the accuracy, and (iii) 
provide quantitative measures for chalkiness area. We 
successfully demonstrated the application of this tool 
in accurately capturing the HNT induced differential 
level of chalkiness in different tillers in rice. The models 
trained in this study are made publicly available. Being 
already trained, they will be easy-to-use, scalable and 
can be readily utilized in ongoing rice breeding pro-
grams, without requiring researchers to have computer 
science or machine learning expertise.
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