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Abstract 

Background:  Fractional vegetation cover (FVC) is an important basic parameter for the quantitative monitoring of 
the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Based on unmanned aerial vehicle (UAV) acquisition 
of measured data and matching it with satellite remote sensing images at the pixel scale, the proper selection of driv-
ing data and inversion algorithms can be determined and is crucial for generating high-precision alpine grassland FVC 
products.

Methods:  This study presents estimations of alpine grassland FVC using optimized algorithms and multi-dimensional 
features. The multi-dimensional feature set (using original spectral bands, 22 vegetation indices, and topographical 
factors) was constructed from many sources of information, then the optimal feature subset was determined based 
on different feature selection algorithms as the driving data for optimized machine learning algorithms. Finally, the 
inversion accuracy, sensitivity to sample size, and computational efficiency of the four machine learning algorithms 
were evaluated.

Results:  (1) The random forest (RF) algorithm (R2: 0.861, RMSE: 9.5%) performed the best for FVC inversion among 
the four machine learning algorithms driven by the four typical vegetation indices. (2) Compared with the four typical 
vegetation indices, using multi-dimensional feature sets as driving data obviously improved the FVC inversion accu-
racy of the four machine learning algorithms (R2 of the RF algorithm increased to 0.890). (3) Among the three vari-
able selection algorithms (Boruta, sequential forward selection [SFS], and permutation importance-recursive feature 
elimination [PI-RFE]), the constructed PI-RFE feature selection algorithm had the best dimensionality reduction effect 
on the multi-dimensional feature set. (4) The hyper-parameter optimization of the machine learning algorithms and 
feature selection of the multi-dimensional feature set further improved FVC inversion accuracy (R2: 0.917 and RMSE: 
7.9% in the optimized RF algorithm).

Conclusion:  This study provides a highly precise, optimized algorithm with an optimal multi-dimensional feature set 
for FVC inversion, which is vital for the quantitative monitoring of the ecological environment of alpine grassland.

Keywords:  Fractional vegetation cover (FVC), Alpine grassland, Unmanned aerial vehicle (UAV) aerial imagery, 
Machine learning algorithms, Feature selection, Parameter tuning, Accuracy evaluation
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Introduction
Known as the “Third Pole” and “Water Tower of Asia”, the 
Qinghai-Tibet Plateau (QTP) plays a very important role 
in regulating climate and water resources in East Asia 
and is thus regarded as the trigger and amplifier of cli-
mate change in Asia and even the Northern Hemisphere 
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[76, 77]. As the main vegetation type on the QTP, alpine 
grassland has experienced serious degradation in the past 
few decades by the combined impact of climate warm-
ing, overgrazing, and rodent disturbance [17, 73]. Frac-
tional vegetation cover (FVC) is an ideal indicator for the 
dynamic monitoring of the vegetation condition of the 
alpine ecosystems on the QTP [60, 61, 33, 48]. Therefore, 
high-precision FVC assessment of the alpine grassland 
on the QTP is of great significance as it provides insight 
into ecological environment changes and their accompa-
nied influences [54, 82, 91].

Remote sensing technology has been widely used 
in FVC inversion at the regional scale. The inversion 
methods are generally divided into three categories: 
the regression model, the pixel dichotomy model, and 
machine learning algorithms. The regression model 
inverts FVC based on the statistical relationship between 
the vegetation index and measured data. Although this 
method is easy to implement, it is difficult to extend to 
other regions, owing to the limitations of the established 
model itself [25, 66]. The pixel dichotomy model gener-
ally determines FVC by dividing the surface features in 
the mixed pixel into vegetation and non-vegetation cat-
egories. However, it is difficult to find pure spectral pixels 
due to the restriction of the spatial resolution of remote 
sensing images [24, 38]; [79, 87]. Machine learning algo-
rithms include multiple linear regression (MLR), back-
propagation neural networks (BPNNs), support vector 
regression (SVR), random forest (RF), and a series of 
other algorithms [26, 39, 53]. The basic idea of machine 
learning algorithms is to invert FVC by simulating the 
intrinsic relationship between remote sensing informa-
tion and FVC [72]. Although many types of algorithms 
exist, it is still unknown which has the best inversion 
accuracy and computational efficiency for FVC inversion.

In addition to the algorithm, the selection of features 
from the remote sensing dataset also has a great impact 
on the FVC inversion accuracy, such as vegetation indi-
ces calculated from original spectral bands of the remote 
sensing data [23]. The normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), soil-
adjusted vegetation index (SAVI), modified soil-adjusted 
vegetation index (MSAVI), etc., are usually used [83]. To 
date, it is unknown whether other vegetation indices have 
a higher correlation with the FVC of alpine grassland 
than typical vegetation indices. Given the obvious dif-
ferences in the elevation of the QTP [92], there are great 
variations in the digital elevation model (DEM), slope, 
and aspect of the alpine grassland. The influence of these 
topographical factors, however, is neglected. Although it 
is considered that analysis driven by a multi-dimensional 
feature set including original spectral bands, various veg-
etation indices, and topographical factors can improve 

the FVC inversion accuracy of the machine learning 
algorithm, this still needs to be further explored as there 
are too many features in dataset and data redundancy 
will inevitably occur, leading to longer training time for 
the inversion model and overfitting [74, 88]. Therefore, 
it is essential to eliminate the redundancy of the multi-
dimensional feature set, which helps to improve the 
inversion accuracy and calculation efficiency of alpine 
grassland FVC.

No matter which kind of FVC remote sensing inversion 
method is utilized, high-precision measured data of FVC 
is necessary for calibration and verification. The meas-
ured data mainly depends on the field survey. Although 
traditional survey can obtain high-precision FVC at the 
quadrat scale, it consumes a lot of manpower and mate-
rial resources. Therefore, this causes two problems with 
the current FVC remote sensing inversion method [51, 
89]. On one hand, most FVC inversion studies have lit-
tle or no measured data [8, 57]. On the other hand, the 
obtained FVC measured data at the quadrat scale by tra-
ditional field survey methods does not match the spatial 
scale of the satellite remote sensing image pixels ([10, 20, 
75, 90]. Consequently, there is urgency to find an effi-
cient field survey method that is both available at a large 
scale and matches satellite remote sensing image pixels 
at the spatial scale [12, 56]. In recent years, the gradual 
maturity of unmanned aerial vehicle (UAV) technology 
has brought new opportunities. Due to the lower flying 
height of a UAV, it is not disturbed by atmospheric fac-
tors and can take ultra-high-resolution aerial images. In 
addition, a UAV is portable and inexpensive. It is suit-
able for FVC field survey under harsh ecological environ-
ments [52, 68, 16, 81]. It has been proven in a previous 
study that UAV technology can not only solve the prob-
lem of the mismatch between the FVC measured data 
and the pixel scale of satellite remote sensing images, but 
can also access massive high-resolution data with high 
efficiency [13].

The objective of this study was to find a high-precision 
and high-efficiency FVC survey and inversion method 
for analyzing alpine grassland FVC to use in future stud-
ies with a focus on: (1) calibrating and evaluating differ-
ent FVC inversion methods (regression model methods, 
the pixel dichotomy model, and machine learning algo-
rithms) based on mass FVC measurement data obtained 
by UAV; (2) constructing a multi-dimensional feature 
set including original spectral bands, various vegetation 
indices and topographic factors, and then analyzing the 
influence of different features on the FVC inversion accu-
racy through three different feature selection algorithms; 
(3) tuning parameters for the four machine learning algo-
rithms based on the grid search method to construct 
an optimized regression model; and (4) quantitatively 
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analyzing the inversion accuracy, computational effi-
ciency, and sensitivity for the sample size of the four 
machine learning algorithms (MLR, BPNNs, RF, and 
SVR).

Study area and data source
Study area
The source area of the Yellow River Basin (SYRB) is 
located in the northeastern part of the QTP and is the 
birthplace of the Yellow River, China’s most important 
freshwater resource. It spans six states and 18 counties in 
Qinghai, Sichuan, and Gansu provinces, and its total area 
is approximate 132,000 km2 (Fig.  1). Since the average 
altitude is greater than 4000 m, this area has the environ-
mental characteristics of a low annual average tempera-
ture, a large daily temperature difference, long sunshine 
time, strong solar radiation, and obvious seasonal precip-
itation. The SYRB is sensitive to climate change, and the 
ecological environment is fragile. The vegetation types in 
the SYRB are mainly alpine meadow and alpine steppe, 
the latter accounting for about 80% of the total land area, 
which is a microcosm of the QTP. Therefore, high-pre-
cision FVC inversion analysis of alpine grassland in the 
SYRB is vital for local ecological protection and benefits 
the entire QTP.

Data source and data preprocessing
Field data based on UAV imagery
In this study, 91 observation sites were set in the SYRB 
(Fig.  1), and field aerial surveys were carried out from 
July to August 2015. The 91 observation sites contained 
different grassland types as well as different underlying 

surfaces and environmental conditions, and thus they 
were representative. Our UAV aerial photography opera-
tion system, Fragmentation Monitoring and Analysis 
with aerial Photography (FragMAP) [81] was employed 
in each observation site to set the UAV flight route. Each 
observation site contains a route covering the entire 
monitoring plot and 16 aerial points (Fig.  2). Accord-
ing to the preset parameters to start autonomous flight 
and aerial photography at a height of 20  m according 
to the flight route. The spatial resolution of the aerial 
images was about 1 cm, and the coverage of each aerial 
image was approximately 30  m × 30  m, which matched 
the pixel coverage of the Landsat 8 satellite image. The 
ground truth data is the FVC obtained from each aerial 
images. The Phantom 3 Professional was used for aerial 
photography which is a vertical takeoff and landing drone 
manufactured by SZ DJI Technology Co., Ltd. (Shenzhen, 
China) that can accurately carry out flight and hovering 
functions. The GPS/GLONASS dual satellite position-
ing module was used. The horizontal and vertical accu-
racy are approximately 1.5 and 0.5 m respectively under 
hovering, and the gimbal control accuracy is 0.03°. The 
onboard camera of the UAV was used for photography, 
which has 12 million camera pixels that can generate a 
central projection containing three spectral bands of red, 
green, and blue (RGB); the images were then saved in 
joint photographic experts group (JPEG) format. During 
testing, the UAV was flown higher than 4000 m above sea 
level in the STRB, and the drone could hover for up to 
20 min with its maximum flying height exceeding 300 m.

Previous studies have shown that the threshold seg-
mentation method based on the Excess Green Index 

Fig. 1  Study area and distribution of observation sites



Page 4 of 18Lin et al. Plant Methods           (2021) 17:96 

(EGI = 2G-R-B, where G, R, and B respectively represent 
the gray values of the green, red, and blue bands in the 
image) had good accuracy during the FVC extraction of 
aerial images [11, 12]. Therefore, the EGI threshold seg-
mentation method was also used in this study to extract 
FVC information from aerial images. The extraction 
process of FVC from aerial images was as follows. First, 
the EGI of each pixel of aerial image was calculated, and 
an initial value (ranging from 40 to 160 based on our 
experience) of the EGI threshold was set. And the EGI 
threshold is determined based on the Java-based FVC 
Estimator software [12], it is not fixed. Second, if the EGI 
value of a pixel was greater than the threshold, it was 
classified as a vegetation pixel, otherwise it was classi-
fied as a non-vegetation pixel. Third, the result of the seg-
mentation was superimposed with the original image and 
judged according to whether the segmentation result was 
accurate by visual interpretation or not. If the segmenta-
tion result was not accurate, the initial threshold value 
was adjusted until the segmentation result was accurate. 
Finally, the percentage of vegetation pixels out of the total 
number of pixels was calculated and determined as the 
FVC of the image [11, 12] (Fig. 3).

Remote sensing data
Landsat 8 Operational Land Imager (Landsat 8 OLI) 
images were downloaded from the United States Geo-
logical Survey (USGS) Earth Explorer website (https://​
earth​explo​rer.​usgs.​gov/). In order to ensure that the 
acquisition time of the images were consistent with the 

field investigation time, the images with the cloud cover 
less than 5% were selected from July 1 to August 31, 2015. 
A total of 20 Landsat 8 images were needed to cover 
the entire SYRB. Orthorectification of Landsat 8 images 
were conducted using the rational polynomial coefficient 
(RPC) Orthorectification Using Reference Image tool in 
ENVI 5.3 (Exelis Visual Information Solutions, Boulder, 
CO, USA) based on the 12.5 m Advanced Land Observ-
ing Satellite (ALOS) DEM with an error of less than 0.5 
pixels. The Radiometric Correction tool in ENVI 5.3 
(Exelis Visual Information Solutions, Boulder, CO, USA) 
was used for radiation calibration, and the original digital 
number (DN) value of the Landsat 8 images were con-
verted into spectral reflectance values. Atmospheric cor-
rection was performed based on the Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
algorithm. Furthermore, the sensor reflectance value was 
converted into the surface reflectance value. The detailed 
information of the Landsat 8 OLI images used in this 
study is shown in Table  1. DEM data generated from 
the Shuttle Radar Topography Mission (SRTM) at 30 m 
spatial resolution were download from the USGS, and 
the slope and aspect were calculated from the DEM in 
ArcGIS 10.2 (Environmental Systems Research Institute, 
Redlands, CA, USA).

Method
Regression model method
The regression model method is also called the empirical 
model method, which is used to establish the relationship 

Fig. 2  Sampling strategy based on drone aerial photography [50]

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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between the single band of remote sensing images or the 
vegetation index obtained by the band calculation and 
the measured data of the FVC, and then extend the rela-
tionship to the study area and finally obtain the FVC of 
the whole study area [37]. Previous studies have shown 
that the normalized difference vegetation index (NDVI), 
enhanced vegetation index (EVI), soil-adjusted vegeta-
tion index (SAVI), and modified soil-adjusted vegetation 
index (MSAVI) have a high correlation with FVC and 
are often used as driving data in FVC inversion studies 
[12, 39, 41]. Therefore, we selected these four typical veg-
etation indices for linear fitting and polynomial fitting 
(Table 2). The fitting formulas are as follows:

where FVC is fractional vegetation cover; VI is vegetation 
index; a is the slope of linear fitting; b and e are the inter-
cepts of linear fitting and polynomial fitting, respectively; 
and c and d are the parameter estimation values of poly-
nomial fitting.

Pixel dichotomy model
The pixel dichotomy model is currently the most widely 
used method for estimating FVC. It assumes that the 
pixel information received by the satellite sensor is com-
posed of vegetation and soil, and FVC is the percentage 
of a pixel occupied by vegetation. The NDVI is consid-
ered to be a good indicator for FVC, so the pixel dichot-
omy model with the NDVI as the input parameter was 
used in this study to estimate the FVC of the SYRB [22, 
70]. The formula is as follows:

where NDVIs and NDVIv are NDVI values in the area 
that were completely covered by soil and vegetation, 
respectively.

(1)FVC = a× VI + b

(2)FVC = c × VI2+d × VI + e

(3)FVC =
NDVI - NDVIS

NDVIV - NDVIS

Fig. 3  Aerial image and processing effect diagram: a aerial image from UAV; b EGI segmentation result of aerial image in the red box in (a); c 
processing result of aerial image (a); d processing result of aerial image (b)

Table 1  Characteristics of Landsat 8 OLI image

Sensor Bands Spectral range (nm) Spatial 
resolution 
(m)

Landsat 8 OLI Coastal (b1) 433–453 30

Green (b2) 450–515 30

Blue (b3) 525–600 30

Red (b4) 630–680 30

NIR (b5) 845–855 30

SWIR 1 (b6) 1560–1660 30

SWIR 2 (b7) 2100–2300 30
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In this study, a total of two sets of NDVIs and NDVIv 
values were used to estimate the FVC of the SYRB based 
on the pixel dichotomy model: (1) the values of pure veg-
etation pixels and pure soil pixels based on the statistical 
results of the ecological function area in the existing lit-
erature [40] (NDVIv = 0.837, NDVIs = 0.164) and (2) the 
values of pure vegetation pixels and pure soil pixels deter-
mined by 95% confidence intervals [9] (NDVIv = 0.882, 
NDVIs = 0.067).

Machine learning algorithms
For all machine learning algorithms, the input lay-
ers are the multi-dimensional features, and the output 

layer is the FVC results. Firstly, we normalized all the 
features in the multi-dimensional feature set (original 
spectral bands, multiple vegetation indices, and topo-
graphical factors) whose values were not in the range 
of 0–1 in R before implementing the machine learn-
ing algorithm. And we performed a random cut of the 
dataset, with 70% of the dataset used for training and 
30% for validation. Then, the machine learning algo-
rithm was trained through the training dataset to build 
the internal relationship between the multi-dimen-
sional features and FVC measured data. Finally, the 
FVC inversion accuracy was evaluated, and the accu-
racy was verified through the test training set based on 
the trained machine learning algorithm.

Table 2  Multi-dimensional features used in this study

1 L1, and L2 are soil adjustment factor, which are considered by [59, 80] to be the best value of 0.5. NIR represent the reflectance of near-infrared band

Overview Vegetation index References Calculation formula

Typical vegetation 
indices

NDVI [64] NDVI = (NIR - R)/(NIR + R)

EVI [35] EVI = 2.5× (NIR - R)/(NIR + 6× R - 7.5× B + 1)

SAVI [36] SAVI = (1 + L1)× (NIR - R)/(NIR + R + L1)

MSAVI [59]
MSAVI =

[

2× NIR + 1 -

√

(2× NIR + 1)
2
−8× (NIR - R)

]

/2

Added vegetation 
indices

Simple Ratio (SR) [5] SR = NIR/R

Atmospherically Resistant Vegetation Index (ARVI) [42] ARVI = [NIR - (2× R - B)]/[NIR + (2× R - B)]

Difference Vegetation Index (DVI) [71] DVI = NIR - R

Global Environmental Monitoring index (GEMI) [58]
{

GEMI = eta(1 - 0.25×eta) - (R - 0.125)/(1 - R)

eta =

[

2(NIR
2
- R2)+1.5×NIR + 0.5×R

]

/(NIR + R + 0.5)

Green Atmospherically Resistant Index (GARI) [29] GARI =
{

NIR -
[

1.7× (B - R)
]}

/
{

NIR +
[

1.7× (B - R)
]}

Green Difference Vegetation Index (GDVI) [67] GDVI = NIR - G

Green Normalized Difference Vegetation Index 
(GNDVI)

[30] GNDVI = (NIR - G)/(NIR + G)

Green Ratio Vegetation Index (GRVI) [67] GRVI = NIR/G

Green Vegetation Index (GVI) [43]










GVI = ( - 0.2848× B) + ( - 0.2435× B) + ( - 0.5436× R) +

(0.7243× NIR) + (0.0840× SWIR1) +

(−0.1800× SWIR2)

Infrared Percentage Vegetation Index (IPVI) [19] IPVI = NIR/(NIR + R)

Leaf Area Index (LAI) [6] LAI = 3.618× EVI - 0.118

Modified Non-Linear Index (MNLI) [80] MNLI = (NIR
2
- R)× (1 + L2)/(NIR

2
+ R + L2)

Modified Simple Ratio (MSR) [15] MSR = (NIR/R - 1)/(
√
NIR/R+1)

Non-Linear Index (NLI) [31] NLI = (NIR
2
- R)/(NIR

2
+ R)

Optimized Soil Adjusted Vegetation Index (OSAVI) [62] OSAVI =
[

1.5× (NIR - R)
]

/(NIR + R + 0.16)

Renormalized Difference Vegetation Index (RDVI) [63] RDVI = (NIR - R)/
√

NIR + R

Transformed Difference Vegetation Index (TDVI) [3] TDVI =
√
0.5 + (NIR - R)/(NIR + R)

Visible Atmospherically Resistant Index (VARI) [28] VARI = (G - R)/(G + R - B)

Topographical factors DEM – SRTM DEM

slope

aspect
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Optimized MLR
MLR is based on two or more variables for regression 
analysis. It is considered to be an effective and more real-
istic statistical analysis method, which is widely used in 
the field of vegetation physiological structure parameter 
inversion [32]. The MLR model in this study was con-
structed and optimized based on the "stats" package of 
the R language platform and the multiple linear formula 
is as follows:

where a, b1, b2, … bn are parameters to be optimized, 
FVC is the result of fractional vegetation cover predicted 
by MLR, and x1, x2 … xn are feature variables in the multi-
dimensional feature set.

Optimized BPNNs
BPNNs are a concept proposed by Rumelhart et  al. 
[65], which is a multi-layer feed forward neural network 
trained according to the backward propagation algo-
rithm of error. BPNNs are one of the machine learning 
algorithms widely used in the inversion of physiologi-
cal structure parameters of vegetation [47]. BPNNs in 
this study were based on the "neuralnet" package of the 
R language platform. The weight attenuation parameter 
and threshold value in the BPNN algorithm were set to 
0.01. In addition, the grid search method was used to 
tune the number of hidden layers of the BPNN algorithm 
and the number of neurons in each hidden layer. The set-
ting range of the number of hidden layers was 1–5, and 
the setting range of the number of neurons in each hid-
den layer was 1- 10. After cross-validating 10 times, the 
model training results showed that the optimal number 
of hidden layers was two, the optimal number of neurons 
in the first hidden layer was two, and the optimal number 
of neurons in the second hidden layer was four. The hid-
den layer activation function was set to tansig after the 
optimization of sigmoid, the output layer transfer func-
tion was set to purelin to make the constructed BPNNs 
suitable for the linear model, and trainlm was selected as 
the training function.

Optimized SVR
Support vector machines (SVMs) are new machine learn-
ing algorithms based on the statistical theory that one is 
able to achieve high accuracy when solving the classifica-
tion and regression problems of high-dimensional features 
without needing to rely on all the data to make hyperplane 
decisions [18]. Support vector regression (SVR) is the per-
formance of the SVM method for regression. [84]. SVR in 
this study is based on the LIBSVM interface in the "e1071" 
package of the R language platform, and the FVC for the 

FVC = a+ b1x1 + b2x2 + · · · + bnxn

source area in the Yellow River Basin was predicted via 
regression. The SVM type was set to e-SVR, the loss func-
tion P was 0.01, and the kernel function type was radial 
basis function (RBF). In order to achieve a better predic-
tion result for SVR, the grid search method was used to 
optimize the RBF kernel parameter (gamma) and penalty 
coefficient (cost) in the SVR algorithm. The setting range 
of gamma was set to 0.5–4, the setting range of cost was 
set to 0.5–8, and the step length of gamma and cost was 
0.5. After cross-validating 10 times, the model training 
results showed that the optimal gamma and cost values 
were 0.5 and four, respectively.

Optimized RF
The RF algorithm was proposed by Breiman in 2001. 
This algorithm is based on the bagging integrated learn-
ing method, which integrates multiple decision trees into 
a forest and combines them to predict the final result 
[7]. The RF algorithm has a good anti-noise ability. It is 
simple, fast, easy to achieve parallelization, and avoids 
overfitting to a certain extent [49]. In the RF regression 
algorithm, a decision tree represents a set of constraints. 
These conditions are organized hierarchically and applied 
from the root to the leaves in succession. Two parame-
ters of the RF algorithm need to be defined: the number 
of decision trees (ntree) and the number of characteris-
tic variables required to create branches (mtry). Based on 
the “randomForest” package of the R language platform, 
the grid search method was used to optimize the param-
eters of mtry and ntree in the RF regression algorithm. 
The setting range of mtry was set to 1–31 with a step size 
of 1, and the setting range of ntree was set to 100–2,000 
with a step size of 100. After cross-validating 10 times, 
the model training results showed that the optimal mtry 
and ntree values were 13 and 1200, respectively.

Feature selection
Feature selection directly affects the training speed and 
prediction performance of machine learning algorithms, 
which enables us to have a better understanding of the 
true distribution behind the multi-dimensional feature 
set. It is an important means to eliminate redundant 
information. If a feature is considered by different vari-
able selection algorithms to have an important effect on 
the accuracy of the inversion result, it is a feature wor-
thy of attention. In this study, we used Boruta, Sequential 
Forward Selection (SFS), and Permutation Importance-
Recursive Feature Elimination (PI-RFE), which are three 
different feature selection methods applied to multi-
dimensional feature sets to determine the appropriate 
dimension, eliminate redundant features, and obtain sat-
isfactory FVC inversion accuracy.
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Boruta is a fully correlated feature selection algorithm, 
and its main objective is to select all feature sets related to 
the dependent variable [45]. The SFS algorithm is a kind of 
greedy search algorithm that is used to reduce the initial 
multi-dimensional feature set to a low-dimensional fea-
ture set [21]. The main idea of the SFS algorithm is to auto-
matically select the subset of features most relevant to the 
dependent variable, and improve calculation efficiency and 
reduce generalization errors by removing irrelevant fea-
tures. PI-RFE is an optimized RFE algorithm constructed in 
this research. RFE is a greedy algorithm that finds the best 
feature subset [27]. The main idea of the RFE algorithm 
is to repeatedly build the model to select the best feature, 
and then repeat this process in the remaining features until 
all the features are evaluted. PI sets a feature in the multi-
dimensional dataset as unavailable, and characterizes the 
importance of the feature through the decrease in accuracy 
of the inversion model [2]. In this study, the built-in weight 
parameters of the RFE algorithm were replaced with the 
important variables determined by PI.

Accuracy assessment
In this study, the data set was randomly divided. Seventy 
percent was used as model training data while the remain-
ing 30% was used as model test data. The correlation 
between the inversion results of the model test data and the 
measured results of FVC was analyzed. The determination 
coefficient (R2) and the root mean square error (RMSE) 
were considered to be reasonable evaluation indicators of 
accuracy. The performance of the above-mentioned inver-
sion models of FVC was evaluated by the values of R2 and 
RMSE. They were calculated by Eqs. (5) and (6) below:

(5)R2
= 1−

n
∑

i=1

(Si − S
′

i
)2

n
∑

i=1

(Si −
_

Si)2

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Si − S
′

i
)2

where n represents the number of samples, Si rep-
resents the measured values of sites, Si’ represents the 
predicted values of the model, and Si represents the 
mean of the predicted values of the model. Generally, 
the higher the value of R2, the smaller the value of the 
RMSE, indicating that the model performance was 
better.

In order to evaluate the sensitivity to the training sam-
ple size of the four machine learning algorithms, the R2 
and RMSE between the training samples and the verifi-
cation samples were obtained. The sample data set was 
randomly selected from the total training samples (270), 
and the training sample for the minimum data set was 30. 
This was sequentially incremented by 30 until the train-
ing sample was 270, with a total of nine data sets.

Results
Regression model method
Linear fitting showed that there was a good relationship 
between the four vegetation indices (NDVI, EVI, SAVI, 
and MSAVI) and the measured FVC (Table  3). The 
FVC obtained by linear fitting inversion showed that 
the NDVI fitting had the highest accuracy (R2: 0.717, 
RMSE: 10.8%), followed by SAVI (R2: 0.665, RMSE: 
11.4%), MSAVI (R2: 0.642, RMSE: 11.7%), and EVI (R2: 
0.635, RMSE: 12.1%), as shown in Table  4. The poly-
nomial fitting relationship between vegetation indices 
and measured FVC was better than the linear fitting 
(Table  3). The FVC obtained by polynomial fitting 
inversion showed that the NDVI fitting had the highest 
accuracy (R2: 0.745, RMSE: 9.8%), followed by SAVI (R2: 
0.725, RMSE: 10.3%), MSAVI (R2: 0.724, RMSE: 10.5%), 
and EVI (R2: 0.715, RMSE: 11.8%), as shown in Table 4.

Pixel dichotomy model
The FVC inversion results based on the pixel dichot-
omy model had good inversion accuracy. The R2 based 
on the ecological function area and based on a 95% 
confidence interval were both 0.717, while the RMSE of 
latter was lower than that of the former (Fig. 4).

Table 3  Linear and polynomial fitting relationships and inversion accuracy between the four vegetation indices (VIs) and FVC

VIs Linear fitting Polynomial fitting

Fitting formula R2 RMSE (%) Fitting formula R2 RMSE (%)

NDVI y = 1.276x-0.008 0.717 10.8 y = -2.810x2 + 4.536x-0.859 0.745 9.8

EVI y = 1.212x + 0.269 0.635 12.1 y = -4.955x2 + 5.673x-0.636 0.715 11.8

SAVI y = 1.482x + 0.172 0.665 11.4 y = -6.775x2 + 7.180x-0.921 0.725 10.3

MSAVI y = 1.210x + 0.299 0.642 11.7 y = -5.437x2 + 5.881x-0.600 0.724 10.5
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Machine learning algorithms
FVC evaluation using four typical vegetation indices
FVC inversion results of the four machine learning 
algorithms showed that when the driving data were the 
four commonly used vegetation indices, the FVC inver-
sion accuracy was higher than in the regression model 
method and pixel dichotomy model. The RF regression 
algorithm (R2: 0.861, RMSE: 9.5%) and SVR (R2: 0.830, 
RMSE: 10.4%) showed the highest accuracy, followed by 
BPNNs (R2: 0.764, RMSE: 12.1%) and MLR (R2: 0.689, 
RMSE: 13.7%), as shown in Fig. 5.

FVC estimation using a multi‑dimensional feature set
FVC inversion results showed that the accuracy of the 
four machine learning algorithms had been improved 
after adding original spectral bands, 18 vegetation indices 
and DEM, aspect, and slope (Fig. 6). The R2 was greater 
than 0.81 and the RMSE was less than 11.9%. RF had 
the highest inversion accuracy among the four machine 
learning algorithms with an R2: 0.890 and RMSE: 9.0%, 
followed by SVR (R2: 0.849, RMSE: 10.6%) and BPNNs 
(R2: 0.820, RMSE: 11.6%). MLR had the lowest inversion 
accuracy with an R2: 0.812 and RMSE: 11.9%.

Optimal feature subset and feature importance
The results of feature selection for multi-dimensional 
feature sets based on three feature selection algorithms 
showed that 22 features in the Boruta model were 
retained: DEM, VARI, slope, ARVI, NDVI, SR, TDVI, 
IPVI, GARI, b7, MSR, OSAVI, b2, b4, NLI, MNLI, 
GNDVI, GRVI, RDVI, b6, aspect, and EVI. In the SFS 
algorithm, 15 features were retained: DEM, slope, VARI, 
b7, ARVI, b4, b2, OSAVI, GARI, aspect, b6, IPVI, SR, 
MSR, and NDVI. In the PI-RFE algorithm, 18 features 
were retained: DEM, VARI, slope, b7, aspect, b2, b4, 
ARVI, OSAVI, NDVI, SR, GARI, TDVI, NDVI, IPVI, b1, 
MSR, and b6. Across all feature selection algorithms, it 
was consistently revealed that the most important feature 
was DEM, followed by slope and VARI. A comprehensive 
comparison of the three algorithms found that among 
vegetation indices, eight vegetation indices (VARI, ARVI, 
SR, NDVI, IPVI, GARI, MSR, and OSAVI) were selected 
as important features. Among reflectance bands, four 
reflectance bands (b2, b4, b6, and b7) were selected as 
important features. Among topographical factors, DEM, 
slope and aspect were all retained as important features 
(Fig. 7).

Table 4  Features selected by different feature selection algorithms

Algorithm name Selected features

Boruta DEM, VARI, slope, ARVI, NDVI, SR, TDVI, IPVI, GARI, b7, MSR, OSAVI, b2, b4, NLI, MNLI, GNDVI, 
GRVI, RDVI, b6, aspect, EVI

SFS DEM, slope, VARI, b7, ARVI, b4, b2, OSAVI, GARI, aspect, b6, IPVI, SR, MSR, NDVI

PI-RFE DEM, VARI, slope, b7, aspect, b2, b4, ARVI, OSAVI, NDVI, SR, GARI, TDVI, NDVI, IPVI, b1, MSR, b6

Fig. 4  The accuracy of inversion of FVC a based on ecological function area b based on 95% confidence interval
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Performance evaluation of feature selection algorithms
The variation trend of RMSE with the number of fea-
tures in the three different feature selection algorithms 
is shown in Fig.  8. While the Boruta-based feature 
selection was being employed, the RMSE dropped 
sharply to 11.7% when the number of features was 1 
to 11; the fluctuation then decreased, and when the 
number of features was 22, the RMSE achieved its low-
est value of 11.3%. During SFS-based feature selection, 
the RMSE dropped sharply to 11.0% when the number 
of features was 1 to 5; the fluctuation then decreased, 
and when the number of features was 18, the RMSE 
achieved its lowest value of 10.6%. When performing 
PI-RFE-based feature selection, the RMSE dropped 
sharply to 10.1% when the number of features was 1 to 
6 and then maintained a steady downward trend; when 
the number of features was 15, the RMSE achieved its 
lowest value of 9.8%.

FVC inversion based on optimized machine learning 
algorithms and feature subset
The FVC inversion results of the four machine learning 
algorithms after parameter tuning showed that when 
the driving data was the optimized feature subset from 
PI-RFE-based variable selection, the accuracy of FVC 
inversion was greatly improved compared with the use 
of multi-dimensional feature sets and original machine 
learning algorithms. (R2 was greater than 0.833, RMSE 
was less than 11.8%), as shown in Fig.  9. RF had the 
highest inversion accuracy among the four machine 
learning algorithms with an R2: 0.917 and RMSE: 7.9%, 
followed by SVR (R2: 0.870, RMSE: 9.8%) and BPNNs 
(R2: 0.852, RMSE: 10.5%). MLR had the lowest inver-
sion accuracy with an R2: 0.833 and RMSE: 11.8%.

Fig. 5  Evaluation accuracy when the driving data were four commonly used vegetation indices and spectral reflectance bands a MLR; b BPNNs; c 
SVR; d RF
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Fig. 6  Evaluation accuracy when the driving data are a multi-dimensional feature set a MLR; b BPNNs; c SVR; d RF

Fig. 7  Multi-dimensional feature importance evaluation based on three feature selection algorithms (blue and green represent important and 
unimportant features, respectively.)
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Computational efficiency
There were obvious differences between the training and 
estimation times of the four machine learning algorithms 
(Table  5). SVR had the longest training and estimation 

time (168.84 and 182.82 s), followed by MLR and BPNNs. 
Both the training and estimation times of the RF regres-
sion algorithm were the shortest, at 87.51 and 99.35  s, 
respectively.

Fig. 8  Trend of RMSE with the number of features for three variable selection algorithms

Fig. 9  Evaluation accuracy when using optimized machine learning algorithms and optimized feature subset a MLR; b BPNNs; c SVR; d RF
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Sensitivity to training sample size
The sensitivity test of the training sample size of the 
four machine learning algorithms showed that as the 
training sample size increased, the sensitivity dif-
ference of the algorithms is obvious (Fig.  10). When 
the training sample size was small, the four machine 
learning algorithms were more sensitive to changes 
in training sample size. The RF and SVR regression 
algorithms were more sensitive to the training sample 
size than MLR and BPNNs. With an increase in the 
training sample size, however, their sensitivity gradu-
ally decreased. When the training sample was greater 
than 120, the sensitivity of the four machine learning 
algorithms tended to stabilize, where R2 and the RMSE 
did not noticeably change with an increase in training 
sample size.

In addition, when the training sample size was small 
and fixed, the sensitivities of the four machine learning 
algorithms to the training sample size were different 
(Fig.  10). Among them, the RF regression algorithm 
was the most robust and MLR was the worst. However, 
when the training sample size was large, the sensitivity 
difference of the four machine learning algorithms to 
the training sample size was not obvious.

Discussion
Accuracy evaluation of different FVC inversion methods
Previous studies had shown that to some extent, the EVI, 
SAVI, and MSAVI could explain changes in the optical 
characteristics of the background and correct the effects 
of atmospheric and soil backgrounds, which was not 
found with the NDVI [1]. However, we found that the 
NDVI achieved the highest FVC inversion accuracy (R2: 
0.717, RMSE: 11.7%) among the four vegetation indices 
(NDVI, EVI, SAVI, and MSAVI), which indicated that 
the NDVI was more suitable for FVC inversion in alpine 
grassland than the EVI, SAVI, and MSAVI. The specific 
reason for this may be due to the limited biomass per unit 
area in the alpine grassland and had no obvious influence 
on the NDVI saturation phenomenon [14].

The pixel dichotomy model is another commonly used 
method for FVC remote sensing inversion. The key to the 
construction of the pixel dichotomy model is the determi-
nation of the end-members. Generally, NDVIs and NDVIv 
determined by measured spectral data, would obtain 
a higher FVC inversion accuracy. However, the special 
climate and topography of the QTP led to some devia-
tions in data collection which affected the final inversion 
results [46]. In addition, the final member determination 
was easily influenced by factors such as soil type, vegeta-
tion type, chlorophyll content, etc. The NDVIs and NDVIv 
determined by the statistical results of ecological function 
areas and the 95% confidence interval proved to have high 
FVC inversion accuracy [4, 40]. This study proved that the 
pixel dichotomy model based on 95% confidence intervals 
for NDVIs and NDVIv was more suitable for FVC inver-
sion in alpine grassland than that based on the statistical 
results of ecological function areas. The reason for this 
may be that the method of establishing the NDVIs and 

Table 5  Training/estimation time required for one iteration of 
the machine learning algorithms

R2 RMSE (%) Training time Estimation time

MLR 0.833 11.8 140.58 s 163.76 s

BPNNs 0.852 10.5 128.48 s 143.45 s

SVR 0.870 9.8 168.84 s 182.82 s

RF 0.917 7.9 87.51 s 99.35 s

Fig. 10  Performance of four machine learning algorithms with different training sample sizes
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NDVIv based on the statistical results of the ecological 
function area was a universal method, and the method 
of establishing the NDVIs and NDVIv based on the 95% 
confidence interval was derived from the statistics of the 
NDVI value in the study area. Therefore, when applied 
to a certain vegetation type or a certain area, the former 
FVC inversion accuracy would be lower than the latter.

In recent years, machine learning algorithms have been 
widely used in the field of vegetation physiological param-
eter inversion based on satellite remote sensing images 
[55, 39]. In this study, four commonly used vegetation 
indices (NDVI, EVI, SAVI, and MSAVI) were used as driv-
ing data for FVC inversion, and the results showed that 
the RF algorithm obtained the highest inversion accuracy 
(R2: 0.861, RMSE: 9.5%) while MLR had the lowest inver-
sion accuracy (R2: 0.689, RMSE: 13.7%) during FVC inver-
sion of the four machine learning algorithms. Nonetheless, 
SVR and BPNNs also had good inversion accuracy. Our 
findings suggested that the performance of machine learn-
ing algorithms in the FVC inversion of alpine grassland 
was better than the regression model method and the pixel 
dichotomy model, and these could be used for high-preci-
sion FVC inversion of alpine grassland [85].

Factors that influence FVC inversion in machine learning 
algorithms
Driving data directly affected the accuracy of the predic-
tion results for machine learning algorithms [69]. This 
study comprehensively selected original spectral reflec-
tance bands, topographic factors, and multiple vegetation 
indices as the driving data for FVC inversion. Compared 
with the four commonly used vegetation indices, the 
alpine grassland FVC inversion accuracy based on the 
four machine learning algorithms had been obviously 
improved. Among them, the FVC inversion accuracy 
of the MLR algorithm was improved the most, which 
indicated that topographic factors and various vegeta-
tion indices also have a high correlation with the FVC of 
alpine grassland, while the internal factor of how differ-
ent features in the driving data affect the FVC inversion 
results of alpine grassland cannot be explained by the 
“black box model” of machine learning algorithms [86].

Therefore, we further quantitatively evaluated the 
importance of features in the driving data based on the 
index of the influence of feature variables on the accu-
racy of FVC inversion. The results showed that the four 
commonly used vegetation indices and original spectral 
reflectance bands are not the most ideal driving data. In 
fact, three topographic factors play a more important 
role in the accuracy of the inversion results than other 
features. The importance of DEM ranked first among 
all features, because changes in altitude directly affected 
temperature, precipitation, solar radiation and other 

factors closely related to the vegetation growth status. In 
addition, vegetation indices such as VARI, ARVI, and SR 
were also more important than the four commonly used 
vegetation indices. This showed that the choice of driving 
data should not be underestimated. Therefore, the driv-
ing data for FVC inversion research should be selected 
with flexibility under different conditions of regions, veg-
etation type, and seasons [44].

The introduction of multi-dimensional feature set 
would inevitably be accompanied by the existence of 
redundant features. In order to avoid redundant features 
which reduces the computational efficiency and inversion 
accuracy of the algorithm in the FVC inversion process 
while also to avoid the limitations of the single feature 
selection method as well. Among the three feature selec-
tion algorithms, the PI-RFE feature selection algorithm 
constructed in this study had the best dimensionality 
reduction performance, which retained 15 features as 
the input data of the machine learning algorithm. Fur-
thermore, the built-in parameters of different machine 
learning algorithms have a great impact on algorithm 
performance [13]. The grid search method was used 
in this study to tune the built-in parameters of the four 
machine learning algorithms to avoid the uncertainty of 
artificial selection of reasonable parameter values and to 
achieve better model accuracy. It is worth mentioning 
that the regression line seemed to drift farther away from 
the 1:1 line when the RF algorithm was used for FVC 
inversion based on the multi-dimensional feature set, 
which may be due to the over-fitting phenomenon caused 
by the addition of more functions; however, after the fea-
ture selection, there was no such situation. This proved 
that feature selection and parameter tuning improved the 
computational efficiency of machine learning algorithms 
while further improving the FVC inversion accuracy (the 
R2 of RF was higher than 0.90), and also provided better 
model parameter selection of machine learning algo-
rithms for alpine grassland FVC inversion.

Evaluation of efficiency and sensitivity for machine 
learning algorithms
The computational efficiency of machine learning algo-
rithms is considered to be an important evaluation crite-
rion for remote sensing inversion of FVC at high spatial 
and temporal dimensions [34]. In this study, the training 
time and prediction time of the four machine learning 
algorithms were greatly different. For instance, the training 
and prediction time of the RF algorithm was the shortest, 
while the SVR algorithm was the longest. These findings 
indicated that SVR was not suitable for generating long-
term serial products [78]. In addition, the sensitivities of 
different machine learning algorithms to training sam-
ples were also different. We found that with the gradual 



Page 15 of 18Lin et al. Plant Methods           (2021) 17:96 	

increase in number of training samples, the R2 and RMSE 
of the four algorithms showed a trend of increasing (or 
decreasing) firstly and then leveling off. However, the 
inversion accuracy of the RF algorithm and the SVR algo-
rithm exhibited very obvious changes when the sample 
size was increased from 30 to 120, while the change in 
inversion accuracy of the BPNN algorithm was relatively 
stable. Our results suggested that RF and SVR are more 
sensitive to the sample size than other machine learning 
algorithms. However, BPNNs were less sensitive to sample 
size and are an ideal algorithm for FVC inversion with a 
small sample size. The robustness of the machine learn-
ing algorithms was evaluated by analyzing the selection of 
different training sample sizes. We found that the robust-
ness of the four machine learning algorithms was obvi-
ously different when the sample size was small. However, 
increasing the training sample size obviously improved the 
stability and differences of this robustness.

Conclusion
In this study, machine learning algorithms with the 
best performance among the three commonly used 
FVC inversion methods were optimized. In addition, a 
multi-dimensional feature set was constructed, and the 
dimensionality of the feature set was reduced while quan-
titatively evaluating the importance of different features 
in the analysis of FVC of alpine grassland using feature 
selection algorithms. Finally, optimization algorithms 
and multi-dimensional features were used to improve the 
estimation of alpine grassland FVC, and the accuracy was 
verified by a large amount of measured data. The main 
conclusions are presented as follows:

(1)	 Using four typical vegetation indices as driving 
data, it was observed that the machine learning 
algorithms perform best among the three FVC 
inversion algorithms. Compared with four typi-
cal vegetation indices, the FVC inversion accuracy 
of the four machine learning algorithms had been 
improved using the driving data of the multi-
dimensional feature set constructed in this study.

(2)	 Topographic factors (DEM, slope, and aspect) and 
several vegetation indices (VARI, ARVI, SR, and 
NDVI) played important roles in FVC inversion. 
The constructed PI-RFE feature selection algorithm 
had both the best dimensionality reduction effect 
and the highest accuracy.

(3)	 The combination of feature selection and param-
eter tuning effectively improved the FVC inversion 
accuracy of the four machine learning algorithms. 
The optimized RF algorithm had the highest inver-
sion accuracy and computational efficiency, while 
the BPNN algorithm was more stable.

In conclusion, the proposed FVC inversion method of 
alpine grassland is reliable and suitable for operationally 
producing FVC data. At the same time, it is crucial for the 
quantitative monitoring of the ecological environment.
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