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METHODOLOGY

Open source 3D phenotyping of chickpea 
plant architecture across plant development
William T. Salter1*  , Arjina Shrestha1 and Margaret M. Barbour1,2 

Abstract 

Background:  Being able to accurately assess the 3D architecture of plant canopies can allow us to better estimate 
plant productivity and improve our understanding of underlying plant processes. This is especially true if we can 
monitor these traits across plant development. Photogrammetry techniques, such as structure from motion, have 
been shown to provide accurate 3D reconstructions of monocot crop species such as wheat and rice, yet there has 
been little success reconstructing crop species with smaller leaves and more complex branching architectures, such 
as chickpea.

Results:  In this work, we developed a low-cost 3D scanner and used an open-source data processing pipeline to 
assess the 3D structure of individual chickpea plants. The imaging system we developed consists of a user program-
mable turntable and three cameras that automatically captures 120 images of each plant and offloads these to a 
computer for processing. The capture process takes 5–10 min for each plant and the majority of the reconstruction 
process on a Windows PC is automated. Plant height and total plant surface area were validated against “ground 
truth” measurements, producing R2 > 0.99 and a mean absolute percentage error < 10%. We demonstrate the ability 
to assess several important architectural traits, including canopy volume and projected area, and estimate relative 
growth rate in commercial chickpea cultivars and lines from local and international breeding collections. Detailed 
analysis of individual reconstructions also allowed us to investigate partitioning of plant surface area, and by proxy 
plant biomass.

Conclusions:  Our results show that it is possible to use low-cost photogrammetry techniques to accurately recon-
struct individual chickpea plants, a crop with a complex architecture consisting of many small leaves and a highly 
branching structure. We hope that our use of open-source software and low-cost hardware will encourage others to 
use this promising technique for more architecturally complex species.
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Background
With a growing global population and increasingly chal-
lenging environmental conditions, it is critical for plant 
scientists to think ‘outside the box’ to identify and bet-
ter understand novel plant traits that could be used to 

improve crop yield. This could be through the adoption 
of new technologies, through investigation of pheno-
typic traits throughout plant development or through 
improvement of crops that have been bred less inten-
sively in the past. Recent advances in image capture and 
computing technologies have allowed us to accurately 
phenotype the 3D architecture of crop plants such as 
wheat, barley and rice. However, structurally complex 
crop species, such as chickpea, remain elusive due to 
their small leaves, high levels of branching and indeter-
minant nature. Here we assess the potential to virtually 
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reconstruct the 3D structure and assess canopy architec-
tural traits of these “complex” plants across their devel-
opment using photogrammetry.

One of the main problems with conventional, direct 
measurements of plant structural properties is that they 
are laborious and often destructive. This is particularly 
evident when working with larger plants and plant spe-
cies with many small leaves. Imaging intact plants can 
bypass the need to destructively harvest plants, allow-
ing for the measurement of structural traits across plant 
development. Two-dimensional imaging techniques 
have long been used for the quantitative measurement 
of plant structural traits, including plant surface area, 
number of leaves, leaf shape and leaf colour (a database 
of such approaches is presented in [1], and is continually 
updated). Using new software tools, such as PlantCV [2], 
quantitative traits can even be extracted automatically 
from images, reducing user error and analysis time. How-
ever, most 2D imaging techniques were developed to only 
work for small plants with a simple structure, such as the 
two-dimensional rosettes of the model plant Arabidopsis 
thaliana [3], or to only extract relatively basic informa-
tion, such as plant height [4]. For more complex or larger 
plants, 2D imaging techniques can result in inaccura-
cies due to overlapping features in captured images (i.e. 
occlusion of stems by leaves, leaves by leaves, etc.). 3D 
imaging addresses this issue, allowing us to capture the 
full detail of a plant’s structure without self-occlusion of 
any plant tissues.

There are several methods available to phenotype the 
3D structure of plants (for detailed reviews see [5, 6]). 
Laser scanning (LiDAR) can provide very detailed recon-
structions of plants but there is often a trade-off between 
the cost of instrumentation and the complexity of 3D 
models. Commercial instruments can cost upwards of US 
$10,000 but can generate detailed models of plants with 
> 2 million points. Newly developed DIY instruments can 
cost as little as US $400 but only generate models with 
approx. 40,000 points [7]. LiDAR can also be inflexible, 
both in terms of sample size (i.e. one system may provide 
good resolution for small plants but not for large plants, 
and vice versa) and downstream data analyses (i.e. may 
be limited to certain commercial data analysis programs). 
Photogrammetry on the other hand can be highly cost 
effective and versatile. Photographs of the plant are taken 
from multiple angles using a standard camera and subse-
quent computer analyses are used to reconstruct a scaled 
3D model. This 3D reconstruction can then be used for 
trait measurements, such as plant dimensions, plant 
surface area and leaf area index, and modelling simula-
tions, such as ray tracing of the canopy light environment 
[8]. Data quality can be comparable to more expen-
sive LiDAR systems and it can be used for subjects of 

wide-ranging sizes. Generally speaking, the more photos 
of the subject, the better the reconstruction will be with 
regards to precision and accuracy [9], albeit with longer 
capture and processing times. Many photogrammetry 
software packages are open-source (including Colmap, 
[10]; Meshroom, [11], and VisualSFM, [12]), meaning 
that they are freely available and can be modified at the 
code level to give users a highly customised and powerful 
experience. Photogrammetry has been used effectively 
for the 3D reconstruction of a number of monocot crop 
species, including wheat [13] and rice [14], and for spe-
cies with larger leaves, such as sunflower [15] and soy-
bean [16]. However, few studies have assessed whether 
it could be used to accurately reconstruct 3D models of 
plant species with many small leaves, such as chickpea. 
Here we demonstrate that several important changes to 
existing photogrammetric reconstruction methods could 
allow for reconstruction of species with small leaves and 
highly branching architecture. These changes will ensure 
that smaller elements are captured accurately during 
imaging and during the reconstruction process. Increas-
ing the number of capture angles around the plant will 
reduce the opportunity of small leaves/branches being 
occluded from view. Capturing higher quality images at 
larger resolutions will further assist in the inclusion of 
small plant features during reconstruction. Refinements 
to the photogrammetry workflow that increase the den-
sity of 3D point clouds, such as preventing downsizing of 
images during feature matching, increasing the number 
of pixel colours used to compute the photometric con-
sistency score and reducing the photometric consistency 
threshold, will also improve the detail and accuracy of 
resultant 3D reconstructions [17].

Chickpea (Cicer arietinum L.) has long been an impor-
tant annual crop for resource poor farmers across the 
globe but there is growing demand elsewhere due to 
changing diets and a push for protein rich alternatives 
to meat [18]. Chickpea is often considered more sus-
tainable than non-legume grain crops, such as wheat or 
rice, due to its ability to form symbiotic relationships 
with nitrogen fixing bacteria, reducing reliance on nitro-
gen fertiliser [19]. It can also be used effectively in rota-
tion with cereal crops to break the life cycle of diseases 
and improve soil health [20]. Chickpea can therefore be 
a lucrative option for many growers, particularly consid-
ering there are also economic benefits, with returns to 
Australian growers of roughly AU $300 t−1 compared to 
around AU $100  t−1 for wheat between 2012 and 2014 
[21]. Yet, whilst chickpea has an estimated yield poten-
tial of 6 t ha−1 under optimal growing conditions, annual 
productivity of chickpea worldwide currently sits at less 
than 1  t  ha−1 [18]. This yield gap is the result of a lack 
of genetic diversity in breeding programs that has left 
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cultivars susceptible to biotic and abiotic stresses. Phe-
notyping for natural variation in traits of interest across 
diverse germplasm could be used to minimise this yield 
gap and to improve grain yield potential. Chickpea is an 
indeterminate crop in which vegetative growth contin-
ues after flowering begins. This poses management chal-
lenges for growers [22] and can result in yield losses. 
Genes for determinacy have been found in other species 
[23–25] and could be explored in chickpea by phenotyp-
ing diverse populations across their development. Chick-
pea also has a highly branching structure, requiring more 
resources to be allocated to structural tissue, which may 
reduce remobilisation of nutrients to pods during repro-
ductive growth [26]. Modification of plant architecture 
through targeted plant breeding has led to huge successes 
in other crop species, most notable was the introduction 
of dwarfing genes into elite varieties of wheat, which led 
to increased seed yields, reduced yield losses due to lodg-
ing and was integral to the green revolution of the 1960s 
and 1970s [27]. By assessing canopy architecture traits 
across chickpea genotypes, we will improve our under-
standing of the underlying genetics controlling these 
traits, how these traits influence plant productivity and 
can then use this information to make informed breeding 
decisions.

The main aim of this work was to develop and validate a 
low-cost and open-source photogrammetric method for 
detailed 3D reconstruction of chickpea plants. The imag-
ing setup consisted of three DSLR cameras, LED lighting 
and a motorised turntable, controlled by a user-program-
mable Arduino microcontroller (Fig.  1). 3D reconstruc-
tion and analyses of 3D models were performed using 
open-source software on a Windows PC (Fig.  2). The 
system was tested with a variety of chickpea genotypes 
(three commercial and three pre-breeding lines) and 
measurements were validated against conventional, 
destructive measurement techniques. We also assessed 
whether differences in plant architecture or growth rates 
could be observed across chickpea genotypes.

Results
Reconstruction validation
The 3D reconstructions provided very reliable estimates 
of plant height and total surface area (Fig. 3), both with 
an R2 > 0.99 and Spearman rank correlation coefficient 
(ρ) > 0.99 when compared to validation measurements. 
Height was slightly underestimated, with measure-
ments from 3D reconstructions approximately 4% lower 
than validation measurements, yet there was little vari-
ation in this relationship (R2 = 0.999, RMSE = 5.45  mm, 
MAPE = 4.4%, ρ = 0.992, p < 0.001) and it was consist-
ent across all studied genotypes (p > 0.05; Additional 
file 17: Table S1). Plant surface area measurements were 

estimated within 0.5% (R2 = 0.990, RMSE = 26.85 cm2, 
MAPE = 9.1%, ρ = 0.992, p < 0.001), although there was 
more overall variation in estimates and the validation 
relationship varied slightly across genotypes (p < 0.05; 
Additional file 17: Table S1). Specifically, the surface area 
of the breeding lines grown outdoors was slightly over-
estimated when compared to ground truthing measure-
ments. This was likely caused by smaller, more curled up 
leaves that were not correctly assessed by ground truth-
ing measurements, which assume all leaves are laid on 
a two-dimensional plane (for an example see Additional 
file  11: Figure S1). The MAPE in surface area estimates 
for commercial cultivars (excluding breeding lines) was 
7.2%, whilst for the breeding lines the MAPE was 12.3%.

Representative growth data
The 3D scanner allowed us to accurately assess a variety 
of canopy traits as the plants grew (Fig. 4). Whilst there 
was some variation across individual plants and chickpea 
genotypes, general trends in growth were clear and eas-
ily recovered from 3D reconstructions. Height increased 
rapidly to a median of 101 mm in the first week after ger-
mination and then increased more gradually to 191 mm 
5 weeks post-germination (Fig. 4a). Projected plant area, 
total surface area and canopy volume all showed charac-
teristic exponential growth curves (Fig. 4b–d). Projected 
plant area increased from a median of 17.0  cm2 1 week 
after germination to a median of 220.9  cm2 5  weeks 
post-germination, total surface area rose from 37.8 to 
415.9  cm2 in the same period, and canopy volume from 
233 to 14,575 cm3. Plant area index was not found to vary 
greatly during the growth of the plants, with a median of 

Fig. 1  Diagram showing the 3D scanner set-up in the laboratory. 
The coloured circles highlight the three cameras angled to face the 
plant. Note that no cables are shown in the diagram for the purpose 
of clarity. Exact spacing of the set-up is shown in Additional file 11: 
Figure S1
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1.91  m2  m−2 1  week after germination and a median of 
1.87  m2  m−2 5 weeks after germination (Fig. 4e). Week-
to-week RGR were greatest between weeks 1 and 2, 
with leaf area increasing on average 84.1% ± 4.4% dur-
ing this period, dropping to 56.9% ± 4.4%, 51.4% ± 4.0% 
and 64.1% ± 7.0% between weeks 2 and 3, weeks 3 and 

4, and weeks 4 and 5 respectively (Fig. 4f ) (for reference, 
corresponding daily RGRs were 8.1%, 7.3% and 9.2%, 
respectively). Whilst there was some variation in these 
growth-related traits across individual plants, we found 
no statistically significant differences across genotypes 
(p > 0.05). Overall variation increased as the plants grew, 

Fig. 2  Visual summary of the open-source data processing pipeline. (1) Captured images are used to generate a sparse point cloud, (2) which is 
then used to generate a dense point cloud. (3) Dense point clouds are manually cleaned and scaled, and then used to generate either (4) a convex 
hull or (5) a meshed model. (6) The scaled point cloud and the meshed model can then be used for further analyses. Note that all but step (3) can 
be automated in Windows using batch files or, in the case of (6), using R scripts
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with some apparent divergence across genotypes in the 
latter weeks of the experimental period. For example, 
standard error represented only 10.6% of the mean total 
surface area in week 1 whilst it represented 15.5% in week 
5, with similar trends for the other traits.

Vertical distribution of plant surface area
Further analyses in R enabled us to retrieve detailed data 
about the distribution of plant surface area as a function 
of plant height in an automated and repeatable fashion. 
The visual summaries presented in each panel of Fig.  5 
are directly outputted from R. These visual summaries 
provide a fast and semi-quantitative method of assess-
ing how individual plants are partitioning surface area 
(and by proxy, their biomass). For example, in the repre-
sentative data shown in Fig. 5, the Genesis Kalkee, PBA 
Hattrick, ICC5878 and PUSA76 plants (Fig.  5a, b, d, f 
respectively) assign most of their plant area to the lower 
canopy; the PBA Slasher plant (Fig.  5c) has a relatively 
sparse canopy and the SonSla plant (Fig. 5e), albeit much 
smaller than the others, appears to have two discrete can-
opy layers.

To make statistical comparisons of relative area distri-
bution data across genotypes, individual plant data was 
normalised by plant height and total surface area (Fig. 6). 
Genotypes differed significantly in their relative vertical 
distribution of leaf area (p < 0.001), with particularly clear 
differences found between the breeding lines and com-
mercial cultivars. The commercial cultivars were much 

denser in the lower half of the canopy, whilst the breed-
ing lines, and in particular line SonSla, were denser in the 
mid- to upper-canopy.

Discussion
We have successfully built and validated a low-cost, 
open-source 3D scanner and data processing pipeline to 
assess the architecture and growth trends of individual 
chickpea plants. Chickpea has leaves that are consid-
erably smaller than most other species that have been 
studied previously using photogrammetry. In our initial 
attempts to use the 3D reconstruction workflow devel-
oped for wheat by Burgess et al. [13], we found that there 
was not enough detail in the 3D reconstructions for accu-
rate measurement of structural traits (Additional file 12: 
Figure S2). However, by modifying key parameters in 
the reconstruction workflow, we were able to produce 
reconstructions that provided consistent high-quality 
data. Validations of height and area measurements from 
reconstructions against ground truthing measurements 
highlight the reliability of the system (height, R2 > 0.99, 
MAPE = 4.4%; area, R2 = 0.99, MAPE = 9.1%). The accu-
racy of leaf area estimates is comparable to other pho-
togrammetric estimates reported in the literature for 
larger leaved plant species (Brassica napus, R2 = 0.98, 
MAPE = 3.7%, [28], maize, sunflower and sugar beet, 
R2 = 0.99, MAPE = 3.9%, [29], selected houseplant 
species, R2 = 0.99, MAPE = 4.1%, Itakura and Hosoi, 
2018; tomato, R2 = 0.99, MAPE = 2.3%, [30]. We noted 

Fig. 3  Validation of 3D scanner estimates of phenotypic traits against conventional measurements. a Is plant height and b is total plant surface 
area. The black lines are linear regressions, the grey shaded region is the standard error. Each point represents an individual plant. Colours represent 
the seven different genotypes used for validation: Genesis Kalkee (yellow), PBA Hattrick (light blue), PBA Slasher (pink), ICC5878 (dark blue), SonSla 
(orange) and PUSA76 (green). See Additional file 17: Table S1 for details of genotype-specific regression models
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a difference in validation accuracy for plant surface 
area across genotypes, however, we assigned this to 2D 
ground truthing measurements underestimating the area 
of curled up leaves of the outdoor-grown breeding lines, 
rather than an overestimation of surface area from 3D 

reconstructions. This underestimation would also explain 
the greater overall MAPE for area estimates in our study 
versus other previously studied crops. A similar discrep-
ancy was reported by Bernotas et al. [31] for Arabidop-
sis thaliana, where top down 2D images consistently 

Fig. 4  Representative growth data from the 3D scanner. a Plant height, b projected plant area, c total plant surface area, d convex hull canopy 
volume, e plant area index and f week-to-week area based relative growth rate (RGR) across 5 weeks. In panels a–e, solid lines and shaded regions 
represent genotype means ± SE (n = 5); whilst dashed lines represent individual plants. The main graphs of b–d are presented on a logarithmic 
scale, with non-log data shown in the inset graphs. In f the violins represent the range of RGR for each genotype each week, points are individual 
plants. Colours represent the three commercial genotypes Genesis Kalkee (yellow), PBA Hattrick (blue) and PBA Slasher (pink)
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underestimated rosette area relative to 3D models that 
accounted for leaf curvature. In this sense, our 3D recon-
structions provide a better estimate of plant surface 
area than conventional, labour intensive and destructive 
measurement techniques of chickpea plants.

The results we present here show that photogramme-
try could be used as an effective tool to assess diversity 
in plant architecture and growth-related traits across 
chickpea lines and help to identify novel plant breeding 
targets. Although we did not find statistically signifi-
cant differences in architecture traits or growth trends 
across the three commercial genotypes included in our 
study, we feel that screening more diverse chickpea lines 
and continuing to monitor growth for a longer period of 
time would help to elucidate trends across genotypes. 

The narrow genetic base of chickpea has hindered 
improvements in breeding programs in recent years [18]. 
Together with next generation sequencing technologies, 
the development of new breeding lines selected specifi-
cally for the investigation of traits of interest could help 
to address this [32]. Even more diversity might be found if 
we were to investigate traits in wild relatives of cultivated 
chickpea [33]. As the main aim of this study was to evalu-
ate whether photogrammetry could be used to accu-
rately reconstruct chickpea plants, we only monitored 
the growth of the plants for 5  weeks post-germination. 
We did notice there was more variation in architectural 
traits, both across and within genotypes, as the plants 
grew larger and future work should seek to assess these 
traits to plant maturity. The ability to comprehensively 

Fig. 5  Representative plant surface area distributions for selected individual plants of each genotype. In each panel is (left) a graphical summary 
of the leaf area per mm of height, where each bar represents the sum area of all mesh triangles with centres lying inside each 1 mm z-axis cross 
section, and (right) a 2D visual representation of the meshed model of the plant. Note that the scales of both the graph and the models differ across 
panels a–e due to variation in the size of individual plants. All plants shown were imaged 5 weeks post-germination
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assess growth rates of plants to maturity could provide an 
opportunity to screen for highly desirable developmental 
traits, such as determinacy.

Whilst we have found photogrammetry capable of 
producing highly accurate reconstructions of individual 
chickpea plants, it remains labour and time intensive and 
may act as a bottleneck for the wide scale phenotypic 

screening of whole populations of plants. To overcome 
this, future improvements could focus on further auto-
mation and acceleration of image capture and recon-
struction. Lifting plants on and off the turntable is 
currently the major limitation to automation of image 
capture in our method, however this could be overcome 
by the adoption of photogrammetry in conveyor belt 

Fig. 6  Comparisons of leaf area distributions can be made across chickpea genotypes by normalising data. All plants presented were imaged at 
5 weeks post-germination. a Is the normalised cumulative surface area from the base to the top of the plant plotted against normalised height. 
Thick lines represent genotype means (n = 10), thin lines represent individual plants. b Shows surface area versus normalised height, with each 
bar representing the sum area of all mesh triangles with centres lying inside a 1% z-axis cross section. Values shown by bars are genotype means 
(n = 10) whilst solid and dashed lines represent the genotype mean ± SE respectively fitted with a LOESS function in R
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phenotyping platforms. Speeding up image capture will 
rely upon reducing the amount of time the plant remains 
stationary between rotational imaging steps. This could 
possibly be achieved using a smoother motor with high 
intensity lighting or synchronized flash photography, 
allowing for continuous capture of the plant without 
the need for stopping. With respect to the reconstruc-
tion process, automation and faster processing times 
may be achieved through use of high performance com-
puting infrastructure or cloud computing resources, 
both of which are increasingly available to the research 
community.

Unlike monocot grain crops such as wheat and barley, 
chickpea does not have discreet canopy layers, with fruits 
developing across the whole plant. As such, the optimum 
light environment for productivity of chickpea canopies 
will be quite different to that of wheat. The indetermi-
nate nature of chickpea likely shifts this optimum further 
still, as leaves lower in the canopy will remain photosyn-
thetically active for longer. Modelling could allow us to 
determine the theoretical optimum light environment 
and then by running ray tracing simulations with our 
3D reconstructions we could determine how close cur-
rent chickpea architecture is to this optimum. A number 
of recent studies have used such approaches to simu-
late the canopy light environment of other crop species, 
often coupling this to a photosynthetic model to estimate 
potential plant productivity (intercropped millet and 
groundnut, [14], sugarcane, [34], and wheat, [35]). We 
hope that our validated method and open dataset will 
enable future studies to model the light environment of 
chickpea.

The method we present here provides very reliable esti-
mates of overall plant surface area and other plant traits 
from whole chickpea plants. We were able to dissect each 
reconstruction into its component mesh triangles and 
investigate how plant surface area is distributed rela-
tive to plant height. However, what we have so far been 
unable to do is systematically distinguish between leaf, 
stem or other plant tissue types in the reconstructions. 
Segmentation of the models in this way would allow us 
to retrieve more detailed phenotypic information, includ-
ing the ability to assess partitioning of biomass across 
plant tissues, accurately assess other phenotypic traits 
(such as leaf angles and leaf numbers) and even aid in 
yield prediction [36]. Automatic segmentation of 3D 
models has been achieved in other plant species with 
larger leaves using several approaches. Itakura and Hosoi 
[37] were able to segment individual leaves of a number 
of broad-leaved houseplant species using a combined 
attribute-expanding and simple projection segmentation 
technique. While they retrieved very accurate estimates 
of leaf area (R2 = 0.99, MAPE = 4.1%) using this method, 

we feel that it would be highly unlikely to work with com-
paratively tiny chickpea leaves. Another approach would 
be to use a machine learning algorithm to segment differ-
ent plant tissues based on pre-trained models. Ziamtsov 
and Navlakha [38] recently developed an open-source 
software package called P3D for this explicit purpose. 
In their work, they showed P3D to segment leaves and 
stems in point clouds of tomato and tobacco with > 97% 
accuracy. We attempted to use P3D to segment our 
chickpea models with limited success (data not shown), 
although this was likely due to the use of the default P3D 
training datasets developed with larger leaved species. 
We hope that in the future, with more relevant annotated 
training datasets, this segmentation technique could also 
work for chickpea. We provide the full complement of 
our processed point clouds and meshed models to aid in 
the development of these training datasets.

The data processing pipeline we have presented here, 
whilst all open-source, does rely on a relatively powerful 
computer. Specifically, reliable reconstruction of a dense 
point cloud using PMVS takes a very long time if com-
puter resources (CPU processing power and memory) 
are limiting. The smaller leaves of chickpea necessitated 
higher resolution photogrammetry than was needed 
for the reconstructions of wheat by Burgess et  al. [13]. 
For our reconstructions on a desktop computer with 
a 16 core/32 thread 3.5  GHz CPU (Ryzen Threadripper 
2950X; AMD Inc., Santa Clara, CA, USA) with 128  Gb 
3200  MHz RAM (HyperX Fury; Kingston Technology 
Corp., Fountain Valley, CA, USA), the generation of a 
dense point cloud took roughly two hours per plant. We 
also found that running the reconstruction process from 
image data stored on a solid-state drive was considerably 
faster than running from images stored on a traditional 
hard disc drive. In the past, such computing resources 
would have been prohibitively expensive for most 
researchers however this is no longer the case, largely 
thanks to advances driven by computer gaming technol-
ogy. Multicore computing is now the norm, even in port-
able laptop computers, and high capacity memory and 
fast solid-state storage are now reasonably priced.

On the topic of cost, our imaging set up cost roughly 
AU $1300, considerably less than commercially available 
alternatives that offer similar data quality. Panjvani et al. 
[7] recently developed a comparably priced (US $400) 
DIY LIDAR system for 3D scanning of individual plants, 
however the quality of leaf area estimates was consider-
ably less than ours (R2 < 0.6 against ground truthing data, 
MAPE = 31.5%). By far the most expensive part of our 
set up was the cameras. In our method presented here, 
we used three DSLR cameras however we must high-
light that the method can also be adapted to work with 
just one camera, substantially reducing cost. In our early 
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testing, we used just one camera and rotated the plant 
three times, with the camera manually repositioned from 
one mounting point of the camera bracket to the next 
between each rotation. Whilst this took us longer to cap-
ture the image sets, we did not notice any reduction in 
data quality. It may also be possible to use cheaper cam-
eras. Martinez-Guanter et  al. [29] used a regular point 
and shoot camera for the 3D reconstruction of maize, 
sunflower and sugar beet plants, with an R2 > 0.99 for 
both height and leaf area estimates compared against 
ground truthing measurements. Paturkar et al. [39] show 
that even a mobile phone can be used for image cap-
ture, with 3D reconstructions of chilli plants giving an 
R2 > 0.98 for estimates of both height and leaf area. These 
technological advances and reductions in cost mean that 
photogrammetric techniques are more accessible than 
ever before to the plant phenotyping community. The 
increased availability of these technologies will allow for 
the adoption of data driven approaches plant science 
research where this was not possible before.

Conclusions
Our work has shown that it is possible to use low-cost 
photogrammetry techniques to accurately phenotype 
architectural traits and growth habits of individual chick-
pea plants. We hope that our use of open-source software 
and hardware will allow others to easily reproduce our 
method and to develop it further. In particular, there is 
a need to test whether photogrammetric reconstructions 
of chickpea could be used for simulations of the canopy 
light environment and whether they could be automati-
cally segmented into different plant organs using deep 
learning algorithms. There is a need for higher yielding, 
environmentally friendly and stress tolerant chickpea 
varieties with increasing demand for high quality pulse 
protein worldwide. The use of novel measurement tech-
niques and associated data analytics should assist us in 
identifying traits of interest and allow us to explore diver-
sity in these traits so that breeders can make informed 
breeding decisions.

Methods
Plant material
Three commercial Australian chickpea (Cicer arietinum 
L.) cultivars (PBA Slasher, PBA Hattrick and Genesis 
Kalkee) were grown from seed in a controlled glasshouse 
in August 2019. These genotypes were selected as their 
architecture is known to differ in the field (Additional 
file 17: Table S2) and are referred to collectively herein as 
“commercial cultivars”. Seeds were planted in potting mix 
containing slow release fertiliser (Osmocote Premium; 
Evergreen Garden Care Australia, Bella Vista, NSW, Aus-
tralia) in 7  L square pots and watered to field capacity 

once daily. The daytime temperature in the glasshouse 
was controlled to 25  °C and the nighttime temperature 
controlled to 18  °C. The relative humidity was set to 
60%. Supplemental lighting was provided by LED growth 
lights if ambient light fell below a photosynthetic pho-
ton flux density (PPFD) of 400 µmol  m−2  s−1, this effec-
tively maintained a PPFD of > 400  µmol  m−2  s−1 at the 
plant level at all times during the day. Fifteen plants (five 
for each genotype) were transferred from the glasshouse 
to the laboratory for imaging once per week and were 
returned to the glasshouse after measurement. Addition-
ally, each week 15 plants (five of each genotype) were 
imaged and then destructively harvested for validation of 
3D scanner measurements.

Three chickpea genotypes (ICC5878, SonSla and 
PUSA76) were selected from local and international 
sources based on contrasting canopy architecture and 
growth-related traits (Additional file  17: Table  S1) and 
are referred to collectively herein as “breeding lines”. 
ICC 5878 is from the ICRISAT Chickpea Reference 
Set (http://​www.​icris​at.​org/​what-​we-​do/​crops/​Chick​
Pea/​Chick​pea_​Refer​ence1.​htm). SonSla is a fixed line 
(F7-derived) resulting from a cross between Australian 
cultivars Sonali and PBA Slasher. PUSA 76 is an older 
accession released by IARI, India and imported via the 
Australian Grains Genebank. These were grown outside 
in February–April 2020. Seeds were planted in potting 
mix containing slow release fertiliser (Complete Vegeta-
ble and Seedling Mix; Australian Native Landscapes Pty 
Ltd, North Ryde, NSW, Australia) in 7 L square pots and 
watered every 3  days to field capacity. Twelve plants of 
each genotype were imaged at 5 weeks post-germination 
and destructively harvested for validation of 3D scanner 
measurements.

Semi‑automated 3D imaging platform
Plants were imaged using a turntable and camera photo-
grammetry setup (schematic in Fig.  7). The turntable is 
constructed from acrylic (Suntuf 1010493; Palram Aus-
tralia, Derrimut, Victoria). It consists of a circular top 
plate on which the potted plant is placed and a base which 
houses a stepper motor (42BYG; Makeblock Co., Ltd, 
Shenzhen, China). A lazy susan bearing plate (Adoored 
0080820; Bunnings Warehouse, Hawthorn East, Victoria, 
Australia) is used to connect the plate to the base to pro-
vide smoother movement and reduce strain on the motor 
during imaging. The turntable is connected to and con-
trolled by a user-programmable Arduino microcontroller 
(Uno R3; Arduino LLC, Somerville, MA, USA) and a 
number of Arduino breakout boards. The stepper motor 
is driven via a stepper driver board (DRV8825; Pololu, Las 
Vegas, NV, USA), that provides precise control of turnta-
ble rotation, allowing for individual rotational microsteps 

http://www.icrisat.org/what-we-do/crops/ChickPea/Chickpea_Reference1.htm
http://www.icrisat.org/what-we-do/crops/ChickPea/Chickpea_Reference1.htm
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as small as 0.06°. A copper heatsink (FIT0367; DFRobot, 
Shanghai, China) and 5 V fan (ADA3368, Adafruit Indus-
tries LLC, New York, NY, USA) are installed on the step-
per driver to prevent overheating. The microcontroller 
triggers the cameras via a relay breakout board (Grove; 
Seeed Studio, Shenzhen, China) and a custom-made 
remote shutter cable. An LCD screen with integrated 
keypad (DFR0009; DFRobot) is used to operate the turn-
table and provide basic information during the capture 
process. A 5  V buzzer (AB3462; Jaycar, Sydney, NSW, 
Australia) audibly alerts the user when a full rotation is 

complete. Power is provided via a mains—12 V DC 5 A 
power supply (MP3243; Jaycar). The motor is powered 
directly with 12 V DC whilst a step-down voltage regu-
lator (XC4514; Jaycar) is used to provide 5 V DC to the 
microcontroller and associated boards. A wiring diagram 
is provided in Fig. 7b. The turntable was set on a white 
table against a white backdrop (Fig. 1).

The microcontroller is programmed using the open-
source Arduino IDE software (Version 1.8.10; Arduino 
LLC). The automated capture program was designed 
such that it will turn the plant a set number of degrees 

Fig. 7  Diagram of the 3D scanner turntable and microcontroller. a Exploded view of the 3D scanner showing components required for assembly. b 
Wiring diagram for the 3D scanner. Note that in b, 5 V wires are represented by solid lines and 12 V wires by dashed lines



Page 12 of 16Salter et al. Plant Methods           (2021) 17:95 

(determined by the user), pause briefly for the plant to 
stop moving (with a delay programmed by the user) and 
then trigger the camera(s) to capture an image. This pro-
cess is repeated until a full rotation of the plant has been 
captured. The microcontroller also offers the user some 
control of the turntable via the buttons on the LCD shield 
(to increase/decrease the number of images captured 
per rotation, to manually turn the plant clockwise/anti-
clockwise and to start/pause/stop the automated cap-
ture sequence). Further control of the capture sequence 
can be achieved through modification of the code. The 
Arduino program is provided in Additional file 1.

Lighting is provided by two large LED floodlights 
(generic LED floodlights bought on eBay) held in a ver-
tical orientation with custom stands made from alumin-
ium extrusion (Fig. 1a). A sheet of white acrylic (Suntuf 
1010493; Palram Australia) is placed over the front of 
each light as a diffuser. Large cooling fans (MEC0381V3; 
Sunon, Kaohsiung City, Taiwan) were installed on the 
rear of the lights. In our imaging setup, the lights were 
set 80 cm away from the plant on either side of the tripod 
and angled to face the plant directly (Additional file 13: 
Figure S3).

A tripod (190XPRO; Manfrotto, Cassola, Italy) was 
used as a base for a custom-made camera mounting 
bracket (schematic in Additional file 14: Figure S4). The 
top of the tripod was set level with the table on which the 
turntable was sat. The mounting bracket was constructed 
from a 110 cm length of aluminium square hollow extru-
sion with three quick release mounting points (323 Quick 
Change Plate Adapter; Manfrotto) for a camera posi-
tioned at 10  cm, 55  cm and 100  cm vertically from the 
base and angled towards the plant. A steel angle bracket 
(SAZ15; Carinya, Melbourne, Australia) was bolted to 
the bottom of the aluminium extrusion for secure attach-
ment to the tripod.

Camera setups
Three digital SLRs (D3300; Nikon Corporation, Tokyo, 
Japan) were used for imaging, each with a 50 mm prime 
lens (YN50; Yongnuo, Shenzhen, China). The cameras 
were affixed to the custom mounting bracket such that 
images were captured in a horizontal orientation. Expo-
sure was set to 1/100  s, aperture set to F8 and ISO set 
to 400. Each camera was manually focussed on the 
first plant imaged each day and remained fixed for the 
remaining plants. Images were captured in JPEG format 
at 24.2-megapixel resolution and saturation boosted in-
camera. Each camera was powered by an AC adaptor 
(EP-5A; Nikon). The cameras were connected via USB 
cables to a Windows computer running the open-source 
digiCamControl software (Version 2.1.2; Istvan, 2014) for 
live offload of captured images into the structured folders 

required for downstream data processing. Images were 
also backed up onto SD cards installed in each camera. 
120 images were captured of each plant (40 with each 
camera). 120 images were chosen after initial testing 
(data not shown) revealed this to provide the best balance 
between reconstruction quality and reconstruction pro-
cessing time.

Semi‑automated image processing and 3D reconstruction
Image processing and 3D model reconstruction was con-
ducted using open-source software on a Windows PC 
(as summarised in Fig.  2). A dense 3D point cloud was 
first generated from captured images using VisualSFM 
(Version 0.5.26 CUDA; [12]) and CMVS + PMVS2 [17] 
using a modified method of Burgess et al. [13]. Process-
ing parameters were adjusted (in the nv.ini configuration 
file of the VisualSFM working folder; provided in Addi-
tional file  2) from the default settings to optimise the 
reconstruction of chickpea plants. The settings we used 
were modified from those used successfully for wheat 
plants by Burgess et al. [13] as these were unsuitable for 
reconstruction of the finer details of chickpea plants and 
underestimated plant surface area (as shown in Addi-
tional file 15: Figure S5). Briefly, compared to the settings 
used for wheat, the CMVS max_images parameter was 
increased from 40 to 120, allowing the whole image data-
set to be analysed concurrently during reconstruction, 
rather than separated into batches. This was possible due 
to the large memory capacity on the computer that we 
used for processing (128 Gb) and reduced the likelihood 
of multiple point clouds being produced for each plant. 
The PMVS2 min_images parameter was increased from 
3 to 4, meaning that each 3D point in the reconstruction 
must be visible in at least four images. Functionally, this 
reduces noise and improves the accuracy of the point 
cloud. The PMVS2 csize parameter was reduced from 
2 to 1 to create a denser point cloud. The PMVS2 wsize 
parameter was increased from 7 to 12 to provide more 
stable reconstructions by including more colour informa-
tion when computing the photometric consistency score. 
Finally, the PMVS2 threshold parameter was reduced 
from 0.7 to 0.45. The threshold refers to the photomet-
ric consistency measure above which a patch reconstruc-
tion is deemed a success and kept in the point cloud. 
Reducing the threshold allowed us to retain more of the 
less consistent points in the point cloud. Note that more 
detailed descriptions of these parameters can be found in 
the CMVS + PMVS2 documentation. Point cloud genera-
tion was automated using a Windows batch file (provided 
in Additional file 3).

Dense point clouds were scaled (using the width of the 
pot as a reference), denoised based on colour (remov-
ing all but the green/brown points), reoriented (such 
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that the ground was parallel to the X–Y plane) and any 
remaining non-plant points removed manually in Mesh-
lab (Version 2020.06; [40]). Statistically outlying points 
were then removed using the statistical outlier removal 
(SOR) feature of CloudCompare (Version 2.11.0; GPL 
software). The remaining points were sub-sampled using 
Poisson disk sampling (Explicit Radius = 0.5, Montecarlo 
oversampling = 20; [41]). A meshed model was created 
from the sub-sampled point cloud using a ball pivot-
ing algorithm (default settings; [42]) and any large holes 

The area of the ith triangle (Si) is then calculated using 
lengths Ai, Bi and Ci using Eq. 5:

The script outputs a visual summary of plant surface 
area as a function of height, as well as a comprehensive.
CSV file that contains extracted parameters (XYZ coor-
dinates for the vertex of each triangle, XYZ coordinates 
of the centre of each triangle, the area of each triangle, 
etc.) from each reconstruction. This R script is provided 
in Additional file 10. For comparisons across genotypes, 
for each plant, height data was normalised based on the 
overall plant height and area data was normalised based 
on total surface area.

Validation measurements
The height of each plant was measured using a ruler, 
from the base of the stem to the highest point of the 
canopy. Plants were then destructively harvested, the 
harvested plant material laid flat on a large sheet of white 
paper and an image taken from above using a DSLR cam-
era (Canon EOS R; Canon Inc., Tokyo, Japan) mounted to 
a tripod for validation of total surface area (representa-
tive images used for ground truthing are presented in 
Additional file 15: Figure S5). A ruler was included in the 
image for scaling. Lens corrections were first performed 
on the captured images in Adobe Photoshop (Adobe Inc., 
San Jose, CA, USA) to remove distortion and then images 
were analysed using ImageJ (Fiji 1.52p; [43]) to obtain 
measurements of total plant surface area.

To test the assumption that 2D image analysis tech-
niques would not be accurate in assessing area-related 
traits due to overlapping plant elements, we analysed the 
side projected green area of two images of each chick-
pea plant from the week 5 image set used to reconstruct 
the 3D models. The two images chosen for each pair 
were separated by 90 rotational degrees but were both 
taken from the same height. Using a modified method of 
Atieno et al. [4], each image was scaled and a HSV col-
our thresholding mask used to compute the area of green 
plant material in ImageJ [43]. The mean variation in side 
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in the meshed model filled with the close holes feature 
(max size to be closed = 50). All but the scaling, manual 
removal of non-plant points and outlier removal were 
run in a consistent and automated fashion using Meshlab 
scripts and a Windows batch file (provided in Additional 
files 4, 5, 6, 7, 8 and 9). Meshed models consisted of n tri-
angles with 3D coordinates of the ith triangle given by a 
vector (xi1, yi1, zi1, xi2, yi2, zi2, xi3, yi3, zi3), where x and y 
correspond to coordinates parallel to the ground and z 
corresponds to height above the ground.

Analyses of geometric features (height, max width, etc.) 
and plant surface area were performed using the base 
functions in Meshlab. The surface area from Meshlab 
was divided by 2 to provide a “one-sided” area, which is 
referred to herein as total surface area. Canopy volume 
was measured in Meshlab after fitting a convex hull to 
meshed model. A top down orphographic projection of 
the model was exported as an image file and processed in 
ImageJ (Fiji 1.52p; [43]) to estimate projected plant area. 
Plant area index (PAI) was calculated as total surface 
area/projected plant area. Week-to-week relative growth 
rates (RGR) for total surface area were derived for each 
plant as per Pérez-Harguindeguy [44], using Eq. 1:

where t is the time between measurement of leaf areas A1 
and A2.

An R script was written to calculate the area of each 
individual triangle making up the surface of the meshed 
model and then to calculate plant surface area as a func-
tion of height. The script uses the png (version 0.1.7; [45]), 
rgl (version 0.100.54; [46]), Rvcg (version 0.19.1; [47]) and 
tidyverse (version 1.3.0; [48]) R packages. Briefly, the 
length of the ith triangle’s edges (Ai, Bi and Ci) is first cal-
culated using the XYZ coordinates of its three vertices 
(xi1, yi1, zi1,xi2, yi2, zi2; and xi3, yi3, zi3), using Eqs. 2–4:

(1)RGR =
1

t
· ln

(

A2

A1

)

,
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projected area between the two images was found to be 
8.4%, whilst the maximum variation for an image pair 
was 25.1% (Additional file 17: Table S3), highlighting the 
need for 3D phenotyping techniques.

We were concerned that movement of chickpea leaves 
during the measurement period (09:00–15:00) could 
influence estimates of surface area from the 3D scanner. 
Chickpea leaves move considerably during the day we 
thought this diurnal rhythm may affect the results. To 
alleviate this concern, we scanned the same plant several 
times across this measurement time window and found 
minimal variation (< 2.3% variance from the mean) in 
area estimates over time (Additional file 16: Figure S6).

Statistical analyses
Statistical analyses were performed in R [49]. For vali-
dation data, linear regressions models were plotted to 
visually compare conventional and 3D scanner meas-
urements. Root mean squared error (RMSE) and mean 
absolute percentage error (MAPE) were calculated using 
base R and the MLmetrics package (version 1.1.1; [50]) 
respectively. Spearman rank correlation coefficient (ρ) 
was used to statistically analyse the regressions. Analy-
sis of variance (ANOVA) was used to determine whether 
regression models differed statistically across genotypes. 
For representative growth data, statistical comparisons 
across genotypes were analysed using a repeated meas-
ures ANOVA with post-hoc Tukey’s HSD test using the 
emmeans package in R (version 1.4.7; [51]). Normalised 
area distribution data were analysed statistically using a 
non-parametric ANCOVA using the sm package (version 
2.2–5.6; [52]). All regressions and representative data 
were visualised using ggplot2 in R (version 3.3.2; [53]).

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13007-​021-​00795-6.

Additional file 1. Arduino program for 3D scanner. Please refer to com-
ments embedded in code to customise capture sequence. Upload to 
Arduino board using the Arduino IDE software available from https://​
www.​ardui​no.​cc/.

Additional file 2. VisualSFM configuration file for chickpea plants. To 
use, please replace nv.ini file in the VisualSFM working folder and rename 
this file nv.ini. Please refer to comments embedded in code to customise 
reconstruction process; this file has optimised parameters for chickpea 
plants.

Additional file 3. Windows batch file for generation of dense point 
clouds from image sets. Please ensure you change the filepaths in the 
code to the folder containing image sequences and the output file path.

Additional file 4. Meshlab script to reorient point cloud, remove non-
green, non-plant points and remove outlying points.

Additional file 5. Windows batch file to run the “Autocleanscript.mlx” 
meshlab script on multiple models sequentially. Please ensure you change 
the filepaths in the code to the folder containing raw dense point clouds.

ply files from VisualSFM, the output file path and the file location of the 
“Autocleanscript.mlx” file.

Additional file 6. Meshlab script to mesh clean and scaled point clouds 
using a ball pivoting algorithm and close any holes in the resultant 
meshed model.

Additional file 7. Windows batch file to run the “Meshscript.mlx” meshlab 
script on multiple models sequentially. Please ensure you change the file-
paths in the code to the folder containing clean and scaled point cloud.
ply files, the output file path and the file location of the “Meshscript.mlx” 
file. Can also output a text file summary of the model containing dimen-
sions and surface area of the meshed model.

Additional file 8. Meshlab script to fit a convex hull to clean and scaled 
point clouds.

Additional file 9. Windows batch file to run the “Convehullscript.mlx” 
meshlab script on multiple models sequentially. Please ensure you change 
the filepaths in the code to the folder containing clean and scaled point 
cloud.ply files, the output file path and the file location of the “Convex-
hullscript.mlx” file. Can also output a text file summary of the model 
containing convex hull volume.

Additional file 10. R script for processing leaf area distribution by height. 
Please refer to comments embedded in code to customise outputs etc.

Additional file 11. Top down diagram of the laboratory imaging set up. 
The tripod was moved back from the table (distance x) as the plants grew.

Additional file 12. Comparison of 3D reconstructions generated using 
wheat and chickpea parameters in VisualSFM. Week 5 plants were recon-
structed (a) using 40 images and the reconstruction parameters for wheat 
as per Burgess et al. [13], and (b) using the parameters fine-tuned to work 
with chickpea plants of various sizes. The numbers below each image refer 
to the estimated surface area of each reconstruction.

Additional file 13: Figure S3. Schematic diagram of the custom camera 
mounting bracket.

Additional file 14: Figure S4. Two representative images of a harvested 
chickpea plants used for ground truthing measurements. (a) Is the 
commercial chickpea cultivar Genesis Kalkee and (b) is the breeding line 
PUSA76.

Additional file 15: Figure S5. An example of curled leaves of the 
outdoor-grown chickpea breeding lines. (a) Shows a representative plant 
of the commercial cultivar, the inset figure shows that most leaves were 
flat. (b) Shows a representative plant of breeding line SonSla, the inset 
figure shows that many leaves were curled or folded to a certain degree.

Additional file 16: Figure S6. Diurnal measurements of plant surface 
area using the 3D scanner. A single plant was scanned four times between 
9 a.m. and 3 p.m. to ensure there was not substantial variation in surface 
area estimates due to leaf movement/closure across the course of a day.

Additional file 17: Table S1. Genotype specific regressions for validation 
measurement. Significance values refer to an ANOVA run to determine 
whether there were differences across genotypes. Table S2. Chickpea 
genotypes used to validate the 3D scanner. These lines were chosen 
based on their contrasting canopy heights, growth habits and growth 
rates. Note that some information is lacking for breeding lines. Table S3. 
Comparison of side projected area estimates from 2D image analysis.
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