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Abstract 

Background:  Breakthrough imaging technologies may challenge the plant phenotyping bottleneck regarding 
marker-assisted breeding and genetic mapping. In this context, X-Ray CT (computed tomography) technology can 
accurately obtain the digital twin of root system architecture (RSA) but computational methods to quantify RSA traits 
and analyze their changes over time are limited. RSA traits extremely affect agricultural productivity. We develop 
a spatial–temporal root architectural modeling method based on 4D data from X-ray CT. This novel approach is 
optimized for high-throughput phenotyping considering the cost-effective time to process the data and the accu‑
racy and robustness of the results. Significant root architectural traits, including root elongation rate, number, length, 
growth angle, height, diameter, branching map, and volume of axial and lateral roots are extracted from the model 
based on the digital twin. Our pipeline is divided into two major steps: (i) first, we compute the curve-skeleton based 
on a constrained Laplacian smoothing algorithm. This skeletal structure determines the registration of the roots 
over time; (ii) subsequently, the RSA is robustly modeled by a cylindrical fitting to spatially quantify several traits. The 
experiment was carried out at the Ag Alumni Seed Phenotyping Facility (AAPF) from Purdue University in West Lafay‑
ette (IN, USA).

Results:  Roots from three samples of tomato plants at two different times and three samples of corn plants at three 
different times were scanned. Regarding the first step, the PCA analysis of the skeleton is able to accurately and 
robustly register temporal roots. From the second step, several traits were computed. Two of them were accurately 
validated using the root digital twin as a ground truth against the cylindrical model: number of branches (RRMSE bet‑
ter than 9%) and volume, reaching a coefficient of determination (R2) of 0.84 and a P < 0.001.

Conclusions:  The experimental results support the viability of the developed methodology, being able to provide 
scalability to a comprehensive analysis in order to perform high throughput root phenotyping.
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Background
Plant roots are critical for water and nutrient uptake 
from soils [1, 2]. Roots can form complex networks com-
posed by different type and age of roots [3]. The spatial 
arrangement of the root system is called Root System 
Architecture (RSA). Considering that RSA can affect 
crop performance, selecting crops based on specific RSA 
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could lead to improve agricultural productivity [4]. How-
ever, our understanding of RSA development in soil is 
limited by the complexity of the root phenotyping in situ 
[5, 6]. Because of the opaque nature of soil, progress 
made in non-destructive root phenotyping has been 
limited to systems such as the rhizotron, which acquires 
two-dimensional images of root growing in transparent 
enclosures.

Plant science community urgently requires advance 
approaches in the characterization of RSA using novel 
image-based technologies [7], to quantify the 3D 
dynamics in RSA [8, 9]. Three tomographic techniques 
are currently available for non-destructive 3D phe-
notyping: X-ray Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI) and Position Emission 
Tomography (PET). Recent technological innovations in 
scan resolution and the throughput in image processing 
made X-ray CT the current state of the art technology for 
non-destructive root phenotyping in soil [10]. Generally 
speaking, a regular X-ray CT has a source and a detec-
tor. The source is responsible for passing the X-ray beams 
through a sample, which absorbs a portion of these 
beams, while the detector will record this attenuated 
signal as two-dimensional projections. The attenuation 
is based on the material properties and electron-den-
sity; thus, the internal structure of the scanned sample 
becomes visible by contrasting the different elements 
inside depending on how much X-ray they absorb based 
on their chemical composition and characteristics [11]. 
Further, a 3D reconstruction of the sample material can 
be generated based on the 2D projections by scanning it 
at different positions [12].

A shape descriptor highly recommended in plant sci-
ence is the curve-skeleton. It is able to describe the hier-
archies and extent of branching plant networks [13]. 
Methods for skeleton extraction are primarily grouped in 
volumetric and geometrics, depending on the computed 
interior or only surface representation. As a common 
drawback, volumetric approaches potentially lose details 
and have numerical instability caused by inappropriate 
discretization resolution [14, 15]. In contrast, geometric 
methods approximate the medial surface by extracting 
the internal edges and faces. Medial axis skeleton and 
Reeb-graph-based methods are a couple of examples that 
are established using the geometric principles. In the 
3D space, the medial axis usually fails when the planes 
occurrence.

For methods in 3D modeling, there are as well two cat-
egories. The first one includes voxel approaches, where 
volumetric models are constructed by partitioning the 
point cloud into voxels. The capability of these methods 

in model irregular surfaces is limited. The other category 
comprises parametric surface methods. The circular 
cylinder is the most dominant shape-fitting approach, 
because of its balancing between simplicity and realistic 
modeling [16].

Analysis of root models derived from X-ray CT images 
allows quantification of root growth over time and in 
response to external stresses, but there are several major 
challenges associated with this data. These include root 
segmentation and 3D modeling, which involve extracting 
the root digital twin from X-ray radiographs, and com-
puting root architecture measurements from resulting 
models. The RootTine protocol was design to segment 
the root in a faster and automated way to be imple-
mented in high-throughput (HTP) systems [17]. How-
ever, this method only computes the root length as a 
phenotyping trait by medial axis-based skeletonization 
processes. RootForce [18] is one of the latest develop-
ments in semi-automatic segmentation based as well in 
RootTine. Therefore, an initial phase is required to tuned 
these parameters on few samples. Once these param-
eters are adapted to the pot, soil and root system, the 
same set of parameters can be used for a complete time 
series experiment. Based on these arguments, RootFroce 
is described as especially designed for highthrouput time 
series of CTX data. It is able to extract more traits, for 
instance root volume and root growth angles by Reeb 
Graph-based skeletonization. RooTrack is another tool 
for not only root segmentation but also for visually object 
tracking by identifying boundaries in image cross-sec-
tions. The main advantage is detecting and differentiating 
multiple roots from different plants in the same image. 
Still, this methodology is not yet applicable to HTP or 
automated procedures [19]. These tools mainly tackle 
the root segmentation issue from X-ray data as a primary 
challenge. The focus of this paper is to model temporal 
digital twins of roots to quantify traits as well as to record 
the topological and hierarchical branching structure, 
after the segmentation from the soil is already done. To 
the best of our knowledge, no research has been done to 
parametrize by geometric primitives the root surfaces 
or even label their different branches using a volumet-
ric model. In our methodology, the temporal analysis 
of roots is solved throw skeleton extraction, while the 
spatial quantification is performed by a shape-fitting 
approach.

In this paper, we propose a spatial–temporal root 
architectural model from digital twins obtained by X-ray 
CT (computed tomography). Values of essential root 
traits were extracted as phenotypic data to quantita-
tively assist growth analyses and RSA description. The 
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proposed methodology consists of two phases. In the 
first, we compute a curve-skeleton as a powerful descrip-
tor for analyzing root system networks. We use a con-
strained Laplacian smoothing algorithm which directly 
performs on the mesh domain, followed by a connec-
tivity surgery and embedding refinement process. As a 
result, this skeletal structure controls the registration 
process in temporal series. Secondly, the root system is 
robustly reconstructed by generating a flexible cylinder 
model. This non-linear optimization problem is solved 
by nonlinear squares iterative solution. The full pipeline 
is optimized for quantifying accurate and robust results, 
allowing high-throughput root phenotyping using X-ray 
CT systems.

Materials and methods
Materials
The 3D digital twin of the root system is obtained by 
X-ray CT. This technology allows us to non-destructively, 
comprehensively and accurately monitor the exact same 
plant root even at different points in time under con-
trolled conditions. Our system scans pots with photon 
energies in the 225  keV range, and is able to scan pots 
20  cm in height in less than 7  min. The resulting voxel 
size is set at 200  μm. The Focus-Detector distance is 
800  mm. Both X-ray detector and X-ray tube are fixed 
within the system. A pot rotation stage allows 360° for 

the measurement. A vertical translation axis optionally 
extends the vertical field of view. Table 1 summarizes the 
rest of the technical specifications of the system. The sys-
tem manufacturer is Fraunhofer IIS (Fraunhofer Devel-
opment Center X-ray Technology, Germany).

The experiment was performed at the Ag Alumni 
Seeds Phenotyping Facility (AAPF) at Purdue Univer-
sity in West Lafayette (IN, USA). In this facility, plants 
are transported in standard carriers to the X-ray CT sys-
tem from the loading position by a mechanical conveyor 
belt. During the summer of 2019, root systems from 
three tomato plants at two different times and three corn 
plants at three different times were scanned. The pots 
were circular with 180 mm-diameter and 200 mm-height 
for tomato and 400 mm-height for corn. The type of pot 
media in the pots  is sifted sphagnum peat moss with a 
moisture inferior at 20% of relative humidity. Table  2 
summarize the main characteristics of the digital twins 
of the roots used in this study (additional file as Data S1: 
dataset), whereas Fig. 1 shows their visualizations.

Methodology
In this study, we developed an approach that can be 
used to enable high throughput root phenotyping tasks. 
It includes a 4D structural root architectural modeling 
from digital twins. These digital twins were acquired 
X-ray CT using RootForce tool [18]. RootForce approach 

Table 1  Technical specifications of the X-ray CT system

Parameter Value

X-ray cabin Pot diameter 100–200 mm

Pot height  ≤ 400 mm

Footprint dimension 2500 * 1500 * 3500 mm3

Sample height  ≤ 2500 mm

Weight
Plant weight

 ≤ 6 ton
 ≤ 7500 g

X-ray source Max tube voltage
Max tube power at small focal spot

225 kV
800 W

Used voltage
Used current

200 kV
3.5 mA

Used power
Cooper filter

700 W
1 mm

Cooling device Included

Detector system Type Xeye 2530 flat panel detector
Radiation hard detector

Size 300 * 250 mm2

Pixel matrix 3333 * 2777

Pixel pitch 90 µm
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is based on Frangi’s vesselness method [20], extended for 
the semi-automatic segmentation of roots. Beforehand, 
a thresholding is applied to select a range of attenua-
tion coefficient according to the type of soil and plants 
used in the experiment. Then, the Hessian-based Frangi 
vesselness filter is used for small roots detection while 
larger roots are detected based on their 3D homogene-
ity using a 3D-Gaussian filter. The small and large vessel 
structures are then merged using upper and lower merg-
ing thresholds. Here, the value range of the attenuation 
coefficient was 0.07 to 0.19 with root diameters of 0.4, 
0.5, 0.6, 1.0 and 1.2  mm. The upper and lower thresh-
old of the merging parameters were respectively 25 and 
1000 for the corn roots and respectively 100 and 1000 
for the tomato roots. A size filter was used to eliminate 
unconnected fragment with a minimum volume of 25 
mm3 for the corn roots and 50 mm3 for the tomato roots. 
The minimum root diameter that can be segmented with 
RootForce is about 2.5 voxels in diameter. Here, using a 
resolution of 200 μm cubic voxel size for the reconstruc-
tion, the minimum detectable root diameter is approxi-
matively 0.5 mm. Once the segmentation process is done, 

we apply our model approach. It consists of two clearly 
differentiated phases: the computation of the curve-skel-
eton which serves for the registration of temporal series, 
and the RSA cylindrical model of the digital twin for spa-
tial analysis. Figure 2 summarizes the workflow to follow.

Skeletonization
Basically, the curve-skeleton is a structure that extracts 
the volume and topological characteristics of the model. 
We select a robust skeleton extraction method via Lapla-
cian-based contraction [14, 15] based on the charac-
teristics of the model: the algorithm works directly on 
the mesh, without a resampled volumetric representa-
tion. By this means, it is pose-insensitive and invariant 
to global rotation. As a potential limitation of this skel-
eton algorithm, it only works for closed mesh models 
with manifold connectivity since the Laplacian contrac-
tion algorithm operates for every individual vertex. In 
order to close the mesh, we follow the procedure already 
explained by [21], which incorporates several automatic 
and sequential tasks: (i) filling of holes through algo-
rithms based on interpolators of radial basis function 
[22]; (ii) repairing of meshing gaps by threshold dis-
tance algorithms [23]; (iii) removing of topological noise, 
allowing the mesh to be re-triangulated locally [24]; (iv) 
removing of topological and geometric noise by anti-
aliased Laplacians filters [25]. Once the mesh is closed, 
the skeleton extraction is applied. Firstly, the method 
contracts the mesh geometry into a zero-volume skeletal 
shape. Details and noise are removed by applying an iter-
ative Laplacian smoothing that tightly moves all the ver-
tices along their curvature normal directions. After each 
iteration, a connectivity process is carried out, removing 
all the collapsed faces from the degenerated mesh until 
no triangles exist. The key of this step is to sensibly con-
trol the contraction procedure so that it leads to a col-
lapsed mesh with sufficient skeletal nodes to maintain 
an acceptable correspondence between the skeleton and 
the original geometry. As a consequence, the contrac-
tion does not alter the mesh connectivity and retains the 
key features, guarantying to be homotopic to the original 
mesh. Next, we describe a process that moves each skel-
etal node to the center of mass of its local mesh region in 
order to refine the skeleton’s geometric embedding.

This skeletal structure drives the registration process 
in temporal series. Thus, we can automatically perform 
a growth analysis of the RSA, quantified by the elonga-
tion rate as a trait. To register temporal series, Principal 
Component Analysis (PCA) is performed [26]. In gen-
eral, the principal components are eigenvectors of the 

Table 2  Root digital twin dataset

Sample Scanned 
date

Scan ID Num. 
vertices

Num. faces

Tomato 11 July 2nd, 
2019

111 120468 240928

July 18th, 
2019

112 252550 505148

12 July 3rd, 2019 121 183968 367920

July 18th, 
2019

122 361248 722628

13 July 9th, 2019 131 110899 224002

July 23rd, 
2019

132 427124 854604

Corn 21 July 9th, 2019 211 688928 1378152

July 15th, 
2019

212 834648 1669464

July 23rd, 
2019

213 1106486 2213120

22 July 9th, 2019 221 729842 1459864

July 15th, 
2019

222 935870 1871920

July 23rd, 
2019

223 1211190 2422576

23 July 9th, 2019 231 765291 149761

July 15th, 
2019

232 938634 1877412

July 23rd, 
2019

233 1207404 2414924
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data’s covariance matrix. More specifically, this statisti-
cal analysis uses the first and second moments of the 

curve-skeleton, resulting in three orthogonal vectors cen-
tered on its center of gravity. The PCA summarizes the 

Fig. 1  Visualization of the root samples from tomato (a) and corn (b) used in this study

Fig. 2  Workflow of the methodology proposed: from the digital twin of the root, first we extract the curve-skeleton to register temporal series of 
the same root and secondly, we spatially model the RSA by a flexible cylinder fitting
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distribution of the lines along the three dimensions and 
models the principal directions and magnitudes of the 
curve-skeleton distribution around the center of gravity. 
Thereby, the registration of temporal series is carried out 
by overlapping the principal component axes. The elon-
gation rate is measured in the first principal direction.

RSA model
We use a group of geometric primitives to model the sur-
face and topology of the root. The circular cylinder is the 
simpler primitive. For natural entities such as trees, the 
circular fitting is the most robust primitive in the sense 
of a well-bounded volumetric modelling error, even with 
noise and gaps in the data, compared with more complex 
primitives which are more sensitive to data quality [16]. 
Thereby, our modeling is based on circular cylinder fit-
ting as an optimal parametrization to provide significant 
traits of the RSA such as diameters, specific surfaces and 
volumes from the main root and ramifications. We use 
the approach of [27], where they model point clouds of 
individual trees acquired from TLS (Terrestrial LiDAR 
Scanner) by a cylindrical parametrization. This process 
is scale independent because only neighbor-relations and 
relative sizes are needed. To apply this approach, the 3D 
mesh of the root digital twin is transformed into a reg-
ularized point cloud [28]. For that, randomly sampled 
points over the mesh are extracted by fixing a desired 
density, (5 points/mm2) and a restored point cloud is 
obtained. Subsequently, we apply Dart Throwing Pois-
son Disk sampling to the point cloud to make the points 
appear more uniform by culling those points that are 
close to a randomly selected point [29]. In this step, a 
threshold based on Euclidean distance between points 
of 1 mm is set. These values are set regarding the details 
in the final cylindrical model and due to the scanner’s 
accuracy for these specific samples. After this process, 
a significant reduction of points is achieved because the 
Poisson subsampling approach considers the local point 
distribution, retaining key elements of the structure.

Once the regularized point cloud is achieved, the 
cylinder fitting is applied. The process has 2 consecu-
tive phases: first, the point cloud is segmented into 
the main root and its ramifications, and secondly, the 
surface and volume of the segments are robustly fitted 
with geometric primitives, specifically cylinders. This 
non-linear optimization problem is solved by nonlinear 
squares iterative solution. The topological distribution 
of the RSA is also recorded. Mathematically, the model 
is raised by a local approach in which the point cloud 
is covered with small sets corresponding to connected 

surface patches in the root surface. In that way, the RSA 
and size properties, such as volume and branch size 
distributions, can be approximated. The method uses a 
cover set approach [27], where the point cloud is parti-
tioned into small sets that correspond to small patches 
in the surface of the model. These sets form the smallest 
unit we use to segment the point cloud into main root 
and individual branches. The generation process pro-
duces a Voronoi partition of the point cloud so that the 
cell size is controlled. The cover set value is calculated by 
an iterative approach where the final value varies from 
0,75 to 3 cm.

Experimental results
All the experimental results obtained below were run 
on a 3.6-GHz desktop computer with an Intel CORE I7 
CPU and 32-GB RAM. First, the digital twin of the root 
obtained by X-ray must be previously closed and repaired 
to be able to apply our approach as Sect. 2.2.1. explains. 
Once the mesh is closed, the skeleton extraction and the 
RSA model pipelines are run. The code from the RSA 
model saves (i) general values of the entire root as total 
volume, height, length, number and order of branches, 
and the mean and maximum diameter of the crown, (ii) 
branching map of the root that includes the topological 
relation of each ramification, (iii) volume, length, angle, 
height, azimuth and zenith of each branch, and (iv) 
length, diameter, angle and coordinates of all the cylin-
ders that belong to each branch. Figures  3 and 4 show 
both results for a tomato and a corn root sample. In the 
zoom window, we can appreciate the complexity and 
accuracy of the model. In our RSA model, each branch is 
labeled in a unique color and quantified. This is a brand-
new solution that is able to quantify branching patterns, 
which are critical for biologists to understand water and 
nutrient uptake. In the additional file 1, we made a video 
that shows the segmented root, the skeleton and the RSA 
model, for tomato and for corn (Additional file 2: Video 
S2: 4D Structural Root Architecture Modeling).

From the RSA model, different traits are extracted. 
Table 3 summarize the general values of the entire roots.

Validation results and discussion
The volume of each digital twin of the root is meas-
ured by Cloud Compare software [30], that computes 
the volume within the solid mesh. Moreover, number 
of branches from digital twins are estimated by a visual 
analysis. Table 4 shows several metrics between the digi-
tal twin and the cylindrical model of each root of these 
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two parameters. In particular, the root mean square error 
(RMSE), the relative RMSE (RRMSE), the average sys-
tematic error (ASE), and mean percent standard error 
(MPSE) were calculated as follow:

where yi
model is the parameter estimated from the model 

of the ith scan, yi
dig twin is the measured parameter from 

the digital twin of the ith scan, ydigtwin is the mean of the 

(1)
RMSE =

√

√

√

√

∑n
i=1

(

yimodel − yidig twin

)2

n

(2)RRMSE = 100∗
RMSE

ydig twin

(3)ASE =
100

n
∗

n
∑

i=1

(

yimodel − yidig twin

)

/yidig twin

(4)MPSE =
100

n
∗

n
∑

i=1

|

(

yimodel − yidigtwin

)

/yidigtwin|

measured parameter from the digital twin per scan, and n 
is the number of scans.

From the results of this table, we can affirm that our 
model detects branches mainly by excess in tomato and 
corn. In addition, for tomato branches were estimated 
by deficit more than for corn. Regarding the absolute 
volume discrepancies, they are larger for corn. In rela-
tive volume quantity, the error in tomato is larger. For 
both, always the volume is estimated by deficit. The 
errors in the number of branches detected could have 
been caused by segmentation problems. Figure 5a rep-
resents a part of the RSA model from the ID 121 tomato 
scan. Each detected branch is in a distinct color. We can 
see that the loss of the tracking of the branches could 
have generated new false branches. This issue is high-
lighted with a red circle in the figure. Another type of 
common errors is the volume discrepancies between 
the digital twin and the RSA model, mainly generated 
when the shape of the branch is not cylindrical and 
when the diameter of each segmented branch does not 
decrease along the length. This topological property 

Fig. 3  Tomato root sample with a zoom window: digital twin by X-ray CT system (a), curve-skeleton extraction based on a constrained Laplacian 
smoothing algorithm, where the mesh is in orange and the skeleton is in red (b), and the RSA model based on a flexible cylinder fitting, where each 
ramification is in different color (c)
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is used in the branch segmentation of the model. Fig-
ure 5b represents a part of the ID 223 corn scan, where 
the digital twin is represented by points and the model 
by polyhedrons in the same color. The shape of the 
branches could generate errors to fit cylindrical solids.

The relative volume of the RSA model is compared 
against the relative volume from the digital twin meas-
ured by Cloud Compare software [30]. We split the 
digital twins in 10, 20, 30, 40, 50, 60, 70, 80 and 90% 
of the total volume (starting from the top) and we run 

the model with these parts to evaluate its performance, 
which reached an R2 of 0.82 for tomato and 0.74 for 
corn with a P < 0.001, as Fig.  6 displays. When tomato 
and corn measurements are together, the R2 improves 
to 0.83.

Furthermore, this methodology is able to temporally 
analyse the root dynamics through a registration pro-
cess based on a PCA of the skeleton from the root mesh. 
Figure 7a shows the same tomato root sample registered 

Fig. 4  Corn root sample with a zoom window: digital twin by X-ray CT system (a), curve-skeleton extraction based on a constrained Laplacian 
smoothing algorithm, where the mesh is in orange and the skeleton is in red (b), and the RSA model based on a flexible cylinder fitting, where each 
branch is in different color (c)
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at two different times (July 2nd and 18th, 2019), with a 
slot of 16 days. The elongation rate is mapped in Fig. 7b, 
where the maximum value is 2.58  cm on the upper-
right ramification. Figure 8 illustrates the same temporal 
sample where the convex hull is individually computed 
(Fig. 8a, b) and as well the variation in time (Fig. 8c). The 
convex hull value for Fig. 8a is 229.87 cm3 and for Fig. 8b 
is 519.76 cm3. At this point, it is worth to notice that PCA 
results are affected by the segmentation process: the bet-
ter segmentation is done, the more accurate PCA results 
are obtained. 

Table  5 recaps the maximum and mean value of the 
elongation rate for the temporal series of each sample 
and the convex hull volume reached by each root.

Conclusions
To sum up, the developed pipeline aims to automati-
cally extract phenotypic data of RSA from digital twins 
obtained by non-invasive X-ray CT. This pipeline is able 
to analyze both spatial and temporal root dynamics. As 
potential advantages, we find this methodology fully 
automatic, fast, precise and sufficiently robust to pro-
vide scalability for high throughput root phenotyping.

Determining the contribution of structural root 
traits to crop performance is vital to overcome cli-
mate change, environmental degradation and food 
insecurity. In addition, structural root traits that are 
accurately extracted from X-ray data will enhance our 
understanding of the relationship between the plant 
phenome and plant function in ecosystems, which is 
the end goal of functional phenomics [31]. Moreover, 
this computationally low-cost workflow will potentially 
increase the usability of imaging technologies for high-
throughput phenotyping regarding genetic mapping 
and phenotypic selection in breeding programs.

Table 3  General values of the RSA model for each sample (volume, volume of the main root, total length, length of the main root, 
number of branches, maximum order of ramifications and maximum and mean crown diameter)

Scan ID Vol. (mm3) Vol. Main Root 
(mm3)

Total Length 
(mm)

Main Root 
Height (mm)

Num. 
Branches

Max. order 
Branches

Crown Diam. 
Max (mm)

Crown Diam. 
Mean (mm)

111 1072.26 734.52 79.07 3.74 22 4 5.24 3.17

112 2107.96 948.02 138.87 3.82 31 4 6.66 4.71

121 735.04 767.75 120.18 4.43 22 4 7.13 4.84

122 3543.38 1847.13 172.55 4.73 35 4 7.42 5.19

131 1406.26 987.31 78.58 5.59 28 3 6.14 4.12

132 3759.36 2292.33 158.38 5.60 33 4 9.28 5.77

211 5505.33 1430.63 250.84 6.30 21 3 3.63 2.41

222 12,130.01 3772.18 313.17 6.47 22 3 3.65 2.88

223 15,935.05 5588.36 461.88 6.56 23 3 3.64 3.17

221 8119.29 3753.43 288.57 6.16 17 4 3.45 3.10

222 13,821.25 4615.14 346.23 6.43 22 3 3.55 3.19

223 17,448.18 4382.53 464.75 6.42 26 2 3.58 3.39

231 10,869.41 6765.38 308.37 6.27 20 3 3.57 2.97

232 17,793.40 9786.01 385.29 6.38 24 4 3.67 2.96

233 21,273.69 11,858.14 527.83 6.41 26 5 3.66 3.04

Table 4  Statistic metrics of number of branches and volume 
where RMSE is the root mean square error, RRMSE is the relative 
RMSE, ASE is the average systematic error, and MPSE is the mean 
percent standard error

Parameter Root RMSE RRMSE (%) ASE (%) MPSE (%)

# branches 
[number]

Tomato 2.48 8.76 1.37 1.67

Corn 1.76 8.31 5.94 0.44

Total volume 
[mm3]

Tomato 1087.66 36.92 -29.01 0.48

Corn 4470.03 25.11 -23.63 2.86
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Fig. 5  Errors in the number of detected branches due to loss of tracking in the segmentation process. Branches are on different colors with a 
red circle remarking this issue (a); and volume discrepancies in between the digital twin, represented with dense points, and the RSA model 
represented with polyhedrons with similar colors (b)

Fig. 6  Volume correlation between the RSA model and the digital twin for each scan sample: tomato (a) and corn (b)
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Table 5  Values of the volume of the convex hull and maximum 
and mean elongation

Scan ID CH Volume (cm3) Max. elongation 
(cm)

Mean 
elongation 
(cm)

111 2298.71

112 5197.62 2.58 0.63

121 6183.22

122 15,525.64 3.02 0.97

131 5762.72

132 9502.78 1.98 0.62

211 50,631.14

212 64,718.84 5.23 1.07

213 64,131.16 4.02 0.76

221 58,427.65

222 58,146.56 3.75 0.98

223 63,539.13 4.14 0.77

231 61,435.67

232 62,898.37 4.01 0.87

233 63,957.62 3.89 0.79
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