Yang et al. Plant Methods (2021)17:113
https://doi.org/10.1186/s13007-021-00809-3

Plant Methods

RESEARCH Open Access

Cotton stubble detection based on wavelet

®

Check for
updates

decomposition and texture features

Yukun Yang'?, Jing Nie'?, Za Kan'?, Shuo Yang'?, Hangxing Zhao'? and Jingbin Li"*"

Abstract

stability and reliability of the visual navigation system.

coefficients, is discussed.

stubble detection.

Background: At present, the residual film pollution in cotton fields is crucial. The commonly used recycling method
is the manual-driven recycling machine, which is heavy and time-consuming. The development of a visual navigation
system for the recovery of residual film is conducive, in order to improve the work efficiency. The key technology in
the visual navigation system is the cotton stubble detection. A successful cotton stubble detection can ensure the

Methods: Firstly, it extracts the three types of texture features of GLCM, GLRLM and LBP, from the three types of
images of stubbles, residual films and broken leaves between rows. It then builds three classifiers: Random Forest,
Back Propagation Neural Network and Support Vector Machine in order to classify the sample images. Finally, the pos-
sibility of improving the classification accuracy using the texture features extracted from the wavelet decomposition

Results: The experiment proves that the GLCM texture feature of the original image has the best performance under
the Back Propagation Neural Network classifier. As for the different wavelet bases, the vertical coefficient texture
feature of coif3 wavelet decomposition, combined with the texture feature of the original image, is the feature hav-
ing the best classification effect. Compared with the original image texture features, the classification accuracy is
increased by 3.8%, the sensitivity is increased by 4.8%, and the specificity is increased by 1.2%.

Conclusions: The algorithm can complete the task of stubble detection in different locations, different periods and
abnormal driving conditions, which shows that the wavelet coefficient texture feature combined with the original
image texture feature is a useful fusion feature for detecting stubble and can provide a reference for different crop

Keywords: Machine vision, Visual defect detection, Stubble, Wavelet decomposition, Fusion feature, Texture feature

Background
The covering plastic film technique has the functions of
protecting moisture, increasing temperature, inhibiting
the growth of weeds and has been widely used since it
was introduced into China.

As the main cotton-producing area in China, Xinjiang
ranks first in the country in terms of the area and usage
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of covering plastic film, and the problem of residual film
pollution is particularly severe.

At present, the residual film recovery procedure is
mainly divided into the residual film recovery in late
autumn, the residual film recovery before sowing, and
the residual film recovery at the seedling stage. The
residual film recovery in late autumn will not affect the
harvest of crops and product quality. It is currently a
more widely used method of recycling residual film,
which is mainly divided into joint operation and seg-
mented operation. The joint operation means that the
machine can complete the task of stalk whipping and
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residual film recovery at one time after cotton harvest.
The segmented operation is different. The cotton stalk
whipping operation is first carried out. After the whip-
ping is completed, the subsequent film recovery opera-
tion is performed. This type of machine has a simple
structure, high reliability, and low energy consump-
tion. However, the current segmented operation mainly
relies on the manual operation of tractors to pull work-
ing tools. The working environment is dusty, and the
work is monotonous. The driver’s continuous operation
is labor-intensive, and it is easy to cause the missed of
film recovery. The development of a navigation opera-
tion system for the residual film recovery can effectively
reduce the labor intensity of the driver and significantly
improve the production efficiency of the residual film
recovery operation.

In agricultural machinery navigation operations, the
global positioning system (GPS) has been used for many
years [1-3]. In the case of low satellite signals or dynamic
farmland environment, it is also important for the vision
system to detect the navigation route in real-time to
correct the deviation [4, 5]. In the agricultural field, the
vision-based navigation route extraction algorithm gives
priority to detecting the rows of crops, and extracting the
route through the detected crop rows so that the working
machine can automatically operate along the route. For
the segmented residual film recovery operation, the stub-
ble rows after the whipping maintain the characteristics
of straight-line cotton planting. By detecting the stubble
rows after whipping and adjusting the tractor to drive in
real-time, it can ensure that the residual film recovery
machine pulled by the tractor can collect the film along
the film edge, and reduce the missed residual film.

The detection of cotton stubble rows is of great sig-
nificance to developing the visual navigation system for
segmented residual film recovery. In the existing studies
of crop detection, the color, shape, and texture character-
istics of the crop are usually extracted to segment it and
recognize it.

In the study of using color for classification, Fu et al. [6]
classified clustered kiwifruits by extracting the RGB and
HSYV color features of kiwifruit calyx. The accuracy rate
reached 93.7%. Luo et al. [7] detected grapes based on
HIS and YCbCr color space, they used an adaptive boost-
ing (AdaBoost) classification algorithm, and the detection
rate reached 96.56%. Fu et al. [8] proposed a detection
based on S-V color features to detect bananas, and the
detection rate reached 92.55%. For corn detection,
Zheng et al. [9] extracted 14 vegetation indices related to
color features to segment corn. The results showed that
the 3-year total accuracy rate was 90.19%, 92.36% and
93.87%. The success rate of color-based detection largely
depends on the studied crops and their color differences.
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When the colors of the crops and the background are
very different, the color features may be helpful.

Shape features are another source for extracting infor-
mation from images. Bakhshipour et al. [10] identi-
fied the crops in the sugar beet planting area based on
the shape characteristics of the beet plants, evaluated
the respective accuracy of the Support Vector Machine
(SVM) and Artificial Neural Network (ANN) in the beet
classification, and the accuracy rates of detecting sugar
beets were 93.33% and 96.67%, respectively. Choi et al.
[11] proposed a new navigation line extraction algorithm
by using the morphological characteristics of rice leaves.
Jahanbakhshi et al. [12] extracted the length, width,
breadth, perimeter, elongation, compactness, roundness,
area, eccentricity, centroid, nonhomogeneity, and width
nonhomogeneity characteristics of carrots in the image
to classify carrots. Kheiralipour et al. [13] introduced and
extracted nonhomogeneity, and width nonhomogene-
ity characteristics to detect cucumber fruits. The shape
feature can be used to detect crops. When the crops are
not blocked or overlapped with each other, the detection
accuracy can be very high.

Texture features play the vital role in image classifi-
cation and image analysis. Zou et al. [14] segmented
broccoli seedlings from weeds and soil by extracting
gray-level co-occurrence matrix (GLCM) features and
color features. When the training sample is greater than
50, the accuracy of the test set can reach 90%. Le et al.
[15] used coefficient k-filter local binary patterns and
contour masks (k-FLBPCM) to distinguish similar crops
and weeds. Olaniyi et al. [16] used GLCM texture fea-
tures to classify bananas automatically. When SVM was
selected as the classifier, the accuracy reached 100%.
Granito et al. [17] used GLCM and gray level run-length
matrix (GLRLM) to classify weed seeds, the classification
accuracy of the experimental data set is 99.2%. Guevara-
Hernandez et al. [18] used GLCM and GLRLM algo-
rithms to classify wheat and barley. The classification
accuracy rates of bulk and single-grain samples are 98%
and 68%, respectively.

The single feature extracted from the original image
has limited abilities to classify images. Wavelet trans-
form can make the features extracted from the image
more diversified. Luo et al. [19] used a single-scale two-
dimensional discrete wavelet transform to decompose
and reconstruct the dried Hami Jujube image, extract-
ing the reconstructed visual features for classification.
To reveal the internal damage of the cylindrical shell
more clearly, Parrany et al. [3] used a two-dimensional
discrete wavelet transform as a post-processing tech-
nique to enhance the data. Thamizharasi et al. [20]
used a weighting scheme to increase energy, they cal-
culated the sub-band weights based on the energy and
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threshold of the wavelet decomposition sub-bands,
multiplied the sub-bands, weights, and weighting fac-
tors to get a new sub-band, and created an enhanced
energy discrete wavelet transform (DWT) image based
on the new sub-band image. It is an effective method to
extract features from the sub-bands of wavelet decom-
position for image classification. Moreover, the decom-
position effect of different wavelet bases is different.
The selection of base wavelet is the main problem of
using wavelet transform. Using different base wave-
lets on the same image may produce different results.
Therefore, the selection of the wavelet base and the
feature classification effect of decomposing sub-band
extraction are the issues discussed later in this article.

As for the extracted crop features, the features input
to the classifier can achieve the crops classification and
detection. In the choice of the classifier, Supports Vec-
tor Machine (SVM) [5, 21], Artificial Neural Network
(ANN) [22, 23], Random Forest (RF) [24, 25], and deep
learning methods [26—28] are widely used. The segmen-
tation algorithm based on deep learning can get a better
segmentation effect, but it needs many training samples.
Therefore, the application of deep learning algorithms in
field stubble recognition is limited.

There is no relevant article report on cotton stubble
detection research. For the cotton stubble detection tasks
after harvesting and whipping, the color characteristics
of the stubble are very similar to the disturbances such as
broken cotton stalks, cotton shells, damaged leaves, and
part of the field soil. These disturbances will obscure or
extend the shape characteristics of the stubble. The selec-
tion of color features and shape features cannot segment
the stubble well. In addition, the unevenness of the field
during operation causes the camera to shake, while a sin-
gle feature used for object detection can barely detect the
cotton stubble in such a complex environment. Based
on this background, this paper proposes a method for
effectively detecting the cotton field stubble. The pro-
posed method is based on a fusion feature of the original
image texture feature, combined with the texture feature
of the wavelet decomposition coefficient. The fusion fea-
ture can be effectively used for field stubble detection in
the period of segmented residual film recovery in late
autumn. This study provides a technical support for the
residual film recovery navigation system. It also provides
models and features suitable for stubble detection, which
can be considered as a reference for other crops’ stubble
detection and visual navigation operations. The article
mainly completes the following three tasks:

1. Evaluate the stubble classification ability of the three
texture features of GLCM, GLRLM, and LBP under
SVM, ANN, and RF classifiers.
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2. To extract the wavelet coefficient texture features
after different wavelet base decomposition to classify
the stubble, and to explore the classification effect
of wavelet coefficient texture features after different
wavelet decomposition.

3. To compare the classification effect of the original
image GLCM texture feature combined with various
wavelet coefficient texture features, and to verify the
stubble detection effect of the fusion feature in differ-
ent locations, different periods, abnormal driving and
different algorithm.

Methods

Image acquisition

The camera for image acquisition is a Wild Forest wide-
angle lens (130° wide-angle), and the output is the color
image in.jpg format (RGB, 640*480 resolution). The
computer processor used for image processing is Intel
Core i7-7700K, the main frequency at 2.8 GHz, with
Windows10, 64-bit operating system; The image pro-
cessing software is PyCharm and OpenCV. In October
2019, images of the residual film recovery in the cotton
field were taken in the 145th, 146th, and 152th regi-
ments of the Eighth Division. The camera is installed
on the front counterweight of the tractor, as shown in
Fig. 1a. The schematic diagram of the image acquisition
process is shown in Fig. 1b. The camera’s depression
angles are 10°, 30°, and 45°, and the captured images
include various situations such as sunny, cloudy, for-
ward light, backlight, and abnormal driving.

> o Ngmmm

(a) (b)

Fig. 1 aThe image of the camera installation; b the schematic
diagram of the image acquisition process. (A) Residual film recovery
equipment; (B) tractor; (C) counterweight; (D) camera; (E) residual
film; (F) stubble rows
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Manually segmented sample set

The collected residual film recovery fieldwork image
is shown in Fig. 2. The information such as stubble,
soil, broken straw, broken leaves, and mulching film is
included in the image. The above images can be divided
into three types of representative images. The first type
is stubble, the second type is soil and broken leaves
between rows, and the third type is covering film. It is to
manually segment the three types of sample images and
calculate the relevant texture features as the input fea-
tures of the classification model. The steps to segment
the sample image are as follows: (1) set a 10 x 20 pixel
marquee in PhotoShop software (the 10 x 20 pixel block
can cover a complete stubble outline. If the selected pixel
block is too small, only part of the stubble can be inter-
cepted. Such images are similar to soil, broken leaves, and
other features, which is not easy to classify. If the selected
pixel block is too large, it will introduce too much noise
and reduce the accuracy of classification). (2) Manually
sample three types of targets from 350 sample images
through this selection box in a random way, each type of
image collects 350 samples. A total of 1050 pixel blocks
are collected as sample pixel blocks, and the collection
diagram is shown in Fig. 2. The sample-set is divided into
a training set and test set according to the ratio of 8:2.

Two-dimensional discrete wavelet

Transform (2D-DWT)

The two-dimensional discrete wavelet transform (2D-
DWT) has a wide range of applications in the field of
signal and image processing [29, 30]. Through Two-
dimensional discrete wavelet transform (2D-DWT),
the sample image can be decomposed into multiple
sub-images with different resolutions, and high and
low-frequency information is preserved. Better texture
information can be extracted from high and low-fre-
quency images [19]. If a continuous, square integrable
function f(x) is given, its wavelet transform is composed
of the inner product of f(x) and the real-valued wavelet
function Y, the equation is as follows [31]:
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where 1/fs]fr (x) = (%) vk ((x — 7)/s) belongs to the wave-
let family, s€ Z, t, ke {h, v, d} represent different resolu-
tion levels, and the direction parameters h, v and d
represent the horizontal, vertical and diagonal directions,
respectively. Now the two-dimensional wavelet decom-
position is realized under s=2 and t=2n (j, ne Z). It is
to use wavelet function Y, and scale function ¢, to
construct wavelet family and scale family:

P I x—2-n
Vi) = ﬁl/f (2/»)’ (2)

1 -2,
<P/(fn(x) = ﬁﬁl’(?CW}q) 3)

The orthogonal basis of the subspace are related to
the 2/ resolution. The wavelet atom is defined by scaling
and translating with the three parent atoms of Y, y", y¢,
which are calculated by y,) and ¢,). The equations are as
follows:

x) = p(x1)@(x2), (4)
Yhx) = Y a), (5)
V(%) = p(x1) ¥ (x2), (6)
Y (x) = ¥ @)Y (). (7)

The two-dimensional discrete wavelet transform (2D-
DWT) is realized by the combination of digital filter and
down-sampling. The digital filter is composed of high-
pass (g) and low-pass (h) filters. Downsampling selects
down two samples. As shown in Fig. 3, the original image
is decomposed into four sub-band coefficients. H, V,
D are the detail coefficients of the original image in the
horizontal, vertical and diagonal directions, respectively.

residual film recovery field image

Fig. 2 Schematic diagram of manually segmented sample set

1. stubble ,i
1

3.residual film
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Fig. 4 Four sub-bands of stubble after wavelet decomposition

A is the approximate coefficient of the original image.
The output results of image wavelet decomposition are
four orthogonal sub-band components, such as low-
low (LL), low—high (LH), high—low (HL) and high—high
(HH), which correspond to sub-images A, H, V, and D,
respectively.

Taking the stubble sample image as an example, Fig. 4a
is the original stubble image, (b) is the gray image, (c) is
the output four sub-band coefficients. The low-frequency
component Al reflects the contour of the image, and the
high-frequency components H1, V1, D1 reflect the hori-
zontal, vertical, and diagonal details of the image.

Feature extraction
It is to extract the features of the three types of sample
images to classify the images, mainly discuss the effect of
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Fig.5 Principle of GLCM

texture features on the stubble detection, and select three
texture features based on GLCM, GLRLM and LBP for
subsequent research.

(1) Gray level co-occurrence matrix (GLCM)
Texture features can be described as the surface and
structural properties of an image. In the visual system
for detection and classification, texture plays a vital role.
The value of GLCM is expressed by the frequency of pixel
pairs appearing in distance d and direction 0 [32]. Under
normal circumstances, 6 will take the values of 0°, 45°,
90° and 135°. If the image has k gray levels, the size of the
co-occurrence matrix is k*k. The principle is shown in
Fig. 5. The left side is the grayscale image of the original
image. The right side is the corresponding GLCM. There
are 8 Gy levels in the original image, so the size of the
GLCM is 8*8. Taking the direction 0° and the distance
d=1 as an example, the 0° direction (1, 1) appears once
in the original image, and the corresponding GLCM (1,
1) is 1. The 0° direction (1, 2) appears twice in the original
image, and the corresponding GLCM (1, 2) is 2. By anal-
ogy, the corresponding GLCM can be obtained.

It is to select six types of GLCM statistics features as
the classification features of the image, which are Angu-
lar Second Moment (asm), Entropy (ent), Correlation
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(cor), Dissimilarity (dis), Contrast (con) and Homogene-
ity (hom). The calculation equation is shown in Table 1.
The G(j, j) is the value of the GLCM in the i-th row and
j-th column, k is the number of gray levels in the GLCM,
u and s are the mean and variance of the GLCM. For the
three types of sample images, the size of the ROI we need
to process is 10*20 pixels, the gray level is 256, the step
size is 1, the angle is 0°, 45°, 90° and 135°. To calculate the
corresponding GLCM, we can get a 256 *256 GLCM, and
each type of image will finally produce 24 (4*6) dimen-
sional features as the GLCM texture feature of the sample
image.

(2) Gray level run length matrix (GLRLM)

The gray level run length matrix (GLRLM) is the second
texture extraction algorithm in this article [33]. The size
of the GLRLM is (M x N), where M is equal to the maxi-
mum gray level, and N is the maximum run length pos-
sible in the corresponding image. Typical directions are
0°, 45°, 90° and 135°. To calculate the run length in each
direction will generate the corresponding GLRLM. In
GLRLM (i, j), i is the gray value, j is the number of con-
secutive occurrences of the gray value. In the statistics,
the gray value of the maximum run length starts to be
counted. For those gray values that have been counted,
they will not be included in the statistics for the next run
length. The schematic diagram of the principle is shown
in Fig. 6, the left side is the original image. The right side
is the GLRLM in the 0° direction. Taking gray scale 3
as an example, when the run length is 4 and 3, the gray
scale 3 does not exist, that is, GLRLM (3, 4) and GLRLM
(3, 3)=0. When the run length is 2, the gray scale 3 has
appeared once, as shown by the red box in the Fig. 6,

Table 1 The calculation equations for the characteristics of the

GLCM
Feature Equation
asm kK k _
asm = ,Z E(G(i,/))2
i=1j=1
ent k. K
ent=—>3% 3 G(,j)logG(,j)
i=1j=1
cor zk; zk: G-ty
=1 j=1 515
dis
dis = z z GU NN =]l
i=1j=1
con k=1 ko k
con= "1 {S3GG)) p.li—jl=n
n=0 i=1j=1
hom L& sip
hom=73%">" T

i=1j=1
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Fig. 6 Principle of GLRLM

that is, GLRLM (3, 2)=1. When the run length is 1, the
gray scale 3 has appeared 4 times, as the green box in the
Fig. 6, GLRLM (3, 1) =4-.

Table 2 shows the eleven statistical characteristics and
equations based on the GLRLM in this article. Eleven fea-
tures of the short run, long run, gray level non-uniform-
ity, run length non-uniformity, run ratio, low gray level
run, high gray level run, short run low gray level, short
run high gray level, long run low gray level, long run
high gray level are extracted. The directions are 0°, 45°,
90° and 135°. Each image can generate 44 features (11*4),
where Q(j, j) is the GLRLM, i is the gray value, j is the run
length, and S is the sum of all values in the GLRLM.

Table 2 The calculation equations for the characteristics of the

GLRLM

Feature Equation

Short run st=Y3(QGN/?)/S
i

Long run

Ir=3% (*Q0.p)/S
i

2
ghh=3% (Z Q(’)J)) /5
i\

Run length non-uniformity 2
fn =32 <2 Q(/,j)) S

] 1

Gray level non-uniformity

Run ratio

r= ; ;S/jQ(/,j)

Low gray level run lgr=3"3"QG.)/S"?
i

High gray level run hgr = Z Z /‘2Q(i,j)/5
i

slg = 3232 Q) /S
i

Short run low gray level

Short run high gray level sthg = 32 3" 12Q03.) /S
i

Long run low gray level

IMg = 3327200 ,))Si
[

Long run high gray level Irhg =>>" /'ZQ(i,j)/S
o
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(3) Local binary pattern (LBP)

The local binary pattern (LBP) is the third image texture
feature extraction algorithm in this article. Central pixel
is located in a local area of the image, comparing the
values of surrounding pixels with the central pixel. The
comparison will produce a binary value, and the binary
number is converted to a decimal number to replace the
value of the central pixel of the image. The LBP equation
is defined as follows [34]:

P
LBPpg =Y s(gi—g)2 (8)
i=0
1, x>0
s(x) = {0, otherwise ’ ©)

where g represents the gray value of the central pixel, g;
is the value of surrounding pixels. P is the total number of
adjacent pixels in the local area, and R is the radius. The
LBP feature of the invariant rotation mode is selected for
the experiment, and the equation is defined as follows
[35]:

LBP} p = min {ROR(LBPp, i)}, (10)
where ROR (LBP}, , i) represents the LBP value under
different rotation directions and different starting points.
The principle is shown in Fig. 7. No matter how many
degrees the image is rotated, the smallest binary number
is uniquely constant. The radius of the selected circular
neighborhood is R=1, and the total number of adja-
cent pixels P=8. For a sample image of 10*20 pixels,
the image is divided into eight sub-regions. As shown in
Fig. 8, the size of each sub-region is 5*5, combined with
the LBP histogram of each sub-region, the LBP texture
feature vector is used as a feature of image classification.

Classification model and evaluation index

Using three classification models of Random Forest (RF)
[36], Support Vector Machine (SVM) [37], BP Neural
Network (BPNN) [38] to classify stubble, residual film

binary code:11111

LBP label:31
193f184185 1]1]1
187161)160] ——| 1 | 31
1721159158 110

Fig. 7 Principle of constant mode LBP
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Fig. 8 Schematic diagram of stubble image block

and broken leaves between the rows. Sample sets are
divided into a training set and test set according to 8:2.

The effect of image detection is represented by accu-
racy (symbol: Ac), sensitivity (symbol: Se) and specificity
(symbol: Sp) [39, 40]. Accuracy refers to the ratio of cor-
rectly classified samples to all samples. Sensitivity refers
to the correct proportion of positive sample classifica-
tion. Specificity refers to the correct proportion of nega-
tive sample classification. The calculations method for
each index is shown in Table 3. All indicators calculated
in the following text are obtained by tenfold cross-vali-
dation. True positive (symbol: TP) indicates the number
of positive samples that are correctly classified, false posi-
tive (symbol: FP) indicates the number of negative sam-
ples that are incorrectly classified as positive samples.
True negative (symbol: TN) indicates the number of neg-
ative samples that are correctly classified, false negative
(symbol: FN) indicates the number of positive samples
that are incorrectly classified as negative samples. In the
article, the stubble is a positive sample, the broken leaves
between rows and residual film are negative samples.
High sensitivity means excellent stubble detection effect.
High specificity means that the noise classification effect
is brilliant, and more noise can be removed. In the test
phase, all metrics should have high values.

Results and discussion

Classification mode and classifier performance

Table 4 shows the different results of classification using
three classifiers: RF, BPNN, and SVM. The classification

Table 3 Calculation equation of evaluation index

Index Equation
_ _ TP4IN
Accuracy AC = TRV PPN
L _ TP
Sensitivity Se = iy
ifici _ _IN
Specificity P = e
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Table 4 Classification results of different classifiers and different texture features

Features Model Accuracy (%) Sensitivity (%) Specificity (%) Time (per/ms)
GLCM RF 89 87.5 97.3 435
BPNN 89.4 93.8 96.6 43.4
SVM Linear 88.1 90.6 959 44
Polynomial 87.1 90.6 95.2 44.5
RadialBasis 88.1 89.1 959 45.1
Sigmoid 814 82.8 959 451
GLRLM RF 60.5 328 89 1080.1
BPNN 67.6 375 932 1080.6
SVM Linear 64.3 359 89.7 1084.2
Polynomial 543 28.1 84.2 1085
RadialBasis 60.5 28.1 86.3 1086.5
Sigmoid 48.6 18.8 87 1086.3
LBP RF 46.1 234 87 1391
BPNN 46.7 246 799 1386
SVM Linear 44.8 18 82 1397
Polynomial 452 17.3 85.1 1397.7
RadialBasis 46.9 14.8 89.5 1398.8
Sigmoid 442 21.7 78.1 1398.8

Significance of the bold value indicate the maximum value of the index

features are related to texture features extracted by
GLCM, GLRLM, and LBP algorithms. From the over-
all accuracy of the model. Using GLCM combined with
BPNN classifier reached 89.4%, the overall accuracy is the
best among all classification categories. In terms of the
stubble detection accuracy (sensitivity), the sensitivity of
GLCM combined with the BPNN classifier is still the best
performers in all categories. From the processing time of
the algorithm, the GLCM feature is far better than other
features. Although the specificity of the GLCM combined
with RF is the best among all categories and its accuracy
and processing time are not much different from the
GLCM combined with the BPNN, we take the combi-
nation of GLCM and BPNN as the best combination of
the stubble classification model. The focus of this article
is the stubble detection rate. Under GLCM feature clas-
sification, the sensitivity of BPNN classification model is
better than RF.

In this Table 4, it is worth noting that the classification
effects based on GLRLM and LBP features are very weak.
In previous studies, when using GLRLM texture fea-
tures for classification tasks, there is good performance
[41, 42]. Khojastehnazhand et al. [43] used GLRLM and
GLCM features to classify raisins and found that the clas-
sification effect of GLRLM was better than GLCM fea-
tures. In this article, the reason for the poor performance
of GLRLM maybe because there are too many redundant
features between the features, it will adversely affect the
classification and result in low classification accuracy.

Through experiments, Xu et al. [44] found that the clas-
sification accuracy of GLRLM is not ideal when using full
features for classification. After feature selection removes
redundant features, the classification accuracy of GLRLM
can be greatly improved under the same classifier. The
main reason for the low effect of classification based on
LBP features is the selection of blocks. After the blocks
are divided, there maybe more similarities between the
features of each sub-block. For example, after the 10*20
sample image of the stubble is divided into blocks, its
sub-block images may include soil and residual film. The
high feature similarity between the sub-blocks leads to a
decrease in the overall classification accuracy. Compar-
ing several blocks mode combined with sample images of
different scales can improve the accuracy of LBP features
in stubble classification.

The processing time of a single image with GLRLM and
LBP features is another noteworthy factor. In this article,
the purpose of stubble detection is to fit and extract the
navigation line. There are certain requirements for real-
time navigation during field operations. The time under
GLCM feature classification are far superior to GLRLM
and LBP features, which is also a critical factor in select-
ing GLCM features in this article. Therefore, for the
improvement of classification accuracy of GLRLM and
LBP features in stubble detection, this article does not do
follow-up research.

Figure 9 shows the confusion matrix of the best results
obtained for further study (A is the soil and broken leaves
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between rows, B is the stubble, C is the residual film).
It can be seen from the confusion matrix in Fig. 9, the
classification result of the positive sample B is accept-
able. Four of the 64 images are misclassified as A. The
classification effect of negative sample A is weaker than
B and C because the image of the soil and broken leaves
between rows is the noisiest. Its 10*20 pixel box contains
noise that does not belong to this type of image, such as
some residual film or broken straws with similar texture
characteristics to stubble. Having features for other kinds
of images in the sample images is also the reason for the
incorrect classification of B and C images. In addition,
the small training sample size is another major cause of
classification errors. Although the images we collected
include as many factors as possible weather conditions,
camera angles, sun exposure angles, etc., while some of
the image data under “special circumstances” are the
key factors affecting the increase in accuracy, such as
shadows, abnormal driving (the stubble changes from
“upright” to “oblique”), and images under camera shake
(the captured image information becomes blurred), etc.
Although these scenes seldom appear in actual opera-
tions, adding more “abnormal” scene images for training
in the training set can effectively enhance the accuracy
and generalization of the model.

GLCM feature performance measurement based

on wavelet transform

To decompose the sample image by two-dimensional
discrete wavelet transform can obtain the approximate
coefficient and the detail coefficient in the three direc-
tions of horizontal, vertical and diagonal. Different tex-
ture information can be extracted from the decomposed

coefficients to classify sample images. However, the wave-
let family has different mother wavelets, and different
mother wavelets have different effects on image decom-
position. There is currently no documented record of the
best basis wavelet for stubble detection. To determine the
ideal wavelet suitable for the three types of image classi-
fication problems, several mother wavelets can be tested
through a trial and error process [45]. For this reason, 22
widely used wavelets are selected as the basis wavelet set
to choose the best basis wavelet [46, 47], which includes
Daubechie (db) series (dbl, db2, db3, db4, db5, db6, db7,
db8, db9, db10), Symlet series (sym2, sym3, sym4, sym5,
sym6, sym7, sym8), and Coiflet series (coifl, coif2, coif3,
coif4, coif5). To decompose the image through different
basis wavelets, record the approximate coefficients and
the detail coefficients, comparing the classification effect
by extracting the GLCM features of the image. The clas-
sifier uses the BPNN, because it performs best in experi-
ments of GLCM features for classification.

It can be seen from Figs. 10, 11, 12, and 13, no matter
which wavelet base is selected, the sub-band coefficients
in the approximate, horizontal, and diagonal directions
are lower than the classification effect under the vertical
coeflicient. After wavelet transform, the vertical coef-
ficients retain the part of the image that changes dras-
tically in the vertical direction. Although there is much
noise interference in the field images of the residual
film recovery, the vertical characteristics of the stubble
remain in the whole image of the stubble sample. The
accuracy of the vertical decomposition coefficients is bet-
ter than other three wavelet coefficients. The classifica-
tion accuracy of multiple wavelet-based decomposition
coeflicients is above 70%.

In general, the classification accuracy of wavelet coeffi-
cients after wavelet decomposition is lower than original
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image. However, the texture features extracted from
the wavelet decomposition coefficients can be used as
extended features. The classification accuracy can be
improved by fusing with the texture features of the origi-
nal image. We use 70% as the classification accuracy
threshold (the green lines in Figs. 10, 11, 12, and 13 are
the accuracy selection threshold), selecting features with
classification accuracy greater than 70% to combine with
the original image texture features to verify the fusion
features classification effect. The approximate coefficients
decomposed by db10 and the vertical coefficients decom-
posed by db5, db9, db10, sym4, symé, sym7, sym8, coifl,
and coif3 are selected. The classification effect of the
selected coefficients is shown in Table 5.

Combining the GLCM texture features extracted from
the wavelet coefficients and original image as a new
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Table 5 Classification accuracy under different wavelet basis
decomposition coefficients

Wavelet basis Accuracy/%
db10 (approximate coefficient) 746
db5 (vertical factor) 719
db9 (vertical factor) 70.5
db10 (vertical factor) 70.5
sym4 (vertical factor) 70.5
symé6 (vertical factor) 714
sym?7 (vertical factor) 719
syma8 (vertical factor) 729
coif1 (vertical factor) 70
coif3 (vertical factor) 70.5

feature. There are totals of 48-dimensional features. The
classifier chooses the best BPNN in the original image
classification. The Table 6 shows the classification effect
of fusion features on images. From the perspective of
accuracy, the performance of the fusion feature is bet-
ter than the texture feature of the single original image.
Among the different wavelet bases, the coif3 wavelet is
the wavelet base with the highest accuracy. Its fusion fea-
ture accuracy rate is 93.2%. Compared with the original
image classification accuracy rate of 89.4%, its accuracy
rate is increased by 3.8%. Sensitivity and specificity indi-
cators are worth noting. The performance of some fusion
features is lower than the single feature of the original
image. However, the performance of the three indicators
of the coif3 fusion feature is better than single texture
feature, which also verifies the hypothesis that the texture
feature of the wavelet decomposition image and original
image can improve the classification effect.
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Table 6 Classification effect of fusion features

Page 11 of 15

Selected image Accuracy (%) Sensitivity (%) Specificity (%)
Original image 4+ db10 (approximate coefficient) 91.7 919 96.3
Original image + db5 (vertical factor) 923 946 98.5
Original image + db9 (vertical factor) 925 932 97.1
Original image +db10 (vertical factor) 92.1 973 97.1
Original image 4 sym4 (vertical factor) 90.5 94.6 96.3
Original image + sym6 (vertical factor) 914 973 97.1
Original image + sym?7 (vertical factor) 919 973 98.5
Original image 4 sym8 (vertical factor) 91.8 95.9 97.1
Original image + coif 1 (vertical factor) 919 95.9 97.8
Original image + coif3 (vertical factor) (Additional file 1) 93.2 98.6 978

Significance of the bold value indicate the maximum value of the index

100

5 I
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Fig. 14 The principle of row by row and block by block scanning

Evaluation of classification effect of fusion features

It selects three types of field images from different
locations, different periods, and abnormal driving
to test the algorithm. The size of the image collected
by the camera is 640 x 480. We extract the stubble
row facing the tractor driver as the detection area
(100 x 200 ROI), and scan the ROI area row by row and
block by block. The process is shown in Fig. 14. The
images judged by the classifier as stubble are framed
in red on the image, and the detection results will be
given in the following sections.

Fig. 15 Detection results at different locations: a, d, g are the
original images; b, e, h are the vertical coefficients after coif3 wavelet
decomposition; ¢, f, i are algorithmic detection result

(1) Image detection results of different locations

We selected field images from different locations for algo-
rithm detection. The main differences are the color of the
soil, the distribution of broken leaves and broken stalks.
All images can detect the stubble, and some images have
leak detections and error detections. Figure 15a, d, g is
selected as representative images of the three types of
places. From the detection results, the detection results
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(a) are acceptable because of its obvious stubble charac-
teristics and low noise interference. For the image (d), the
cotton shells and broken leaves are distributed in large
quantities. These two types of noise are similar in color to
the stubble, it is easy to cover up and disturb the texture
information of the stubble. For the image (g), the detec-
tion effect of oblique stubble and stubble in shadow is
weak. For different locations, the overall detection rate
of stubble is acceptable. The color of the soil and bro-
ken leaves will not affect stubble detection, but when the
noise of broken leaves is considerable, it will miss stubble
detection. In addition, for irregularly shaped stubbles, the
algorithm is likely to missing detection, which is the main
reason for stubble detection errors in different locations.

(2) Image detection results in different periods

We selected field images in different periods for algo-
rithm detection. The images were from the same place,
and the periods were mainly morning, noon and after-
noon. Figure 16a is an image of the place in the morn-
ing. The influence of morning light is not obvious. The

Fig. 16 Detection results at different time periods: a, d, g are the
original images collected in the morning, noon, and evening at the
same location; b, e, h are the vertical coefficients after coif3 wavelet
decomposition; ¢, f, i are the algorithm detection results
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stubble in the image can basically be detected by the
algorithm, and the effect is good. Figure 16d is an image
of the place at noon. The light makes the whole image
brighter, and the characteristic information of the stubble
is not obvious due to the sunlight, but the overall detec-
tion effect is within an acceptable range. The influence of
the shadow caused by the light is worth noting. The stub-
ble in the shadow and the shadow of the stubble are easy
to cause error detection. Figure 16g is an image of the
place in the afternoon. The light is not as intense as noon,
and the overall detection effect of stubble is better than
the detection result at noon.

(3) Detection results of abnormal driving images

We selected abnormal driving images for algorithm
detection. Abnormal driving refers to the driver’s mis-
taken driving. The tractor is collecting images while
deviating from the residual film recovery route. Fig-
ure 17a, d are images with small and medium deviations,
respectively. In these two cases, the stubble image can

Fig. 17 Abnormal driving detection results: a, d, g are the driving
states of the tractor with the small deviation from the course, the
medium deviation from the course and the large deviation from the
course, respectively; b, e, h are the vertical coefficients after coif3
wavelet decomposition; ¢, f, i are the algorithm detection results




Yang et al. Plant Methods (2021) 17:113

be successfully detected. Figure 17g is an image under a
large deviation. The tractor deviates too much from the
normal route, the collected stubble changes from a ver-
tical state to a sloping state, and the inclination angle is
large. In this case, the stubble detection is prone to miss-
ing detection. The main reason is the lack of inclined
stubble samples in the sample data set for model training.

(4) Different algorithm detection results

To further verify the effect of the fusion feature in stub-
ble detection, the GLCM feature and YOLOV3 algorithm
were selected to carry out a comparative experiment on
stubble detection. In the comparative experiment, the
fusion feature and GLCM feature both choose the best
BPNN as the classification model. YOLOv3 uses the
original Draknet-53 network, by marking 2000 stubble
images as a training set, training 4000 epochs after the
model Loss value stable at 0.1 near, and finally selected
the training 6000 epochs of the model as the best detec-
tion model of YOLOv3. The comparison results are
shown in Fig. 18a, e, i is the original image. For fusion
features, the stubble is basically detectable, and there
is no obvious error detection, the effect is as (b), (f), (j)
shown. For the GLCM feature, there is a partial missing
detection in the stubble detection, but compared with the
fusion feature, there is clear error detection, as shown in
figure (c), (g), (k). The green frame indicates that other
types of images are error detected as stubble, and the
error detected images would have a severe impact on the
later navigation line extraction.

The detection result of YOLOvV3 has no error detection,
but the stubble missing detection is serious. The small
training sample is main reason, and the second is the size
of the stubble. Most of the stubble belongs to small tar-
gets. In the deep network detection framework easy to
miss the small target, need further improvement of the
network to improve the detection effect. In general, the
stubble detection based on fusion features is better than
the comparison algorithm. It can complete the task of
stubble detection in a complex background, thus provid-
ing the basis for the next step of residual film recovery
navigation line extraction.

Conclusion

The stubble detection in the natural environment is
essential for the navigation line fitting of residual film
recovery operations. The following conclusions can be
drawn from the test results:

1. It is necessary to manually select stubble, residual
film, soil and broken leaves to make a training set
and testing set. Compared with the previous image
processing technology, this method is more targeted

Page 13 of 15

kK 0

Fig. 18 Algorithm comparison results: a, e, i are original images;
b, f, j are fusion feature detection results; ¢, g, k are GLCM feature
detection results; d, h, | are YOLOv3 detection results

and complexity of the overall image will not affect the
extraction of stubble features.

2. For the classification of soil and broken leaves, stub-
ble, residual film. The texture feature based on the
GLCM has considerable reference value. From the
time point of view, GLRLM and LBP are not suitable
for the requirements of detecting stubble in naviga-
tion operations.

3. Compared with the three typical classifiers of RF,
SVM and BPNN, it can be found that the classifica-
tion effect of BPNN combined with GLCM texture
features is the best of all types.

4. The classification effect of texture features under
wavelet coefficients is discussed. It is found that the
classification effect of the wavelet coefficient texture
feature is not as good as the classification feature of
the original image, but the texture feature extracted
from the wavelet coefficient can be used as a supple-
mentary feature, combining with the texture feature
of the original image can improve the classification
effect. By comparing the commonly used wavelet
bases, it can be found that the coif3 wavelet coeffi-
cient texture combined with the original image tex-
ture will have the best performance. Compared with
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the original image texture feature, its accuracy rate
increases by 3.8%, the sensitivity increases by 4.8%,
the specificity increased by 1.2%, and a better detec-
tion effect was achieved.

The results show that the texture feature combined
with wavelet decomposition is an effective stubble
detection feature. Compared with the previous sin-
gle image features, the fusion feature detection in this
article has a higher accuracy rate. It provides a model
reference for the detection of stubble of different crops,
and a reliable technical support for the subsequent vis-
ual navigation of residual film recovery. It is worth not-
ing that the speed of stubble detection using this type
of fusion feature is slow. Our future work will focus on
optimizing the detection algorithm to reduce the detec-
tion time.
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