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Abstract 

Background:  Forest canopies are highly sensitive to their growth, health, and climate change. The study aims to 
obtain time sequence images in mix foresters using a near-earth remote sensing method to track the seasonal varia-
tion in the color index and select the optimal color index. Three different regions of interest (RIOs) were defined and 
six color indexes (GRVI, HUE, GGR, RCC, GCC, and GEI) were calculated to analyze the microenvironment difference. 
The key phenological phase was identified using the double logistic model and the derivative method, and the phe-
nology forecast of color indexes was performed based on the long short-term memory (LSTM) model.

Results:  The results showed that the same color index in different RIOs and different color indexes in the same RIO 
present a slight difference in the days of growth and the days corresponding to the peak value, exhibiting different 
phenological phases; the mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), 
and mean absolute percentage error (MAPE) of the LSTM model was 0.0016, 0.0405, 0.0334, and 12.55%, respectively, 
indicating that this model has a good forecast effect.

Conclusions:  In different areas of the same forest, differences in the micro-ecological environment in the canopies 
were prevalent, with their internal growth mechanism being affected by different cultivation ways and the external 
environment. Besides, the optimal color index also varies with species in phenological response, that is, different color 
indexes are used for different forests. With the data of color indexes as the training set and forecast set, the feasibility 
of the LSTM model in phenology forecast is verified.
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Background
The the past half century saw a tendecy towards sustain-
able management of natural and artificial forests in many 
countries around the world. The greatest achievements 
in the field of forest policy took place in the European 
Union and the United States [1], where many institutions 
aim at promoting the effective use of forests. Countries 
in Europe have been making joint efforts to protect Euro-
pean forests since 1990. Those include the consolidation 
of funds for forest management, a fight against illegal 
logging, and awareness campaigns aimed at drawing 

attention to the social aspects of forestry and promoting 
the role of forests in green economies [2, 3]. The U.S. For-
est Service, a federal agency in natural resource conserva-
tion, provides guidance on national forests, grassland and 
aquatic ecosystems to maintain the health, diversity, and 
productivity of forests and grasslands to meet th needs of 
present and future generations [4]. Reforestation in the 
United States began with Henry Hardtner in 1912, who 
bought out the deforested areas for replanting, assum-
ing that commercial crops still can be grown there after 
60 years of recovery [5]. As an initiator of forest conser-
vation and reforestation, Hardter invested heavily in for-
est research and involved many other scientists. One of 
them was W.R. Mattoon, who drew up a preliminary plan 
for forest thinning experiments and wildfire protection in 
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1913. Henry Hardtner became a Father of Southern For-
estry in 1917, a head of the Natural Resources Conserva-
tion Commission, and a successful legislator in Louisiana. 
Hardtner was one of the first people to take advantage of 
reforestation and sustainable yield measurement tech-
niques and establish ties with the U.S. Forest Service and 
Yale’s Forestry School [6].

In most cases, institutions for forest conservation seek 
to facilitate sustainable development and solve problems 
associated with natural forest ecosystems. Meantime, 
the artificial forests also have the potential to become an 
important part of sustainable development in industrial 
areas, where anthropogenic impacts have a strong effect 
on the environment [7]. Man-made forests are encoun-
tering various adverse factors such as single tree species, 
insufficient soil fertility, weak ability to resist plant dis-
eases and insect pests as well as water and soil loss caused 
by human interference and unbalance of nutrient income 
and expense in the forest ecosystem caused by emigra-
tion of a large amount of biomass, resulting in a gradually 
degraded forest environment. Forest canopy can regulate 
photosynthesis and its related ecosystem processes and is 
highly sensitive to its growth and health as well as climate 
change. Therefore, monitoring the phenological dynam-
ics of forest canopies is of great significance to mastering 
forest growth status and predicting climate change.

Much labor is required to acquire the earth’s phe-
nology records of forests. To this end, satellite remote 
sensing technology was developed and has gradu-
ally become a mainstream method to monitor canopy 
phenology, which can achieve phenological observa-
tion on regional and global scales. However, monitor-
ing plant phenology using satellites has always been 
restricted because its spatial scale and observation 
time are quite different from the artificial observation 
data on the earth, and it is affected by external factors 
like clouds and atmosphere [8]. Also, this method has 
insufficient spatial resolution and low revisit frequency 
defect [9–12], thus making it more difficult to obtain 
precise, abundant, and valuable phenological phases of 
vegetation. This problem is even more serious in man-
made forests in urban areas. There are many high-rise 
buildings and scattered green plants in the city, so it is 
difficult to use publicly available satellite data for iden-
tification [13–15]. In contrast, near-earth remote sens-
ing technology monitors the phenological dynamics of 
forest vegetation with a camera mounted on a tower 
with a height of not greater than 40  m, which has the 
advantages of high temporal resolution and moderate 
spatial scale [16]. Since near-earth remote sensing has 
advantage like automatic high-frequency measurement, 
high-quality images, and low cost, digital repeat pho-
tography has become an important means to observe 

forest phenology in  situ [17–21], which makes up the 
gap between the phenological variables estimated 
by satellite and the field observation data [18]. Near-
earth remote sensing is a technology that continuously 
obtains images of the canopy in a season and extracts 
the phenology and growth status by using the red, 
green, and blue (RGB) color information contained in 
these images [14, 19, 20].

At present, most camera-based phenology studies only 
focus on a single region of interest (ROI) in the image to 
track vegetation phenology and consider this region as a 
reference for the average behavior of the entire ecosystem 
[19–21]. Few studies have used multiple ROIs to evalu-
ate phenological differences between different species 
or even different individuals in the same canopy image 
[22]. Besides, there is no unified conclusion on the opti-
mal color index for monitoring the phenological change 
of canopy [23]. So far, only the random forest regression 
model is used to predict the yield of crop vegetation [24] 
and transpiration of leaf area [25], and forest fires are 
predicted based on the diagonal recurrent neural net-
work (DRNN), but no predictions have been made in 
phenological studies.

From the aforesaid, three problems were discussed in 
this paper: (1) the growth status of the entire forest will 
not be well reflected if only a single ROI is studied, and 
there may be different micro-ecological environments 
in the forest canopy; (2) although there are differences 
among different color indexes, they may all reflect the 
forest phenology, and the optimal one depends on tree 
species; (3) based on years of experience, people who cul-
tivate man-made forests will provide different amounts 
of forest nutrients, such as irrigation water, which will 
trigger different changes in their internal physiologi-
cal mechanism. In this case, the escalation of pests and 
diseases in the microenvironment around the forests is 
greatly nurtured due to the waste of nutrients and water 
loss. The can be attributed to the inability to accurately 
identify much-needed nutrients in different locations. In 
this study, near-earth remote sensing monitoring method 
is used to extract image data from the experimental base 
in Louisiana in the southern part of the United States for 
purposes as follows: (1) to observe the seasonal varia-
tion characteristics of the color index at the same posi-
tion and different positions according to camera images, 
and understand the canopy growth at different positions 
and the differences between different color indexes; (2) to 
select the optimal color index and determine the key phe-
nological phase based on the double logistic model and 
the derivative method, and realize phenology forecast 
based on the long short term memory (LSTM) model. 
This is conducive to understanding the growth at differ-
ent positions, achieving scientific and precise irrigation, 
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the addition of nutrients, and other factors affecting 
healthy growth. Meanwhile, it provides a theoretical basis 
for more scientific cultivation.

Methods
Overview of the study area
This study was carried out in Louisiana (N32.45°, 
W91.97°), which is located along the Gulf of Mexico, bor-
dering Arkansas in the north, Texas in the west, Missis-
sippi in the east, and the Gulf of Mexico in the south (see 
Fig.  1a). It is one of the main producing areas of wood, 
paper products, and wooden boards in America. The for-
est area is 590 hm2, accounting for 47% of the land area 
of the state. This state is in the subtropical moist mon-
soon climate zone, and the average growth period is 
220–320 days.

Forests cover about 50% of Louisiana’s land area and 
make up more than 15 million acres, of which more than 
1 million acres are artificial stands [26]. Private non-
industrial landowners own 81% of the state forest land, 
while forestry enterprises and the government own 10 
and 9%, respectively. Landowners in Louisiana plant 
more than 130 million seedlings each year to restore the 
forest area. Figure 1b shows the main types of forests in 
the state. The dominant forest types appear to be conif-
erous forests, such as loblolly/shortleaf pine (yellow), lon-
gleaf/slash pine (red), and mixed oak/pine (orange area) 
forests and deciduous veegetation like the Oak-Gum-
Cypress (green) [27].

There are several differences between natural and man-
made forests. Natural ecosystems have a diverse range 

of plant species and result from a spontaneous natu-
ral response. Man-made forests are limited and require 
human intervention. Natural forests are characterized by 
genetic diversity, complex food chains, efficient nutrient 
cycling, and ecological continuity. Artificial habitats are 
less resistant to climatic and biogenic changes and may 
perish without the supply of artificial fertilizers. The food 
chains in artificial forests are simple and often incom-
plete because other species are killed as pests and weeds.

Data acquisition
Oak was selected as a monitoring object in mix forest 
of Caldwell (Louisiana) which had 52.7 kha of natural 
and man-made forests. A commercial web camera (DS-
2DE7223IW-A/C) was used as the near-earth remote 
sensing device to obtain the time sequence images. 
The camera was mounted at a height of 25 m above the 
ground at the upper end of the flux tower in the center of 
the forest (facing northeast). The image sensor was 1/2.8 
progressive scan CMOS, the infrared effective range was 
150 m, and the camera operation mode was set to "auto-
matic mode" for exposure and white balance adjustment. 
Since the mounting position is high and easily affected 
by external environments such as wind and rain, and the 
inevitable movement may lead to changes in the field 
of view, azimuth calibration and image registration are 
required. First, the camera was turned to 0, and then 
returned to the original azimuth after 1–2 turns, then azi-
muth calibration was completed. Next, image sequences 
were registered based on the area matching method, 
and the time display format was adjusted to facilitate the 

Fig. 1  (a) Geographical area of the study. (b) The forest types of Louisiana: orange - OakPine; yellow - loblolly-shortleaf Pine; green 
- OakGum-Cypress; red - longleaf-slash Pine; white areas - nontyped
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formation of the time sequence. To minimize the possi-
ble effects of different solar angles, the range of shooting 
time was from 7:05 A.M. to 17:05 P.M. every day with an 
interval of 1 h, and the images were saved in an uncom-
pressed format as JPEG with a resolution of 2560 × 1440 
pixels. The original images were transmitted through the 
wireless network and stored in the server according to 
the shooting time and place for subsequent arrangement. 
This study involvs a total of 4260 images made in Novem-
ber 01, 2017, to December 31, 2018.

Image processing
1. Calculation of color indexes
The image quality is sometimes adversely affected by var-
iable light conditions, rain, snow, fog, or frost on the cam-
era window. Therefore, before image analysis, no archive 
images are selectively edited or manually enhanced, and 
the time sequence generated by image analysis is not 
smoothed or filtered, to maintain objectivity to the great-
est extent.

In this study, three regions of interest (ROIs, Fig.  1) 
were selected in each image, and many images on an 
hourly interval were processed in pyCharm compiler 
according to the algorithm "image processing tool" 
designed by python language, and the brightness values 
of R, G, and B of ROIs of each frame were extracted from 
the images. In order to reduce the color balance changes 
affected by fog and shadow, the mean value method was 

used to average the RGR brightness values of all images 
every day in a period of 1 d, and the time sequence plot of 
six color indexes, namely, GRVI, HUE, GGR, RCC, GCC, 
and GEI, were calculated and obtained to quantify the 
dynamics of vegetation canopy (Table 1).

2. Time extraction of vegetation growth characteristics
In this paper, the double logistic model (Eq.  1) and the 
curve-based derivative method (Eq.  2) were used to 
smooth and fit the seasonal variation curve of color 
indexes. The extreme point of the rate of change of cur-
vature was taken as the phenological turning point of the 
community [28], corresponding to the start of the grow-
ing season (SOS) and the time point of exuberance [29], 
the start of corruption stage (COS) and the end of the 
growing season (EOS), respectively.

wherein: g(t) is the fitted value of color indexes; t is the 
day of the year (DOY); m is the minimum value and w is 
the maximum value in a year; parameters S and A repre-
sent the inflection points of start and end (SOS, EOS) of a 
year, respectively; mS and mA are the velocities at points 
S and A, respectively.

(1)

g(t) = (m−W )

{

1

1+ exp(−mDx(t − S))

+
1

1+ exp(−mAx(t − A))

}

− 1+W

Table 1  Equations of color indices measured

R, G, and B represented the brightness of red, green, and blue channel, respectively; Imax and Imin represented the maximum and minimum of R, G and B, respectively

Color index Equation References

Ratio greenness index GGR = G/R [19]

Green chromatic coordinate GCC = G/(R + G + B) [20]

Green excess index GEI = 2G − (R + B) [20]

Red chromatic coordinate RCC = R/(R + G + B) [21]

Green red vegetation index GRVI = (G − R)/(G + R) [22]

Hue HUE = (B − R)/(Imax − Imin)x60+ 120

G = Imax

HUE = (B − R)/(Imax − Imin)x60+ 240

B = Imax

HUE = (G − B)/(Imax − Imin)x60+ 340

G < B

HUE = (G − B)/(Imax − Imin)x60

other

[23]

Fig. 2  Region of interest within the image in an year : (a) spring; (b) summer; (c) autumn; (d) winter
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This curvature is related to the change of color indexes. 
The rate of change of curvature can explain the change 
speed and reflect each change node in the growth stage 
and the corruption stage. Based on the derivative formula 
of the curve as follows:

wherein: g(t)
′

=
dg(t)
dt

 // is the first-order derivative of 
g(t) ; g(t)" = d2g(t)

d2t
 // is the second-order derivative of 

g(t).
Digital images obtained by cameras can be used to visu-

ally explain seasonal changes in vegetation: in winter and 
early spring, there were only bare trunks and other natu-
ral phenomena, when the vegetation was in the dormant 
period, and the color of the image was mainly that of the 
trunks (Fig. 2a); with the change of external environment 
such as temperature, vegetation began to grow (SOS), and 
the digital image dominated by the color of trunks was 
gradually replaced by scattered green. After the vegetation 
entered the exuberant growth period, green becomes the 
dominant tone of the image (Fig. 2b); with time, the leaves 
gradually turned yellow, the vegetation gradually entered 
the corruption stage, and the color of the image gradually 
changed from green to brownish-yellow (Fig. 2c); Until the 
end of the growing season (EOS) of vegetation, the digital 
image shows the color of trunks again (Fig. 2d).

LSTM model
A recurrent neural network (RNN) is a kind of recursive 
neural network, which takes a sequence as input, recurs 
in the development direction of sequence and all nodes 
(recurrent units) are connected in a chain. RNN is also one 
of the deep neural network learning models, which can 
learn the long-term dependence. Long short term mem-
ory (LSTM) is a machine learning algorithm with recur-
rent neural network architecture, which is a special form 
of RNN. LSTM is essentially consistent with the principle 

(2)p =

∣

∣

∣

∣

∣

∣

g(t)′′

(

1+ g(t)′2
)
3

2

∣

∣

∣

∣

∣

∣

of RNN, but the former is provided with three gate con-
trols, namely, forgetting gate, in-gate, and out-gate. In other 
words, a memory block is used to replace the basic unit of 
conventional RNN to protect and control the unit state, 
and a "memory cell state" is introduced to store it for a long 
time (Fig.  3) [30, 31]. A phenological canopy color index 
prediction model based on LSTM is constructed accord-
ing to the basic principle. In the prediction of phenological 
canopy color index based on the LSTM model, ft is the con-
trol function of forgetting gate, which is denoted as

where Wf  is the weight matrix of the true value of the 
phenological canopy color index of forgetting gate; xt is 
the input at time t ; ht−1 is the predicted value of the phe-
nological canopy color index at the previous time; bf  is 
the deviation vector of forgetting gate; and σ is the activa-
tion function Sigmoid.
it is the control function of in-gate, which is similar 

to ft and used to select the newly input phenologi-
cal canopy color index data by changing the value of 
the weight matrix, thereby preventing the phenologi-
cal canopy color index data with low correlation from 
being added to the memory cells. It is denoted as:

wherein: Wi is the weight matrix of the true value of phe-
nological observation color index of in-gate; ht−1 is the 
state of hidden layer at the previous time; [ht−1, xt ] is a 
long vector connected by two vectors; bi is the deviation 
vector of in-gate.

The phenological canopy color index vector at the 
current time is selected, converted and stored. The 
storage vector of memory cells at this time is to mul-
tiply the storage vector at the previous time and the 
newly input color index information vector at the cur-
rent time with the control function vectors of forgetting 
gate and in-gate element by element, so as to realize the 
memory storage of phenological canopy color index 
information for a long time. Ct is used to update the cell 
state, that is, to memorize the historical travel index 
with strong correlation. This variable adds new candi-
date variables by abandoning part of the memory at the 
previous time, thereby realizing continuous update and 
storage, which is denoted as:

wherein: ⊙ is the symbol of vector element multiplica-
tion; tanh indicates that the value is scaled to the range 
of [−1,1] by tangent hyperbolic function. Ct  is the tanh 

(3)ft = σ(Wf · [ht−1, xt ]+ bf )

(4)it = σ(Wi · [ht−1, xt ]+ bi)

(5)Ct = tanh(Wc · [ht−1, xt]+ bc)

(6)Ct = ft ⊙ Ct−1 + it ⊙ Ct

Fig. 3  LSTM Structure of hidden layers
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function conversion value of the actual value of the color 
index at the current time, which is taken as the color 
index vector at the current time; Wc is the stored value 
weight matrix of phenological canopy color index at the 
current time; bc is the deviation vector at the current 
time.

Output control of the predicted value of the color 
index at the current time through the control function 
Ot of out-gate is denoted as:

wherein: WO is the output weight matrix; bO is the devia-
tion of out-gate.

A dataset consists of 4260 images collected over a 
period of 14  months. It was divided into a training set 
(70%), a testing set (20%) and a verification set (10%). The 
depth of the LSTM network was set to 2. The weights 
are initialized to the range of [−0.01, 0.01], and the dis-
tribution is uniform. The learning rate is set to 10–5 and 
decreases exponentially during training. The analysis 
involved assessing the accuracy of image recognition 
on an expanded set of 4260 frames. The trained model 
is evaluated using a verification set (which is 10% of the 
total data).

Phenology forecast
A total of 14 monthly color index data instances from 
November 2017 to December 2018 were selected as the 
optimal color index. The selected data set was relatively 
complete and there was no missing value. Therefore, the 
calculation could be directly performed with the origi-
nal data. After complete raw data was obtained, Jupyter 
Notebook was operated based on Python3.6 software. 
First, the required database was introduced to define the 
data and establish data sets. Next, the data was read and 
normalized. Finally, the model was constructed to divide 
the data sets into two types, i.e., the data of 10  months 
from November 2017 to August 2018 was used as the 
training set for the training model, and the data of 
8–12 months in 2018 was used as the test set.

Model evaluation
To accurately evaluate the forecast effect of the LSTM 
model, the mean squared error (MSE), the root mean 
squared error (RMSE), the mean absolute error (MAE), 
and the mean absolute percentage error (MAPE) were 
used as the basis to judge the forecast effect of LSTM 
model [29, 32, 33].

(7)Ot = σ(WO · [ht−1, xt ]+ bO)

(8)ht = Ot ⊙ tanh(Ct)

where n is the total amount of data; yt is the true value; yt  
is the predicted value.

Results
Comparison of the same color index in different ROIs
Six color indexes were extracted from different ROIs. 
The results showed that the green–red vegetation index 
(GRVI), the hue (HUE), the specific green index (GGR), 
the green chromatic coordinate (GCC), and the abso-
lute green index (GEI) of the three ROIs could basically 
reflect the growth and corruption processes. The whole 
process corresponds to three stages of vegetation phe-
nology: the first stage is the rapid growth period, where 
the corresponding GRVI, HUE, GGR, GCC, and GEI 
all show a trend of rapid growth; the second stage is the 
mature period, where color index remains relatively sta-
ble and shows slight fluctuation; the third stage is the 
corruption period, where the corresponding GRVI, HUE, 
GGR, GCC, and GEI drop to the lowest value, while the 
red chromatic coordinate (RCC) shows the opposite 
trend.

As shown in Fig. 4, the same GRVI, HUE, GGR, RCC, 
GCC, and GEI indexes in three different ROIs changed 
significantly from each other. Data Table 2 further proves 
that the same color index in different ROIs is slightly dif-
ferent. In terms of GRVI, compared with ROI 2 and 3, 
ROI 1 is 9  days slower in SOS, 13  days slower in MOE 
and 4  days more in LOS, and EOS is the same for ROI 
1 and ROI 3; as for HUE, SOS and EOS are the same for 
ROI 1, 2 and 3, while ROI 1 is 13  days slower in MOE 
and 13 days more in LOS compared with ROI 2 and 3; as 
for GGR, MOE and EOS are the same for ROI 1, 2 and 3, 
while ROI is 9 days slower in SOS and 9 days less in LOS 
compared with ROI 2 and 3; as for RCC, SOS, MOM, and 
LOS are the same for ROI 1, 2 and 3, while EOS is the 
same for only ROI 2 and 3; as for GCC and GEI, SOS is 
the same for ROI 1, 2 and 3, while MOE, LOS and EOS 

(9)MSE =
1

N

N
∑
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(yt − yt)
2
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√
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Fig. 4  Analysis of the same indicators for the three areas of interest
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are different among them. This indirectly reflected the 
differences in the micro-ecological environment caused 
by different positions in the same forest farm, which was 
in line with the differences in corruption speed and color 
of man-made forests.

Comparison of different color indexes in the same ROI
One pair of data from six color indexes in ROI was 
selected for extraction and analysis, and the change 
trends of five green chromatic coordinate indices 
were consistent, showing a unimodal curve change 
that increased first, then remained stable, and finally 
decreased, whereas RCC, in contrast, conformed to 

the growth phenological changes, but the peak occur-
rence time was different. The results in Table  3 and 
Fig.  5 showed that the SOS of GRVI, GGR, RCC and 
GCC, HUE, and GEI was different; the MOE of GRVI, 
RCC, and HUE is the largest on Day 145 (May 25), 
while that of GGR occurs on Day 132 (May 12), and 
that of GEI and GCC occurs on Day 108 (April 18), 
which is slightly earlier; in terms of LOS, GGR, GCC, 
and GEI have different SOS and same LOS, and the 
LOS of HUE changes greatly; The lowest value data of 
six color indexes were analyzed, and it was found that 
their EOS was the same and conformed to the local 
growth situation. The five-color indexes showed great 
differences in variation amplitude. In the figure, GCC 
is consistent with GEI, but the amplitude of GEI is 
greater than GCC (the variation amplitude can more 
clearly indicate subtle changes), so GEI is selected for 
phenological analysis.

Time node extraction of vegetation growth characteristics
ROI 1 and widely varying GEI color index were selected 
for phenological analysis. Although affected by daytime 
differences of environmental factors, smooth fitting 
(Fig.  6) was required to obtain smoothing parameters: 
p = 0.032, p < 0.05, fitting residual error RMSE: 2.255, 
R^2 = 0.9912. GEI showed obvious seasonal variation. 
According to Eqs.  (1) and (2), it was concluded that 
the SOS of the forest was DOY at the beginning when 
the slope of the curve rises, and similarly, the EOS was 
DOY at the declining end of the curve (Fig. 7). SOS and 
the time point of exuberance (Mojzes et al. 2003), COS, 
and EOS are Day 67, Day 108, Day 288, and Day 337 of 
the year, respectively. Before Day 67 of the year, the for-
est was in a period of dormancy, and GEI was affected 
by snowfall, and the overall change trend was relatively 
flat; after that, affected by the temperature rise and pre-
cipitation increase, the forest gradually germinated, 
and GEI increased with it, and vegetation SOS began; 
GEI reached a high value until Day 108 of the year 
when the forest was exuberant [33], which lasted about 
57 days until October 15 (Day 288), when COS began. 
Since then, forest activities gradually weakened as the 
temperature declined, and GEI also decreased; on Day 
337 of the year, EOS ended and all forests turned yel-
low, and GEI returned to a low value again.

Table 2  Day of year (DOY) in different ROIs

ROI Index SOS MOE LOS EOS

1 GRVI 91 145 54 337

2 82 132 50 330

3 82 132 50 337

1 HUE 67 145 78 337

2 67 145 78 337

3 67 132 65 337

1 GGR​ 91 132 41 337

2 82 132 50 330

3 82 132 50 337

1 RCC​ 91 145 54 337

2 91 145 54 330

3 91 145 54 330

1 GCC​ 67 108 41 337

2 67 113 46 334

3 67 117 50 337

1 GEI 67 108 41 337

2 67 113 46 334

3 67 113 46 337

Table 3  Growth situation in the same ROI

Index SOS MOE LOS (DOY) EOS

GRVI 91 (April 1) 145 (May 25) 54 337 (December 3)

GGR​ 91 (April 1) December 12 41 337 (December 3)

RCC​ 91 (April 1) 145 (May 25) 54 330 (November 26)

GCC​ 67 (March 8) 108 (April 18) 41 337 (December 3)

HUE 67 (March 8) 145 (May 25) 78 337 (December 3)

GEI 67 (March 8) 108 (April 18) 41 337 (December 3)

Fig. 5  Analysis of different indexes in the same ROI
(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Construction of LSTM model
In order to observe the forecasting results more intui-
tively, the actual value and predicted value of the LSTM 
model were visualized (Fig. 8). The blue dotted line rep-
resented the fitting effect of the model on the training 
set, and the left part represented the forecasting results 

of the model on the test set. LSTM model showed a 
trend that the actual value and the predicted value 
were relatively close (Fig.  9), indicating the feasibility 
and effectiveness of the GEI color index forecast. MSE, 
RMSE, MAE, and MAPE were 0.0016, 0.0405, 0.0334 
and 12.55%, respectively. It could be found from the 

Fig. 6  Smooth fitting chart



Page 11 of 15Guan et al. Plant Methods          (2021) 17:104 	

results (Figs. 10 and 11) that the model prediction was 
successful.

The data inside each cell varies with the model win-
dow size. The window size represents the amount of 
past data entered into the model, which is equal to 
the number of cells in each LSTM cell. As for future 
forecasts, the window size is set to be 30 days, that is, 

using 30 days of data as input and the value from Day 
31 as the predicted value. According to stepwise train-
ing speculation, the color index data on the nth day is 
subjected to training and learning in sequence, the 
numerical value at the n + 1st moment is predicted, 

Fig. 7  Determination of time sequence and phenological phase of GEI measured value and fitted value

Fig. 8  Trend chart of training set and test set

Fig. 9  True value and predicted value

Fig. 10  Residual plot of LSTM model
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and the error between the actual value and the pre-
dicted value during the training period is minimized to 
learn the corresponding weight. For the data predicted 
for the next 60  days, that is, January and February of 
the second year, the 30-step prediction window is used 
to input 30  days of data, and the data for the follow-
ing one day is used as output. The time sequences of 
input and output remain unchanged. The predicted 
data is obtained in a Notebook environment to draw 
the forecast results (Fig.  12). The results showed that 
the color index of the growth situation in the second 
half-year gradually rises 60 days ago, which is similar to 
the growth trend in the first half-year of 2018, indicat-
ing that the model achieves a good forecast effect.

Discussion
This study found that there were slight changes in for-
est phenological growth studies for different ROIs, and 
different phenomena reflected by different color indi-
ces, and color indexes could be used as phenology fore-
cast indexes, which were consistent with our original 

hypothesis. To clarify this phenomenon, we extracted the 
same color index from three different ROIs and six color 
indexes from the same ROI and trained and predicted 
the optimal color index based on the LSTM model. The 
results showed that: (1) the color index of different ROIs 
has slight differences; (2) extraction and comparison 
of different color indexes for the same ROI of this for-
est indicate that GEI is more in line with the phenologi-
cal growth law; (3) the GEI color index is modeled and 
predicted based on the LSTM, which shows that the true 
value and the predicted value approximately tend to be 
consistent with the model evaluation index, and the pre-
dicted future value conform to the change of growth 
law. The results of our study as a whole showed that the 
same color index is slightly different in different ROIs, 
indirectly reflecting the different growth environments 
in each position, that is, the internal substances in the 
mechanism such as nutrition in the phenological canopy 
are different; secondly, compared with the color index in 
the same ROI, GEI is more in line with the phenologi-
cal canopy analysis, and can be used as the next forecast 
index of phenology.

The same color index in different ROIs shows differ-
ent effects, indicating the existence of a micro-ecological 
environment in different ROIs, which leads to the differ-
ence in chlorophyll production. The distance problem 
of the selected ROI and the external error caused by the 
influence of the camera orientation on the image are not 
excluded. Such difference may be due to unified culti-
vation or irrigation method, and therefore unbalanced 
nutrient intake occurs in different ROIs. The six-color 
indexes in the same ROI could reflect the forest pheno-
logical growth phenomenon. By contrast, it is found that 
both GEI and GCC conform to the forest growth law in 
this study. GEI is selected in this study after amplitude 
comparison; previous studies have repeatedly indicated 
the existence of a microenvironment in forests. For exam-
ple, the analysis of high-frequency PhenoCam imagery 
revealed smaller uncertainty than phenology indicators 
obtained using satellite remote sensing [34]. The near-
surface time-series estimates for early spring were found 
to be in good agreement with estimates derived from the 
visual assessment of leaf-out and satellite remote sens-
ing data. In deciduous forests, the leaf area index meas-
urements in spring and autumn phenological transition 
dates are well extracted from digital photography [35]. 
By examining the aggragate effect of changes in leaf color 
(green) and canopy structure, it possible to reproduce the 
observed seasonal trajectory of canopy greenness. For 
this purpose, a scecial model has been built [35]. Consist-
ent with our research results, ROI at different positions 
present different color indexes, because the cultivation 
method and the surrounding environment will affect the 

Fig. 11  QQ plot testing of LASTM model

Fig. 12  Prognostic chart of color indexes in 2019
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growth of forests. It is thus found that the existence of a 
micro-ecological environment in forests can be reflected 
with color index observations.

The optimal color index varies with the ecosystem. For 
example, RCC was more useful than GCC in tracking the 
canopy photosynthetic phenology of the ENF ecosys-
tem [36]. GCC index was more suitable for monitoring 
the seasonal variation of Robinia pseudoacacia, but GCC 
was not sensitive to the seasonal variation of birch [37]; 
HUE was found to be the most suitable color index from 
the sensitivity of distinguishing leaf color index in digi-
tal images [38], and Sgreen and GEI showed a better cor-
relation with GPP than HUE in rubber plantations [39]; 
also, it was pointed out that HUE was not related to GPP, 
and is easily affected by white balance. RCC is considered 
to be more suitable for estimating the abscission period 
of evergreen forest [40, 41]; however, it was considered 
that GEI was more accurate than GCC in characterizing 
the seasonal variation of grassland [42]. Consistent with 
our findings, previous studies showed that the six color 
indexes could reflect the phenological growth period 
with slight differences, and appropriate color indexes 
should be selected according to the ecosystem of the tree 
species studied.

The trend of the true value and the predicted value pre-
dicted by the LSTM model was consistent, and the evalu-
ation model indexes showed that the model accuracy was 
high, and the GEI color index could be used as a phenol-
ogy forecast index of forest growth in the model predic-
tion. The random forest regression algorithm has been 
used for the prediction of environmental parameters and 
relative leaf area index of plant transpiration, as well as 
the prediction of non-contact and non-destructive chlo-
rophyll content [43]. The yield was predicted according to 
the vegetation indexes from the regression analysis sat-
ellite images [24, 44–46]. In this study, the LSTM model 
was first applied to forest phenology research, with color 
indexes as the indicator. The true value and the predicted 
value showed a good prediction trend, indicating that 
the error of the predicted value using the LSTM model 
was small. Throughout the prediction results from the 
LSTM model, there was a good fitting effect, which con-
formed to the trend of time sequence data. The predic-
tion in the second half-year also conformed to the trend 
of growth laws. This study has the following novel points 
and advantages. For the first time, the extraction and 
analysis of the same color index extracted from three dif-
ferent ROIs and six color indexes from the same ROI are 
presented. Secondly, in terms of forest prediction, the 
color index is used for phenology forecast based on the 
LSTM model. This indirectly reflects the difference of 
micro-ecological environment in different positions of 

the whole forest farm, indicating that the nutrients such 
as water needed in each position were also different, and 
different measures should be taken in different positions 
to achieve scientific cultivation and avoid waste. Our 
study still has its limitations and lacks internal physi-
ological mechanism research, highlighting the growth 
and health effects from the surface of the phenological 
canopy only. The next step will be to study the relation-
ship between the internal physiological mechanism and 
phenological canopy, as well as the relationship between 
the change of color indexes and the internal physiological 
mechanism.

Conclusions
The same color index has different effects in different 
ROIs, which indirectly reflects the existence of micro-
ecological environment in different positions of the 
whole forest farm, and then the required nutrient sub-
stances such as water are different, so the forest cannot 
be cultivated in a unified way. It is necessary to imple-
ment different measures in different positions, thereby 
avoiding waste; the six color indexes in the same ROI 
could reflect the forest phenological growth rule, but 
different color indexes are slightly different, and the 
appropriate color index should be selected for phe-
nological analysis of individual species. In particular, 
this study shows that color index data is used as time 
sequence data set based on LSTM model, and the data 
is divided into the training set and the forecast set to 
obtain good forecast results, and the phenology fore-
cast results in the second half-year conform to the 
growth trend and data. This study provides a feasible 
way for studying the relationship between the seasonal 
variation of vegetation communities and the health 
factors at different positions and provides an effective 
means for diagnosing seasonal evolution characteris-
tics of mix artificial forests and diagnosing the rapid 
response of ecosystems to climate change on the local, 
regional and global scales.
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