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Texture feature extraction from microscope 
images enables a robust estimation of ER body 
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Abstract 

Background:  Cellular components are controlled by genetic and physiological factors that define their shape and 
size. However, quantitively capturing the morphological characteristics and movement of cellular organelles from 
micrograph images is challenging, because the analysis deals with complexities of images that frequently lead to 
inaccuracy in the estimation of the features. Here we show a unique quantitative method to overcome biases and 
inaccuracy of biological samples from confocal micrographs.

Results:  We generated 2D images of cell walls and spindle-shaped cellular organelles, namely ER bodies, with a 
maximum contrast projection of 3D confocal fluorescent microscope images. The projected images were further pro-
cessed and segmented by adaptive thresholding of the fluorescent levels in the cell walls. Micrographs are composed 
of pixels, which have information on position and intensity. From the pixel information we calculated three types of 
features (spatial, intensity and Haralick) in ER bodies corresponding to segmented cells. The spatial features include 
basic information on shape, e.g., surface area and perimeter. The intensity features include information on mean, 
standard deviation and quantile of fluorescence intensities within an ER body. Haralick features describe the texture 
features, which can be calculated mathematically from the interrelationship between the pixel information. Together 
these parameters were subjected to multivariate analysis to estimate the morphological diversity. Additionally, we cal-
culated the displacement of the ER bodies using the positional information in time-lapse images. We captured similar 
morphological diversity and movement within ER body phenotypes in several microscopy experiments performed in 
different settings and scanned under different objectives. We then described differences in morphology and move-
ment of ER bodies between A. thaliana wild type and mutants deficient in ER body-related genes.

Conclusions:  The findings unexpectedly revealed multiple genetic factors that are involved in the shape and size of 
ER bodies in A. thaliana. This is the first report showing morphological characteristics in addition to the movement of 
cellular components and it quantitatively summarises plant phenotypic differences even in plants that show similar 
cellular components. The estimation of morphological diversity was independent of the cell staining method and the 
objective lens used in the microscopy. Hence, our study enables a robust estimation of plant phenotypes by recogniz-
ing small differences in complex cell organelle shapes and their movement, which is beneficial in a comprehensive 
analysis of the molecular mechanism for cell organelle formation that is independent of technical variations.
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Background
The texture features can provide an outline of the mor-
phology by considering the correlation between neigh-
bouring pixels. The extraction of the texture features 

Open Access

Plant Methods

*Correspondence:  kenji.yamada@uj.edu.pl
2 Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 
Poland
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4872-3729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-021-00810-w&domain=pdf


Page 2 of 16Basak et al. Plant Methods          (2021) 17:109 

enables capturing morphological differences in images. 
Micrograph-based image profiling frequently uses Haral-
ick features as texture features to understand morpho-
logical differences. Haralick features compute on the 
grey-level co-occurrence matrix (GLCM), where each 
element in the matrix is considered to be the probabil-
ity that a pixel value is found adjacent to its neighbour-
ing pixel [1]. A series of statistical properties are then 
computed from the GLCM that provide information on 
morphology. Together with spatial and intensity features, 
a Haralick profile  provides 14 diverse features that esti-
mate the morphological variation within objects. In the 
field of medical research, image data from positron emis-
sion tomography (PET) and magnetic resonance imaging 
(MRI) are used for profiling with this feature to detect 
anomalies [2, 3]. This feature set is exploited and consid-
ered important in the diagnosis of tumour cells. These 
medical studies suggest that Haralick features could also 
be useful in the quantitative analysis of plant cell imaging.

Organelle movement is a measurable phenotype in 
addition to morphology and is usually quantified from 
time-lapse images. Some studies have shown the linear 
and non-linear dynamics of organelle movement [4], 
classification of organelle trajectories [4], and tempo-
ral dynamics of overall ER networks [5]. However, inte-
grating the z-stack in time-lapse images of the confocal 
microscope brings complexity to the measurement of 
movement, because the organelle size and speed will 
change for each scan along with the depth and time [6].

Brassicaceae and its closely related family plants have 
a specific structure derived from the endoplasmic reticu-
lum (ER), namely, the ER body (also known as the fusi-
form body or dilated cisternae), which can be visualized 
by green fluorescent protein (GFP) with an ER-retention 
signal (GFP-HDEL) [7–9]. ER bodies are involved in the 
plant resistance against insect herbivory or pathogens 
by accumulating β-glucosidases (BGLUs) that activate 
defensive metabolites [10–13]. ER bodies are spindle-
shaped structures of 5 to 10 µm in the longitudinal, and 
they are morphologically distinct from the ER and other 
cellular vesicles [14].

Two ER body morphology mutants, namely nai1-
1 and long ER body-1 (leb-1), have been isolated in 
Arabidopsis thaliana. The nai1-1 mutant does not 
accumulate ER bodies in seedlings, and a mutation 
has been found in a gene encoding a basic helix-loop-
helix type transcription factor, namely bHLH020/
NAI1 [15]. NAI1 regulates the induction of BGLU23/
PYK10 and BGLU21, the gene products of which spe-
cifically accumulate in ER bodies [9, 14]. ER bodies in 
leb-1 mutants are fewer than in the wild type, but they 
are more elongated [14]. A mutation has been found 
in the BGLU23/PYK10 gene in the leb-1 mutants [14]. 

Consequently, it produces a mutated protein with Cys 
to Tyr exchange at the 29th position, which reduces 
the protein stability and proper oligomerization of 
BGLU23/PYK10 [14]. The single knockout mutants of 
pyk10-1 and bglu21-1 show modest changes in the mor-
phology of ER bodies compared to the wild type, but 
the pyk10-1 bglu21-1 double knockout mutant shows 
an elongated ER body phenotype similar to leb-1 [14]. 
The quantitative ER body phenotypes of leb-1 bglu21-1 
are similar to those of leb-1 [14]. These findings suggest 
that the packing of the BGLU23/PYK10 protein brings 
a morphological variation into the ER bodies.

Besides BGLU23/PYK10 and BGLU21, ER bodies in A. 
thaliana accumulate specific membrane proteins, namely 
MEMBRANE PROTEIN OF ER BODY 1 (MEB1) and 
MEB2. These proteins have a homology to the VACUO-
LAR IRON TRANSPORTER 1 (VIT1) family of proteins 
that are involved in metal transportation in plants [16, 
17]. MEB1 and MEB2 seem to have a transport activity 
with iron and manganese ions because overexpression 
of MEB1 or MEB2 in yeast (Saccharomyces cerevisiae) 
enhances resistances against these metals [17]. However, 
their role in the ER body formation or ER body-mediated 
plant defence is still obscure.

Confocal microscope imaging is a powerful tool to 
show the morphological differences of intracellular struc-
tures between samples. However, it is still challenging to 
capturing the morphological parameters quantitatively. 
Strikingly, very few analyses have been undertaken to 
show morphological variations of ER bodies in A. thali-
ana. Quantitative analysis of ER body morphology in the 
leb-1 mutant has successfully revealed that the mutation 
in BGLU23/PYK10 distorts ER body size and number 
[14]. However, this estimation of morphological parame-
ters was restricted to spatial and intensity measures with-
out considering the texture features of the pixels.

Recent advances in image processing have considered 
extensive use of artificial intelligence, such as deep learn-
ing and machine learning methods, to segment cellular 
features and classify objects from microscope images in 
the field of cellular biology [18–20]. However, a diverse 
dataset is required to make such a classifier that could 
potentially be able to distinguish ER bodies from other 
ER derived vesicles within plant cells. In GFPh mutants 
ER bodies are protein dense objects and are distinct from 
nai1-1 mutants. A neural network pre-trained on U-net, 
or convolutional neural network (CNN) models may not 
fulfil the classification task, as the trained images are 
diverse and ER bodies are more or less similar to other ER 
derived vesicles in shape. Therefore, an ER body classifier 
based on a vast array of image datasets would be needed 
to be able to distinguish the ER body signal from ER and 
to avoid the overfitting issues in deep learning methods. 



Page 3 of 16Basak et al. Plant Methods          (2021) 17:109 	

To detect the changes within ER body morphology a wide 
range of ER body mutant screening is required.

Here, we have presented a robust approach to estimate 
the morphological features obtained from the segmented 
cells that distinguish ER bodies from the background. 
We employed the maximum contrast projection [21] and 
an EBImage program package [22] to segment the cells 
with ER bodies from the background based on adap-
tive thresholding and Voronoi tessellation. We used this 
method to segment cells from micrographs and then 
quantified the morphological parameters. The methodol-
ogy uses morphological features of micrographs to repre-
sent their properties for samples [23]. This is an unbiased 
estimation of cellular features and their morphological 
variants considering spatial, intensity and Haralick fea-
tures. We introduced this method in plant sciences for 
the first time to denoise the variants of ER bodies across 
micrograph images. In addition to morphology, we also 
quantified the movement of the ER bodies from the posi-
tional information of the cell component. Consequently, 
we observed the overall diversity of the ER body mor-
phology and movement in not only nai1-1 and leb-1 
bglu21-1, but also in meb1-1, meb2-1 single and meb1-1 
meb2-1 double mutants.

Methods
Plant materials
Transgenic seedlings of Arabidopsis thaliana (Colum-
bia accession) wild type (GFP-h), nai1-1, leb-1 bglu21-
1, meb1-1, meb2-1, and  meb1-1 meb2-1 mutant plants 
expressing ER targeted GFP in the cotyledons were used 
(Table  1) [14, 15, 17]. The A. thaliana seeds were steri-
lized and cultivated in solid media (1/2 × Murasige-Skoog 
salt, 250  mM MES-KOH pH 5.5, 1% (w/v) sucrose, and 
0.4% (w/v) gellan gum (Fujifilm, Japan)) for 5 and 7 days. 
After the cultivation, cotyledons were dissected and 
the cell walls were stained with a 100  µg/ml propidium 
iodide (PI) solution by implementing some modification 
in the protocol [24] and then were subjected to confo-
cal imaging under 20 × and 25 × objectives. Three inde-
pendent experiments were performed using two different 

methods of staining: (1) treating the cotyledons in the PI 
solution for 10 min and then immediately observing them 
(Setting 1, Fig.  1); (2) cotyledons were treated in the PI 
solution for 5 min, then infiltrated with a vacuum pump 
for 1 min followed by washing with deionized water for 
2 min (Setting 2, Fig. 1). Accordingly, three image data-
sets were generated; setting 1 with a 20 × objective, set-
ting 2 with a 20 × objective and with a 25 × objective.

Image acquisition
Image acquisition was conducted with a confocal laser 
scanning microscope (Zeiss LSM 880) under 20 × and 
25 × objective lenses with the range of gain between 450 
to 500 and the digital gain as 1, to reduce pixel intensity 
saturation. Glycerol was used on the coverslip during 
slide preparation for the 25 × objective lens. An Argon 
488 laser and a HeNe laser were used for image acqui-
sition and the magnitude of intensity was kept to 10 to 
reduce photobleaching and autofluorescence. The pin-
hole was set to be 10  µm for optimum laser accommo-
dation on the objective. Images were acquired in two 
distinct settings at the 1024 by 1024-pixel range by aver-
aging 2 pixels in such a way that each pixel explains 0.42 
µm2 of the area of the object in the 20 × objective and 
0.54 µm2 in the 25 × objective. Scanning was performed 
bi-directionally across the stage and with a colour depth 
of 8 bits, at a scan speed of 5. Z-stack acquisition was 
performed at a depth of 2  µm/slices to have volumetric 
image information. Images were acquired from the sur-
face of the epidermal cells of the cotyledons in a ran-
domised order.

Integration of z‑stack images and segmentation
Raw images were pre-processed and segregated by cor-
recting dimensions and RGB channels, merged by the 
MaxContrastProjection package in R, and finally the 
pixels were normalised. Image pre-processing and sta-
tistics were conducted using R packages, EBImage [22], 
vegan [25] and r-base libraries, respectively. The z-stack 
images were merged using specific criteria for the Max-
ContrastProjection package (https://​github.​com/​arpan​

Table 1  Transgenic Arabidopsis thaliana lines used in the study

Genotype ER body phenotype in cotyledons Description

wild type (GFP-h) Normal Wild type

nai1-1 No ER bodies [15] Mutation in a transcription factor

leb-1 bglu21-1 Long and few [14] Mutation in ER body components

meb1-1 Resembles wild type but smaller (This study) Mutation in an ER body membrane protein

meb2-1 Round, aggregate, and less movement (This study) Mutation in an ER body membrane protein

meb1-1 meb2-1 Round, aggregate, and less movement (This study) Mutation in ER body membrane proteins

https://github.com/arpankbasak/ERB_DynaMo
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kbasak/​ERB_​DynaMo). The red channel was specified 
for the cell walls and the green channel was specified 
for the ER bodies to segregate the merged image of 
3D plant tissue in 2D representation. Segregation was 
done to maintain homogeneity for the analysis among 
the images for downstream analysis (segregate script; 
https://​github.​com/​arpan​kbasak/​ERB_​DynaMo). Spe-
cific masks were generated to assign cell and ER body 
border lines for the corresponding channels. Knitted 
images from the projection were taken as input for 
the analysis pipeline and feature extraction was con-
ducted using adaptive thresholding and segmentation 

principles (parameters in Additional file  1). Adaptive 
thresholding on the pixel intensity was used to detect 
the cell and ER body border lines. Quartile based selec-
tion was considered for ER body segmentation and cell 
segmentation (parameters in Additional file  1). An ER 
signal emits ≥ 95% of the total GFP in a tissue section; 
in an image, an ER body showed a dense signal with a 
small pixel area. The PI fluorescence showed a jigsaw 
puzzle pattern of the cell walls. Two masks were set for 
ER bodies and cell walls separately with a given range 
of parameters (Additional file  1). Segmentation was 
conducted using Voronoi tessellation using both masks. 
The accuracy of segmentation was determined by man-
ually counting the number of segmented cells in some 
examples. The segmented cells with a ≥ 5000 pixel unit 
surface area were further chosen for the feature analy-
sis of ER bodies. The image-, segmented cell- and ER 
body-wise morphological features were computed. A 
detailed schematics of the image pipeline is represented 
in Additional file 2 and the detailed workflow of image 
segmentation is represented in Additional file 3.

Analysis of the dynamics of the cellular features
Time-lapse images were obtained with a confocal 
microscope using the same procedure as mentioned 
above. The z-stack merged images were used from an 
independent experiment and set the blue channel as an 
ER body’s initial positions (ER body at time 0). Every 
time point images stores information of the initial posi-
tion of the ER bodies in the blue channel. Subsequently, 
these images were segmented into cell-wise images and 
ER bodies were extracted at each specific time point, 
while retaining their initial position. The initial and 
specific time point images were projected to show the 
movement across the time point. These images were 
used to extract position features that showed disloca-
tion (segregate_dynamics and segmentation_dynam-
ics scripts; https://​github.​com/​arpan​kbasak/​ERB_​
DynaMo). The processed images were converted into 
a movie for visualisation of the dynamics (MomentPro-
jection script; https://​github.​com/​arpan​kbasak/​ERB_​
DynaMo). The initial and the final position of the ER 
body features from the location parameter (m.cx and 
m.cy in the feature matrix, Additional file 4) were used 
to calculate the cosine distances, representing the dis-
placement of the cellular feature along the pathway. 
The moving average was calculated to obtain a better 
approximation for the organelle dynamics across time. 
A non-linear regression method, locally estimated scat-
terplot smoothing (LOESS), and a generalized linear 
model (GLM) were used for statistical analysis.

Fig. 1  Workflow of the analysis

https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
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Feature extraction in the segmented cells
Data analyses of images was conducted in R environment 
using customized scripts in an Argon server x86_64-
conda_cos6-Linux-gnu (64-bit): CentOS Linux 7 (Core). 
The features were detected based on Otsu’s method 
[26, 27] and adaptive thresholding at the 97% quantile 
of the pixel intensities. After adaptive thresholding and 
segmentation of cells and ER bodies, a feature matrix 
was generated from the stack of cells and ER body like 
features describing intensity, spatial, Zernike moment 
[28], and Haralick features (Additional file 4). Statistical 
analysis was performed on the feature matrix of spatial, 
intensity and Haralick profile of the features within the 
segmented cells of the images. The obtained features 
were distinguished by unique Feature-IDs that can be 
referred to as the feature matrix for further analysis (seg-
mentation script; https://​github.​com/​arpan​kbasak/​ERB_​
DynaMo). The z-scores of the morphological parameters 
in the feature matrix were grouped and aggregated for 
the corresponding samples and their mean z-score val-
ues were calculated. The feature matrix was aggregated 
for analysing the sample images, segmented cells and 
features. Further stratification was conducted by experi-
mental settings, staining method, genotype, days after 
germination, and objective lens. Constrained canonical 
analysis (CCA) was used to show the variation of ER body 
features explained by the genotype. A PERMANOVA test 
over 1000 iterations was used to compute the statisti-
cal significance. The feature matrix was further merged, 
and selected features were used to compute the morpho-
logical variation [1] (featurematrix script; https://​github.​
com/​arpan​kbasak/​ERB_​DynaMo). The feature matrix 
was used to compute descriptive statistics and compare 
the genotypes (image and segmentedcells scripts; https://​
github.​com/​arpan​kbasak/​ERB_​DynaMo). The segmented 
cells were clustered and copied into a new directory for 
visualisation (pool_features script; https://​github.​com/​
arpan​kbasak/​ERB_​DynaMo). The morphological differ-
ences in the cellular features within the clustered cells 
were analysed (clustering_features script; https://​github.​
com/​arpan​kbasak/​ERB_​DynaMo). The suggested statisti-
cal analyses performed on the feature matrix is described 
below. The feature matrix can also be used for custom-
ised data analysis.

Multivariate analysis
Multidimensional scaling (MDS) analysis was performed 
with normalized feature matrixes between images of 
samples. Pearson correlation was used to compute 
the dissimilarity. This type of analysis was performed 
between segmented cells or between plants. Further, 
k-means clustering was performed on a normalised fea-
ture matrix of the segmented cells. The genotype was 

set as a fixed factor, while the other experimental set-
tings were set as random factors to compute statistical 
relevance. Descriptive statistics were performed on the 
set of 40 features measured across the samples followed 
by multiple hypothesis correction using a false discovery 
rate (FDR) cut-off ≤ 0.05.

Flexible‑ and mixture‑discriminant analysis
The proportion of features in the segmented cells that 
showed distinct ER body morphology was computed by 
flexible (FDA) and mixture discriminant analysis (MDA). 
The z-score normalised features were further used to 
model the proportion of ER bodies that were distinct for 
the observed genotypes. MDA and FDA were conducted 
assuming that the features of the corresponding geno-
types are either linearly separable or not [29, 30].

Results
Image projection and single‑cell segmentation
The analysis was conducted on a total of 240 images from 
the wild type and mutants, with 18 z-stacks on average. 
These images were merged with maximum contrast pro-
jection, resulting in 41 images in the wild type, 42 images 
in the nai1-1 mutants, 40 images in the leb-1 bglu21-1 
mutants, 40 images in the meb1-1 mutants, 38 images 
in the meb2-1 mutants, and 39 images in the meb1-1 
meb2-1 mutants (Table  2). Subsequently, cell segmenta-
tion based on the red fluorescence of cell walls provided 
12,408 cell images in the wild type, 17,205 cell images in 
the nai1-1 mutants, 9109 cell images in the leb-1 bglu21-1 
mutants, 10,664 cell images in the meb1-1 mutants, 6862 
cell images in the meb2-1 mutants and 10,357 cell images 
in the meb1-1 meb2-1 mutants (Table 2). Further, segre-
gation of the 66,605 cells from the 240 images resulted in 
29,629 cells that had ER body like features (Table 3).

Image‑wise and segmented cell‑wise analysis
The z-scores of 40 features (6 spatial, 8 intensity and 
26 Haralick features) were calculated from the merged 
micrograph images from the wild type and mutants 
based on GFP fluorescence of ER and ER bodies (Addi-
tional file  5A). Based on these features, we calculated 
the Pearson correlation coefficient (PCC) and conducted 
MDS analysis (Fig. 2 and Additional file 5B to H).

In the heatmap of the feature matrix, significant differ-
ences were found in the patterns between the plants that 
had ER bodies (e.g. wild type) and the plants that did not 
have ER bodies (nai1-1) in a specific experiment, which 
was the dataset with 7-day-old plants with PI staining 
setting 1 and 20 × objective lens (Additional file  5A), 
indicating that the images can be separated into two 
groups depending on the presence or absence of ER bod-
ies in the dataset.

https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
https://github.com/arpankbasak/ERB_DynaMo
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The MDS analysis showed that micrograph images 
can be separated on the scatter plot according to the 
morphology of ER bodies. The MDS1 and MDS2 axes 
explained 81.01% and 24.15% in the image-wise analysis, 
respectively (Fig. 2A). The separation between the images 
from the wild type and the nai1-1 mutant occurred along 
the MDS1 axis, showing that the axis indicates the pres-
ence or absence of ER bodies (Fig.  2A). The separation 
between the wild type plants and leb-1 bglu21-1 double 
mutants occurred along the MDS2 axis, suggesting that 
the axis explains the length of ER bodies since the leb-1 
bglu21-1 double mutants have longer ER bodies com-
pare to the wild type. We found that meb1-1 and meb1-1 
meb2-1 mutants showed separations in MDS2, suggest-
ing that these mutants have shorter ER bodies (Fig. 2A). 
The micrograph images are even further separated in 
the scatter plot and explain 24.15% in the MDS2 axis 
and 19.79% in the MDS3 axis (Additional file  5B). We 

further conducted MDS analysis with two other image 
data sets (setting 2 with 20 × objective, and setting 2 with 
25 × objective) from a different batch of experiments 
(Fig. 2B). In this data the variation in the image captured 
the difference of the objective lens and the age of the cot-
yledons in the MDS1 axis (77.41%). Further, we found the 
image variation with the presence or absence of ER bod-
ies in the MDS2 axis (35.9%).

A similar trend was observed when the MDS analy-
sis was done on segmented cell images of a dataset with 
7-day-old plants, PI staining setting 1 and 20 × objec-
tive lens. The cells that had ER bodies were clustered 
separately from the cells devoid of ER bodies in the MDS 
plots and showed that the maximum variation of MDS1, 
MDS2 and MDS3 were 70.93%, 28.74% and 21.36%, 
respectively (Fig.  2A and Additional file  5C). This sug-
gests that the morphological parameters for the ER bod-
ies are specific and discrete from that of the ER network. 

Table 2  Summary of cell segmentation

Genotype Setting Objective Days after germination Segmented cells Images

wild type (GFP-h) 1 20 ×  7 6181 19

5 830 5

7 1712 6

2 25 ×  5 1401 5

7 2284 6

nai1-1 1 20 ×  7 8901 20

5 1215 5

7 2712 6

2 25 ×  5 1514 5

7 2863 6

leb-1 bglu21-1 1 20 ×  7 5188 20

5 630 5

7 804 5

2 25 ×  5 1078 5

7 1409 5

meb1-1 1 20 ×  7 6723 20

5 292 5

7 1208 5

2 25 ×  5 695 5

7 1746 5

meb2-1 1 20 ×  7 2552 18

5 613 5

7 1428 5

2 25 ×  5 829 5

7 1440 5

meb1-1 meb2-1 1 20 ×  7 4893 19

5 1021 6

7 1797 5

2 25 ×  5 1117 5

7 1529 4
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When we conducted the MDS analysis of segmented cells 
with the other image data sets (setting 2 with 20 × objec-
tive and setting 2 with 25 × objective) for the respec-
tive groups of objective lens and age of the seedling, the 
separation between the cells with and without ER bod-
ies were moderate. In the images with 20 × objective, the 
variations explained were 53.69% and 58.59% in MDS1, 
36.6% and 33.11% in MDS2, and 14.05% and 13.68% 
in MDS3 (Fig. 2C, Additional file 5E and H). The varia-
tions explained within the images from the 25 × objective 
were 57.34% and 53.53% in MDS1, 32.5% and 34.91% in 
MDS2, and 15.17% and 16.81% in MDS3 (Fig. 2C, Addi-
tional file  5F and G). Therefore, although the estima-
tion is robust according to image taking methodology, 
the same experimental setting is desirable to predict the 
MDS analysis precisely.

The feature data of cell-wise images were subjected to 
k-means clustering (k = 60, assuming at least 10 clusters 
per genotype) within each group (Fig. 3) to determine the 
group of cells having distinct ER body phenotypes. The 
optimum k-value was determined by Akaike informa-
tion criterion (AIC) over a range of k-values (minimum 
6 and maximum 100, an example is presented in Addi-
tional file  6). The optimum k-value was chosen within 
the range of 55 to 65, beyond this range the variations 
between the clusters were less than 0.95%. The k-means 
clusters segregated the cells that were devoid of ER bod-
ies and were similar to the cells of the nai1-1 mutant, and 

the remaining cells can be attributed to their genotype in 
the features. Clusters that showed ER body like features 
were considered for further analysis to evaluate the over-
all effect of the genotype in explaining the morphologi-
cal diversity of ER bodies. The features from the clusters 
of segmented cells across different experimental set-
tings were integrated. Further, we investigated individual 
images of the clusters including ER body images (Fig. 3). 
The images of the clusters showed similar ER body mor-
phology within each cluster, but apparent variations 
between the clusters. This indicates that the k-means 
cluster analysis grouped the cells having similar pheno-
typic variants throughout the genotypes. In clusters 10, 
12, 19, 31 and 54, we observed cells mostly belonging to 
plants without leb-1 bglu21-1. In clusters 2, 18, 28, and 
44, we observed cells mostly belonging to mutants. Clus-
ters 2, 7, 50, 51 and 54 revealed morphologically distinct 
ER bodies. Cluster 16 was identified as an autofluores-
cence like feature, presumably noise images. With this 
approach we excluded the cell images from the nai1-1 
mutant and from stomata cells with no ER bodies as well 
as autofluorescence. Consequently, 29,629 cells were 
classified from among 66,605 cell-wise images as having 
ER bodies after k-means clustering analysis. At this reso-
lution the differences in the ER body morphology across 
the mutants and the wild type could be compared. Fur-
ther, anomalies in the texture features within ER bodies 
were detected from the clustered cells.

Table 3  Summary of ER body like features

Genotype Objective Days after germination Cells with ER-body like features No. of images

wild type (GFPh) 20 ×  5 271 3

7 5949 21

25 ×  5 813 4

7 811 6

leb-1 bglu21-1 20 ×  5 251 3

7 4920 23

25 ×  5 504 5

7 732 4

meb1-1 20 ×  5 52 2

7 5234 22

25 ×  5 275 5

7 767 5

meb2-1 20 ×  5 71 2

7 1989 17

25 ×  5 529 4

7 494 5

meb1-1 meb2-1 20 ×  5 518 4

7 4509 19

25 ×  5 406 5

7 531 3
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Feature analysis of cells having ER bodies
We re-examined the morphological variations of ER 
bodies with pooled cell-wise images that show ER bod-
ies. However, we found a technical variation between 
the 20 × and the 25 × objective lens on integrating the 
z-score values of intensity, Haralick and spatial features 
(Fig.  4A). Therefore, we performed constrained ordi-
nation on the ER body phenotype within these cells by 

using PCC distances to find the variances among the 
features (Fig. 4B). We set genotype as a fixed factor and 
the others (objective lens, plant age, staining method) as 
random factors in the analysis. The variation explained 
in CCA1 and CCA2 was 67.49% and 30.7%, respectively. 
After conditioning the random factors we observed a sig-
nificant difference in the feature diversity within the gen-
otypes. The significance was determined by conducting 

Fig. 2  Multivariate analysis revealed morphological diversity of ER bodies between A. thaliana wild type and mutants. A The image-wise (left) and 
segmented cell wise (right) MDS analysis of 42 features extracted from microscope images with the setting 1. B The image-wise MDS analysis with 
the setting 2. C The segmented cell-wise MDS analysis with the setting 2



Page 9 of 16Basak et al. Plant Methods          (2021) 17:109 	

Fig. 3  Cluster analysis revealed groups of segmented cell images. The heatmap on the left shows the mean z-score. The bar-plot represents the 
proportion of segmented cells belonging to corresponding genotypes. The microscope images on the right show randomly picked segmented 
cells belonging to corresponding clusters or consensus cluster. The images below 10% of cluster representatives are not shown



Page 10 of 16Basak et al. Plant Methods          (2021) 17:109 

Fig. 4  Integrated analysis on the datasets reveals distinct morphological diversity of ER bodies between A. thaliana wild type and mutants. A The 
heatmap represents the z-score measure of the 40 morphological parameters (x-axis) and segmented cells clustered to show ER body phenotype. 
These clustered cells belong to their independent experiments taking in 2 different settings (Setting 1 and Setting 2) and 2 objectives (20× and 
25×). B Constrained ordination analysis (CCA) was performed on the z-scores of the morphological parameters of the clustered cells for each of the 
ER bodies detected from the independent experiments, using genotype as a fixed factor. The difference in the colour of the dotted circle represents 
the genotypic differences. The variance explained by genotype is 1.37%. C CCA was performed on aggregated morphological parameters of the 
clustered cells. The variance explained by genotype is above 7%. Note that the dispersions between the leb-1 bglu21-1 (blue-dotted circle), meb2-1 
(dark yellow-dotted circle) and meb1-1 meb2-1 (light green-dotted circle) are distinct from the wild type (purple-dotted circle) in the scatterplot. D 
The heatmap represents a confusion matrix from discriminant analysis performed by using the FDA and MDA methods
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a permutational multivariate analysis of variance (PER-
MANOVA) test on constrained ordination for Pearson 
correlations within each cell and feature (p-value < 0.05, 
1000 iterations) (Additional file 7). Despite the moderate 
morphological variation, constrained ordination revealed 
that genotype difference could be explained at 1.37%. We 
found that images could be grouped depending on the ER 
morphology, such as long, rounded and aggregated ER 
bodies (Fig.  4B). Thus, we grouped the images accord-
ing to the k-mean clustering (Fig.  3) within genotypes 
and performed constrained ordination on the mean of 
features from the grouped images. In the pooled data-
set, we found that the features of the mutants could be 
distinguished from each other according to the differ-
ence in their ER body morphology (Fig.  4C). The varia-
tion explained by genotype was 7.56% (p-value < 0.01) 
and the variation shown in CCA1 and CCA2 was 60.14% 
and 31.77%, respectively (Fig. 4C). The scatter plot shows 
the wild type and the meb1-1 mutant placed in the cen-
tre, while the leb-1 bglu21-1 with long ER bodies shifted 
to the upper-left, and the meb2-1 and meb1-1 meb2-1 
mutants with rounded and aggregated ER bodies shifted 
to the right (Fig. 4C and Additional file 5I).

The FDA and MDA provided the proportion of cell 
images predicted to be of a certain genotype. In MDA 
analyses we observed that a small proportion (< 30%) of 
cells from mutants were predicted to be from the wild 
type, suggesting that the mutant plants have cells that 
show similar ER body features to those of the wild type 
(Fig.  4D). However, substantial levels (> 60%) of mutant 
cell features were predicted to be in their respective gen-
otypes, suggesting that each mutant had ER bodies with 
specific morphological features (Fig.  4D). Also, a pro-
portion of cells from the mutants were still predicted as 
belonging to different genotypes, indicating the tendency 
of similarity in features across the genotypes (< 10%). 
The FDA analysis showed the proportion of ER bodies 
that were predicted to be discrete with 100% identity to 
their respective genotype. This suggests that the variation 
within the genotype may be non-linear. The variation in 
the features estimated within the genotype is represented 
in the box plots (Additional file 8), which shows that the 
mutants had an ER body morphology distinct from the 
wild type.

Dynamics of the cellular feature
We used time-lapse image analysis to examine the differ-
ence in ER body movement between the wild type and 
the mutants. We observed ER body movement across 
time in both wild-type and mutant plants, but noticed 
that there was a reduction in the ER body movement in 
the meb2-1 and meb1-1 meb2-1 mutants (Fig.  5A and 
movies in Additional files 9, 10, 11, 12, 13). We calculated 

the average of the ER body displacements from their ini-
tial position and found that the overall ER body move-
ment was highest in the wild type across time (Fig. 5B). 
A similar trend was observed in the leb-1 bglu21-1 and 
meb1-1 mutants, but not in the meb2-1 and meb1-1 
meb2-1 mutants. Statistical analysis revealed that move-
ment was reduced in the meb2-1 and meb1-1 meb2-1 
mutants compared to the wild type, leb-1 bglu21-1 and 
meb1-1 mutants (FDR ≤ 0.01) (Fig.  5C). These findings 
suggest that the MEB2 protein is involved in ER body 
movement.

Discussion
In cell biology the common method for data presentation 
is showing microscopic images that are only able to pro-
vide limited information. It is challenging to distinguish 
the different morphology of biological objects by image 
profiling after the calculation of the mathematical param-
eters, especially for morphologically similar objects like 
ER bodies. In this paper, by performing statistical data 
analyses and gathering quantitative data from micro-
scopic images, we successfully extracted more informa-
tion about the differences between the wild type and 
mutants of A. thaliana. Our analysis clearly shows that 
the nai1-1 and leb-1 bglu21-1 mutants have morphologi-
cally distinct ER bodies from the wild type. Additionally, 
we found that the meb1-1, meb2-1 and meb1-1 meb2-1 
mutants have a distinct profile as well. Our results and 
methodology are important for studying and distinguish-
ing morphologically similar, yet different, objects in con-
focal micrographs.

Segmentation of whole microscope images into cells 
provides detailed information and features at the single-
cell level [23]. Considering the potential variety of ER 
body morphology between the cells, we implemented our 
method at the level of segmented cells. Mean or average 
intensity projection and maximum intensity projection of 
z-stack images are commonly used in studies related to 
cell organelle. These methods are mostly used to deter-
mine the focal plane of the micrographs and sometimes 
over-represent the elements that are beyond the focus 
range [31]. Thus, the pixel elements along the z-scores 
are difficult to distinguish. Recently, a new merging tool, 
namely MaxContrastProjection, was developed that con-
siders the difference across pixels on merging the images 
and that decreases the noise across z-stack micrographs 
[21]. In this study we successfully segmented the plant 
cells with the maximum contrast projection method.

The Haralick features along with the spatial and inten-
sity features provided additional information to investi-
gate the morphological variants of ER bodies. Haralick 
features provided fourteen descriptors of textural fea-
tures that come from the co-occurrence matrix, a known 
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Fig. 5  Movement analysis of ER bodies. A Sequential images of time-lapse over 10 s. The red channel represents cell-wall, the green channel 
represents ER body at the respective time (tn), the blue channel is dedicated to ER body at the time 0 (t0). The separation of the blue channel (t0) and 
the green channel (tn) explains ER body displacement in each image. B The trend of moving average displacement of ER body features detected 
within the mutants across time. The mutant genotypes are marked in different colours. The overall distribution is marked on the strip next to the 
plot. C The generalized linear model (GLM) analysis. We used genotype as a fixed factor and time as a covariate. The colour intensity indicates the 
statistical significance denoted by -log10 p-value adjusted by Benjamini Hochberg procedure, obtained from the pairwise comparison between the 
genotypes with the Tukey HSD method. The box indicates the FDR (False Discovery Rate) ≤ 0.01
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statistical approach for texture features. In our analysis 
we considered 13 features that estimated the range in 
the lower and higher values as s1 and s2 [22], these fea-
tures are angular second moment, contrast, correlation, 
variance, inverse difference moment, the sum of average, 
the sum of entropy, sum of variance, entropy, the differ-
ence in variance, the difference in entropy, and informa-
tion features of correlation ƒ12 and ƒ13 [32]. In total we 
estimated 26 Haralick, 6 spatial and 8 intensity features. 
Subsequent k-means clustering of these features showed 
representatives that had discrete features within geno-
types. The statistical analysis of the features revealed sig-
nificant differences between the wild type and mutants, 
not only in spatial parameters, but also in morphological 
parameters. Indeed, our image- and cell-wise analysis 
successfully distinguished the morphological diversity of 
already reported ER body mutants, such as nai1-1 and 
leb-1 bglu21-1 [14, 15]. Nagano et  al. reported that the 
leb-1 bglu21-1 mutant had a significantly smaller number 
of ER bodies than the wild type, and that the mean area of 
an ER body in the leb-1 bglu21-1 mutant was significantly 
larger than that in the wild type [14]. Our analysis is con-
sistent with this previous report, as we found an increase 
of ER body sizes in the leb-1 bglu21-1 mutant in compari-
son to the wild type. Furthermore, it was evident that the 
ER body morphology observed in the meb1-1, meb2-1 
and meb1-1 meb2-1 mutants differed from the wild type 
in both the segmented cell and the grouped images. Thus, 
our analysis provides a robust estimation of morphologi-
cal diversity of cell compartments like ER-bodies.

Additionally, we introduced position features to meas-
ure the ER body movement in time-lapse images. The 
calculation of the displacement from the location of fea-
tures gives a better estimate for the ER body movement 
along time. However, the total displacement of the ER 
bodies can include their initial position and the z-axis. By 
using the maximum contrast projection, we were able to 
retain the pixel information along the z-axis before seg-
mentation of the cells. We measured the total pathway 
and velocity of ER bodies by considering all the x-, y- and 
z-axes in the time-lapse images. Additionally, we calcu-
lated the cosine distances between the initial and next 
positions to compute the moving average. The estimated 
moving average displacement provided a better approxi-
mation of the total displacement irrespective of its posi-
tion across time. Based on these analyses we observed 
that the movement of the ER bodies are different in the 
meb2-1 and meb1-1 meb2-2 mutants. This suggests that 
MEB2 may be associated with the movement of the ER 
bodies.

Despite the difference in PI staining settings imple-
mented during microscopy the morphological diversity 
of the ER bodies was preserved, and the variation could 

be objectively distinguished in the CCA. In the integra-
tive analysis we could separate morphologically distinct 
ER body images according to CCA1 and CCA2 values 
and cluster them together. The mean of the morphologi-
cal variation in the segmented image clusters gives a sig-
nificant resolution of ER body phenotyping in the CCA. 
Therefore, we could capture the difference between the 
leb-1 bglu21-1 mutants and the wild type in the length 
of their ER bodies. We captured mutants lacking in MEB 
proteins that showed ER body morphological variation 
different from the wild type.

It has previously been reported that there are no 
observable differences in ER body formation between the 
meb1-1, meb2-1, meb1-1 meb2-1 mutants and wild type 
plants, suggesting that MEB1 and MEB2 are not essential 
for ER body formation [17]. However, with our method-
ology of qualitative and quantitative microscopic image 
analysis, we showed that the morphological parameters 
in the Haralick features along with the intensity and 
spatial features significantly distinguished the meb1-1, 
meb2-1 and meb1-1 meb2-1 mutants from the wild type. 
Indeed, with k-mean clustering followed by MDS and 
CCA analysis, we found that these mutants have irregu-
lar ER body phenotypes compared to the wild type. We 
noticed that ER bodies seem to be sparser in the meb1-1 
and meb1-1 meb2-1 mutants when compared to the wild 
type. These findings suggest that MEB1 and MEB2 pro-
teins play a significant role in providing the shape of ER 
bodies without changing the concentration of the entire 
proteins PYK10/BGLU23 and NAI2, which are involved 
in the ER body formation [17]. MEB1 and MEB2 are ER 
body-specific proteins within the multi-spanning trans-
membrane regions, which belong to the VIT family [16, 
17]. Thus, a deficiency of these proteins may change 
the membrane organization of ER bodies and further 
alter the shape of ER bodies. We found that the meb2-1 
mutant reduced ER body movement when compared to 
the wild type. Therefore, MEB2 may interact with the ER 
network proteins and motor proteins that are required 
for ER movement [33].

Nagano et  al. distinguished stomata cells using a ran-
dom forests-based technique on images taken from 
cotyledon samples to analyse ER body morphology [14]. 
However, to our knowledge there is no definite classifica-
tion method that distinguishes ER bodies from ER net-
work over a large dataset from different plant tissues. We 
report that within a population of segmented cells there 
is a clear difference between ER bodies and ER network 
even in the image with different settings. Furthermore, 
we distinguished ER bodies that are morphologically dif-
ferent among the genotypes. Future studies on ER body 
morphology and ER movement may take advantage 
of machine learning and deep learning methods using 



Page 14 of 16Basak et al. Plant Methods          (2021) 17:109 

morphological features extracted from images to train 
a classification method. However, a vast array of image 
datasets might be required to classify and distinguish 
different morphologies of ER bodies with such meth-
ods. More than 100  K segmented images and retained 
morphological properties may be required in training a 
neural network like Siamese neural network [34] or an 
additive neural network model in order to accomplish 
such a task.

In the overall analysis of morphological properties with 
our method, we have shown that the ER body shape is 
indeed modulated in the meb1-1, meb2-1 and meb1-1 
meb2-1 mutants. Additionally, we detected variations in 
ER body movement using simple confocal micrographs. 
Independent of the recent advances in image processing 
and image analysis by deep learning, our methodological 
approach comprehensively characterises different mor-
phologies and movement of cellular compartments that 
are as small as ER bodies. As of now, there is no neural 
network optimised for ER body classification across dif-
ferent datasets. The caveat is that deep learning methods 
require a large dataset to overcome overfitting issues in 
classifying organelles that are similar in morphology. The 
methodology presented in this paper describes the differ-
ence in morphological features of segmented cell popula-
tions depending on their genotype. It will, therefore, help 
screen mutants that show variation in morphology and 
dynamics of cellular components under different condi-
tions in an unbiased manner. Additionally, it may also be 
used in characterising other cellular compartments like 
chloroplasts, mitochondria, peroxisomes, protein bodies, 
lipid bodies and starch granules.

Conclusion
We developed a method to quantitatively analyse confo-
cal microscopy images and obtained different ER body 
phenotypes. With our methodology we were able to 
describe morphological diversity of ER bodies that had 
not been recognised in a previous study. Furthermore, 
our method enables robust phenotyping of mutants 
based on cellular and subcellular morphological changes 
by extracting precise information from complex micro-
graph images. We found morphological changes of 
ER bodies in the meb1-1, meb2-1 and meb1-1 meb2-1 
mutants, indicating that ER body membrane proteins 
MEB1 and MEB2 affect ER body shape. Additionally, we 
found that the movement of the ER bodies were reduced 
in the meb2-1 and meb1-1 meb2-1 mutants. These find-
ing provide deep insight into the molecular mechanism 
of ER body formation. Because our analysis provides an 
estimate of morphological variations and movement 
patterns, it can be extensively useful for characterising 
phenotypes of mutants in forward and reverse genetic 

approaches. Further molecular experiments will reveal 
the functional association of the factors that show the 
differences in morphology and movement within the 
phenotypes.
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