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Abstract 

Background:  Heterosis has been widely used in maize breeding. However, we know little about the heterotic quan-
titative trait loci and their roles in genomic prediction. In this study, we sought to identify heterotic quantitative trait 
loci for seedling biomass-related traits using triple testcross design and compare their prediction accuracies by fitting 
molecular markers and heterotic quantitative trait loci.

Results:  A triple testcross population comprised of 366 genotypes was constructed by crossing each of 122 inter-
mated B73 × Mo17 genotypes with B73, Mo17, and B73 × Mo17. The mid-parent heterosis of seedling biomass-
related traits involved in leaf length, leaf width, leaf area, and seedling dry weight displayed a large range, from less 
than 50 to ~ 150%. Relationships between heterosis of seedling biomass-related traits showed congruency with that 
between performances. Based on a linkage map comprised of 1631 markers, 14 augmented additive, two augmented 
dominance, and three dominance × additive epistatic quantitative trait loci for heterosis of seedling biomass-related 
traits were identified, with each individually explaining 4.1–20.5% of the phenotypic variation. All modes of gene 
action, i.e., additive, partially dominant, dominant, and overdominant modes were observed. In addition, ten addi-
tive × additive and six dominance × dominance epistatic interactions were identified. By implementing the general 
and special combining ability model, we found that prediction accuracy ranged from 0.29 for leaf length to 0.56 for 
leaf width. Different number of marker analysis showed that ~ 800 markers almost capture the largest prediction accu-
racies. When incorporating the heterotic quantitative trait loci into the model, we did not find the significant change 
of prediction accuracy, with only leaf length showing the marginal improvement by 1.7%.

Conclusions:  Our results demonstrated that the triple testcross design is suitable for detecting heterotic quantita-
tive trait loci and evaluating the prediction accuracy. Seedling leaf width can be used as the representative trait for 
seedling prediction. The heterotic quantitative trait loci are not necessary for genomic prediction of seedling biomass-
related traits.
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Background
Hybrid breeding has successfully been used in maize over 
the last decades due to the direct utilization of heterosis, 
which refers to the agronomic performance superiority 
of heterozygous hybrids over corresponding homozy-
gous parents [1]. The breeding process basically relies on 
empirical and time-consuming approaches. Preselection 
for candidates became essential for reducing significantly 
labor-intensive and economically prohibitive field-testing 
trials in multi-environments [2]. Genomic prediction, 
which could facilitate the rapid selection of superior gen-
otypes, has emerged as a promising preselection tool for 
tackling this challenge [3]. Implementation of genomic 
prediction requires the training population with known 
phenotype and genotype to fit the prediction model, fol-
lowed by predicting the genomic estimated breeding val-
ues of individuals in the testing populations, which are 
not phenotyped but are genotyped [4].

Recent studies have indicated the usefulness of vari-
ous genomic prediction models involved in ridge regres-
sion best linear unbiased prediction (rrBLUP), genomic 
BLUP (GBLUP), and the general combining ability 
(GCA) model in prediction of yield-related traits and 
biomass-related traits (BRTs) in the harvested mature 
maize materials based on genomics, transcriptomics, 
and metabolites data [5–13]. Compared to the traditional 
pedigree approaches in plant breeding, predictive ability 
based on genomic prediction could be improved to dif-
ferent extents [14, 15]. The factors influencing predictive 
ability are usually marker density, the statistical model, 
population size and relationship, and heritability of the 
traits. In addition, population-wide linkage disequilib-
rium between quantitative trait loci (QTLs) and markers 
is also considered as information needed for the success 
of genomic prediction [16]. To determine the role of QTL 
in genomic prediction, QTLs can be incorporated into 
prediction models in an attempt to capture the compa-
rable predictive ability. However, the effect of QTL in 
predictive ability is still controversial due to the observa-
tions that predictive ability with QTLs did not increase or 
increased slightly compared to that with random markers 
[10, 17, 18].

QTL mapping approaches have been extensively 
applied to identify genetic loci responsible for the 
complex traits and heterosis [19–24]. Among these 
approaches, the triple testcross (TTC) design, which 
allows three linear transformations Z1, Z2, and Z3 of the 
performance data of three populations involved in the F2 
population or recombinant inbred line (RIL) population 
crossed with each parent and their F1, was used to test 
the significance of the epistatic effect of the QTL contrib-
uting to heterosis, with superiority in detection precision 

and efficiency [25]. As an elegant extension of the North 
Carolina experiment design III (NC III), TTC design has 
the advantage to produce unbiased estimation of genetic 
effects, assuming linkage and epistasis are absent [26]. 
Thus, the degree of dominance can be estimated from the 
ratio of unbiased dominance and additive variance [26].

Following the RIL-based TTC design, the heter-
otic QTLs of maize yield-related traits, including grain 
yield, number of kernels per plant, and kernel shape-
related traits, were characterized [20, 27]. Apart from 
yield-related traits, one of the seedling BRTs, seed-
ling dry weight (SDW) with ~ 40  days after sowing, was 
also focused on to decipher the gene action of heterotic 
QTLs using the TTC approach [20]. In total, four addi-
tive and five dominance heterotic QTLs for SDW with 
one-dimensional scan in the respective SUM (Z1) data 
set and DIFF (Z2) data set were detected, as well as five 
additive × additive (aaij) and three dominance × domi-
nance (ddij) epistatic interactions with two-dimensional 
scans through the SUM data set and DIFF data set, 
respectively [20]. However, Melchinger et al. [28] defined 
two new types of heterotic gene effects, the augmented 
additive effect ai*, which includes the additive effect of 
QTL i (ai) minus half the sum of dominance × additive 
epistatic interactions (daij), and the augmented domi-
nance effect di*, which includes the dominance effect of 
QTL i (di) minus half the sum of additive × additive epi-
static interactions with the genetic background irrespec-
tive of linkage, corresponding to the effects reflected 
in the SUM and DIFF data sets with one-dimensional 
scans, respectively. Thus, two-way marker interactions 
detected in the SUM and DIFF data sets should not be 
interpreted as the interactions of corresponding effects in 
one-dimensional scans. In fact, digenic epistatic interac-
tion in the SUM data set comprised aaij and ddij interac-
tions, while digenic epistatic interaction in the DIFF data 
set comprised adij and daij interactions [26]. Unbiased 
estimates of aaij and ddij epistasis can be obtained with 
two-way analysis of variance (ANOVA) of H3 (the perfor-
mance of progenies of F2 or RIL crossed with F1) and Z3 
according to the genetic expectations of QTL effects for 
TTC designs reported by Melchinger et  al. [26]. Hence, 
genetic effects, especially epistatic effects, contributing to 
heterosis of maize BRTs have not been comprehensively 
characterized.

In this study, TTC populations were constructed to 
identify heterotic QTLs and the epistatic interactions 
contributing to seedling BRTs. Predictive ability of seed-
ling BRTs and the impact of heterotic QTLs on the pre-
dictive ability were evaluated.
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Methods
Plant material and agronomic data
Intermated B73 × Mo17(IBM) population consisted of 
122 RIL genotypes [29] were used as base population for 
creating TTC populations. Three testcross (TC) popula-
tions obtained by crossing each of 122 IBM genotypes 
with three testers (B73, Mo17, and B73 × Mo17) based 
on the TC design [25] were designated as TC(B), TC(M), 
and TC(F) populations, respectively. In total, 491 geno-
types comprised B73, Mo17, B73 × Mo17, and 122 geno-
types in each of four populations, IBMs, TC(B), TC(M), 
and TC(F), were included in this study. All of the geno-
types were grown at the Experimental Station of the 
Jiangsu Academy of Agricultural Sciences with three 
blocks in a randomized complete block design in 2013. 
Each block comprised of 10 columns. Each column ran-
domly arranged three testers and 49 genotypes from RIL 
and three TC populations as a single-row plot with 2.1 m 
length × 0.6  m width. The plants were finally thinned 
to eight per row. The seedling BRTs were measured 
at ~ 26  days after planting; leaf length (LL), leaf width 
(LW), and leaf area (LA) of the 3rd fully expanded leaf 
were determined by a portable leaf-scanning instrument 
(product ID LYM-B), while SDW was obtained from 
oven-dried aboveground plant samples collected within a 
row. Each trait per genotype within block was evaluated 
using at least three individual samples.

Data analysis
B73 × Mo17, TC(B), TC(M), and their corresponding 
parents were subject to heterosis assessment by relative 
mid-parent heterosis (MPH), which was calculated using 
the equation MPH (%) = (F1 − MP)/MP × 100, where MP 
indicates the average value of the parents. For each trait, 
ANOVA was conducted on best linear unbiased esti-
mates (BLUEs) of each genotype in TC populations 
across blocks. A t-test and Pearson’s correlation based on 
BLUEs were further used for significance testing and 
relationship analysis. To evaluate the heritability of seed-
ling BRTs, σ 2
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 [31], in which σ 2
R is the 

residual error variance. For any given trait, if the proge-
nies of TC(B), TC(M), and TC(F) were denoted as H1i, 
H2i, and H3i (i = 1–122), respectively, the following linear 

transformations of Z1i = (H1i + H2i)/2, Z2i = H1i    −  H2i, 
and Z3i = H1i + H2i – 2H3i (based on BLUEs of H1i, H2i, 
and H3i) were used for augmented additive, augmented 
dominance, and epistasis heterotic QTL detection [28].

QTL mapping
A total of 1631 markers, including 142 single nucleotide 
variations, 93 insertion/deletion, 57 presence/absence 
variations [27], and other public markers were used for 
linkage map construction using IciMapping [32]. This 
software was further used to implement QTL mapping 
via the inclusive composite interval mapping algorithm, 
which can avoid biased estimation of QTL effects result-
ing from the commonly used method, composite inter-
val mapping, due to the potential absorption of the QTL 
effect in the current testing interval by the background 
marker variables. In one-dimensional scans, LOD scores 
were evaluated based on 1000 permutations with the 
default probability of 0.001 and a default walk step of 
1  cM. In two-dimensional scans, the LOD scores were 
evaluated based on 1000 permutations with the default 
probability of 0.0001 and a default walk step of 5.0  cM. 
The gene mode of a QTL evaluated by the dominance 
ratio degree |di*/ai*| was classified into four groups: addi-
tive (|di*/ai*|< 0.2), partially dominant (0.2 ≤|di*/ai*|< 0.8), 
dominant (0.8 ≤|di*/ai*|< 1.2), or overdominant (|di*/
ai*|≥ 1.2) [20].

Genomic prediction
The performance of TC(B) and TC(M) progenies was 
used as the response variable in the genomic prediction 
model. The genotypes of these two populations were 
derived from the corresponding genotypes of IBM indi-
viduals and either B73 or Mo17 defined by 1631 markers. 
For missing genotypes, the mean value of the marker was 
assigned by the R package ‘rrBLUP’ v4.6 [33]. The uni-
versal model for GCA and SCA effects was employed for 
prediction [8]:

, with

where y is the vector of the observed averaged hybrid 
performance across three blocks, μ is the fixed model 
intercept, ZM , ZP , and ZS correspond to the design matrix 
related to the random GCA effect ( gM ) of maternal lines, 
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random GCA effect ( gP ) of paternal lines, and SCA effect 
( s ), respectively. The genomic relationship matrix can be 
described as follows [8]:

 where N denotes the marker number, WM and WP rep-
resent the standardized marker matrix for respective 
maternal lines and paternal lines, and WT

M and WT
P rep-

resent transposed WM and WP , respectively. The rows 
and columns of the matrix are determined by the parent 
number and marker number, respectively. Each matrix 
column is centered and standardized to unit variance. GS 
was produced by multiplying respective elements in GM 
and GP [34].

The prediction was carried out in the R package ‘som-
mer’ v4.1.2 [30]. To achieve the best prediction, the block 
effect and spatial effect fit by spl2D() function for rows 
and columns in the field were also considered. A five-fold 
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cross-validation scheme with 1000 runs was employed 
to obtain unbiased estimates of predictive ability, also 
referred to as prediction accuracy. For each run, 80% 
hybrids randomly selected as the training set were used 
to calibrate the prediction model, followed by the pre-
diction of the validation set, comprised of the remaining 
20% hybrids, and then Pearson correlation was calculated 
between observed and predicted hybrid performance in 
the validation set as the prediction accuracy.

Results
Phenotypic summary and heterosis
ANOVA based on three TC populations revealed a highly 
significant difference among TC populations (Additional 
file 1: Table S1), implying the suitability of TTC design. 
Heritability ( h2 ) estimates for seedling BRTs were low, 
ranging from 0.10 (LL) to 0.44 (SDW), as were H2 (Addi-
tional file 1: Table S2). Statistical analysis between paren-
tal lines showed that B73 had higher trait values in LL 
and SDW but lower trait values in LW and LA, of which 
only LW differed significantly (Fig. 1a). When comparing 
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Fig. 1  Performance and heterosis of seedling BRTs. a Violin plot of seedling BRTs in parental lines and B73 × Mo17. Double asterisks (**) and four 
asterisks (****) indicate significant differences at the p < 0.01 and p < 0.0001 levels, respectively, according to the t-test. NS represents not significant. 
b Heterosis levels of seedling BRTs. c Violin plot of seedling BRTs in IBM and three TC populations. Group MEAN on the X-axis represents the mean 
values of corresponding progenies derived from the same IBM genotype in TC(B) and TC(M) populations. A single asterisk (*) indicates a significant 
difference at the p < 0.05 level according to the t-test
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MP with B73 × Mo17, we found that all of the BRTs in 
B73 × Mo17 were significantly greater than those in MP 
(Fig. 1a). This higher observation for seedling BRTs was 
also reflected by MPH (Fig.  1b). Among these traits, 
SDW had the highest MPH (~ 150%), whereas the three 
other traits had lower MPH, less than 50% (Fig. 1b). With 
respect to the performance of seedling BRTs in popula-
tions, the trait values of three TC populations were all 
higher than IBM, as expected (Fig. 1c). Significant differ-
ences between TC(B) and TC(M) were observed for seed-
ling BRTs except LL, which confirmed that B73 alleles 
were beneficial for SDW and Mo17 alleles were beneficial 
for LW as well as LA (Fig. 1c). Moreover, LW exhibited a 
significant difference compared with the mean of TC(B) 
and TC(M) with TC(F) (Fig. 1c).

To understand the relationships between seedling 
BRTs, Pearson’s correlations were estimated based on 
BLUEs of TC populations. The strongest significant cor-
relation occurred between LW and LA (r = 0.87), whereas 
the lowest significant correlation was found between LL 
and SDW (r = 0.40) (Fig. 2a). Heterosis of seedling BRTs 
displayed the identical relationship tendency, with Pear-
son’s correlation coefficient ranging from 0.32 between 
LL and SDW to 0.85 between LW and LA (Fig. 2b). This 

trend was further supported by the extremely high corre-
lation between the correlation of MPH and performance 
of seedling BRTs (Fig.  2c). To determine the contribu-
tion of heterozygosity to the seedling BRTs, 1631 mark-
ers were used to derive the heterozygosity of TC(B) and 
TC(M) genotypes. The low correlations between het-
erozygosity and the traits indicated that the role of het-
erozygosity can be ignored in shaping the performance 
and heterosis of seedling BRTs (Additional file 2: Fig. S1).

Identification of heterotic QTLs
A linkage map covering 6943.84  cM was constructed 
by 1631 markers, with an average interval distance of 
4.28  cM between adjacent markers (Additional file  1: 
Table  S3). For each chromosome, the genetic distance 
between adjacent markers ranged from 3.58 to 4.78  cM 
(Additional file 1: Table S3).

In total, 19 heterotic QTLs for seedling BRTs distrib-
uted on six chromosomes were detected with three 
Z transformations in one-dimensional scan in which 
14 augmented additive QTLs were in Z1, two aug-
mented dominance QTLs were in Z2, and three domi-
nance × additive epistatic QTLs were in Z3 (Table  1). 
The phenotypic variation explained due to a single QTL 
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Fig. 2  Correlation of performance and heterosis of seedling BRTs. Correlations between trait BLUEs (a) and between heterosis (b) of seedling BRTs. 
The number represents the Pearson’s r with p < 0.01 and is ordered using hierarchical clustering. c Scatter plot of the correlation of performance and 
heterosis of seedling BRTs
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ranged from 4.1 to 20.5%; both occurred in augmented 
additive QTLs for LA (Table 1).

For LL, three QTLs located on chromosomes 4 and 7 
were found in Z1 and Z3. Two augmented additive QTLs 
explained 7.6 and 11.6%, respectively, of the variation in 
LL. Both QTLs were partially dominant with effects for 
Z1 being 4.1 and −  5.1 respectively, indicating alleles 
from B73 and Mo17 both contributed to increasing LL 
(Table 1).

For LW, five QTLs mapped on chromosomes 2, 4, 7, 
and 9 were detected, all in Z1. Individual QTL accounted 
for 7.1–10.4% of variation in LW. Additive, partially dom-
inant, and dominant gene modes were observed for these 
augmented additive QTLs (Table 1). Among these QTLs, 
four showed positive effects, and one showed a negative 
effect, indicating alleles increasing this trait are provided 
by both B73 and Mo17.

For LA, six QTLs were identified, with five in Z1 and 
one in Z3. Five augmented additive QTLs were distrib-
uted on four chromosomes, with qLA4a on chromosome 
4 owing the largest contribution to the phenotypic vari-
ation of LA (20.5%), colocalized with qLW4a, compared 
with qLA7a on chromosome 7, with the small contribu-
tion to the phenotypic variation of LA (5.1%), colocalized 
with qLW7b. Two QTL regions shared by LW and LA 
suggest that these two genetic loci may contribute to LA 

and LW simultaneously although the gene action of each 
locus affecting each trait differently (Table  1). In total, 
augmented additive QTLs accounted for 45.5% of pheno-
typic variation, whereas phenotypic variation due to the 
dominance × additive epistatic effect was 11.4%.

For SDW, five QTLs were revealed, with two in Z1, 
two in Z2, and one in Z3. Two augmented additive QTLs 
on chromosomes 4 and 7 accounted for 8.4 and 11.5%, 
respectively, of phenotypic variation. The effects of both 
QTLs were negative, indicating alleles donated from 
Mo17 led to improvement of SDW. For two augmented 
dominance QTLs located on chromosomes 5 and 10, 8.1 
and 10.1% of the respective phenotypic variation was 
accounted for by each locus with different gene action 
(Table  1). For one epistatic QTL on chromosome 4, 
which was closely linked to epistatic loci qLA4c for LA, 
the phenotypic variation due to the dominance × additive 
epistatic effect reached 12.0%.

Digenic epistatic interactions for seedling BRTs were 
detected in H3 and Z3 with two-dimensional scans. In H3, 
ten marker pairs of additive × additive epistatic interac-
tion were identified for seedling BRTs (Table 2). Among 
these marker pairs, five interactions were for LL with an 
additive × additive epistatic effect (three were negative 
and two were positive) explaining between 9.6 and 13.2% 
of phenotypic variation, while three interactions for LW, 

Table 1  Heterotic QTLs detected in Z1, Z2, and Z3 for seedling BRTs

LL leaf length, LW leaf width, LA leaf area, SDW: seedling dry weight, Chr chromosome ID, LOD logarithm of the odds, ai
* the augmented additive effect, R2 phenotypic 

variation explained by individual QTL effects, di
* the augmented dominance effect, dai dominance × additive epistatic effect

BRTs QTL Chr. Marker interval Z1 Z2 |di
*/ai

*| Z3

LOD ai
* R2(%) LOD di

* R2(%) LOD dai R2(%)

LL qLL4a 4 InDel70-umc1142 2.9 4.1 7.6 PD

qLL7a 7 umc1015-umc1713 4.7 − 5.1 11.6 PD

qLL7b 7 umc1015-umc1713 PD 2.8 -9.7 10.5

LW qLW2a 2 bnlg1327-bnlg2277 3.1 0.4 7.1 PD

qLW4a 4 InDel68-S4_69842356 4.2 0.5 10.4 PD

qLW7a 7 umc1412-InDel107 3.0 0.4 8.3 D

qLW7b 7 umc2160-umc1159 3.1 − 0.4 7.2 A

qLW9a 9 umc1586-S9_24472332 2.6 0.5 10.2 A

LA qLA4a 4 InDel68-S4_69842356 10.7 1.4 20.5 A

qLA4b 4 umc2061-umc1969 3.7 − 0.7 6.1 A

qLA7a 7 umc2160-umc1159 3.1 − 0.7 5.1 PD

qLA9a 9 umc1271-asg63a 2.6 0.6 4.1 PD

qLA10a 10 bnlg1712-phi050 5.8 0.9 9.7 PD

qLA4c 4 umc1164-bx4 D 3.3 1.9 11.4

SDW qSDW4a 4 npi270-php20071 2.9 − 0.1 8.4 PD

qSDW7a 7 S7_21278179-umc1978 3.9 − 0.1 11.5 PD

qSDW5a 5 ufg49-umc1315 2.7 0.2 8.1 D

qSDW10a 10 umc2122-umc1993 2.8 0.2 10.1 OD

qSDW4b 4 PAV5-umc1669 OD 3.3 0.5 12.0
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LA and DW, with 9.8, 17.3, and 18.6% of the respective 
phenotypic variation explained, due to additive × addi-
tive epistatic effects. In Z3, six marker pairs of domi-
nance × dominance epistatic interactions were detected 
across all of the seedling BRTs (Table 2). The largest pro-
portion of phenotypic variation explained by the domi-
nance × dominance epistatic effect reached 23.6% for 
SDW, while the smallest was 9.4% for LL and SDW. In 
addition, all of the digenic interaction regions did not 
overlap with main-effect QTLs.

Genomic prediction of seedling BRTs
In total, 244 heterozygous genotypes of the TC(B) and 
TC(M) population with observations in three blocks were 
used for genomic prediction for seedling BRTs based on 
1631 markers. Comparisons among models if incorporat-
ing SCA and/or spatial effects revealed that the univer-
sal model for GCA and SCA effects coupling with block 
effect could capture the best predictions across seedling 
BRTs, and therefore used in subsequent analyses (Fig. 3). 
To test the influence of imputed markers on prediction 
accuracy, six marker groups comprising imputed mark-
ers were selected. Each group with the maximum missing 
rate 0, 0.2, 0.4, 0.6, 0.8, and 1 includes a total of 30, 1394, 
1623, 1629, 1631, and 1631 markers used for prediction. 
Prediction accuracies for all of the seedling BRTs showed 
negligible discrepancy among marker groups when the 
maximum missing rate exceeded 0.2 (Fig.  4), indicating 
all 1631 markers could be used for predictions, regard-
less of being imputed. Overall, among seedling BRTs, LL 

had the lowest predictive ability (0.29), whereas the three 
other traits had modest predictive ability ranging from 
0.49 for SDW to 0.56 for LW. To evaluate the predictive 
effect of different numbers of 1631 markers, we randomly 
selected seven marker groups with the marker number 
between 1 and 1600, with five repeats for each group. 
The prediction results demonstrated a notable plateau of 
prediction accuracy could be achieved by 400 markers for 
all of the seedling BRTs (Additional file 2: Fig. S2). When 
the markers were extended to 800, the prediction accura-
cies remained stable and were almost not enhanced when 
more markers were used.

The prediction model was further fit with marker-
enclosed augmented additive QTLs, augmented domi-
nance QTLs, and epistatic QTLs for each seedling BRT. 
Compared with 1545 markers not related to determina-
tion of QTL intervals, integration of any type of QTLs 
does not return significant improvement of prediction 
accuracies, of which a subtle increase by 1.7% was found 
in LL (Fig. 5).

Discussion
A number of QTLs related to BRTs, including plant 
height, leaf area, and plant weight aboveground at the 
seedling or silking stage under low nitrogen and phos-
phorus, drought, or normal conditions, have been 
revealed in maize [35–37]. However, few studies have 
been conducted on heterotic QTLs involved in BRTs. 
Using RIL-based NC III, six and eight environmentally 
stable main heterotic QTLs of PH and EH were identified 

Table 2  Genetic intervals of digenic interaction for BRTs detected in H3 and Z3

LL leaf length, LW leaf width, LA leaf area, SDW seedling dry weight, Chr chromosome ID, LOD logarithm of the odds, ai the main effect of locus i, aj the main effect of 
locus j, aaij the epistatic effect between loci i and j, R2 trait variation explained by the epistatic QTL effect

BRTs Chr. Marker interval Chr. Marker interval LOD ai aj aaij R2(%)

LL H3 3 npi425a-npi420 4 umc2139-umc52 5.3 − 1.6 − 0.3 − 6.9 10.1

2 umc2030-umc1259 4 psr144b-umc1943 5.2 − 2.0 − 1.7 − 7.0 9.6

4 agrr301-bnlg490 5 S5_212169465-InDel90 5.5 − 2.9 1.6 − 7.0 9.6

4 phi295450-InDel63 8 umc1913-csu329 5.9 − 2.3 − 0.4 7.3 13.2

4 InDel78-S4_240467004 9 mmp131-asg44 5.3 − 1.8 − 0.7 6.5 9.7

Z3 8 mmp166-npi585a 9 umc1691-umc1271 5.2 2.8 5.8 − 12.6 10.1

9 umc1570-lim99b 9 isu111b-csu471 5.3 6.7 − 1.1 13.1 9.4

LW H3 2 umc2030-umc1259 2 npi287a-umc44b 5.8 0.1 0.1 0.7 9.8

5 mmp169-php20566 5 S5_1531780-PAV58 5.0 0.0 0.0 − 0.6 8.4

3 npi420-InDel62 10 asg19b-csu48 5.2 0.2 0.0 0.8 14.0

Z3 3 mmc0022-InDel58 3 npi420-InDel62 6.0 1.1 − 0.7 1.8 19.7

LA H3 1 umc1177-tub1 6 rz143a-umc85a 5.2 0.3 0.3 − 1.1 17.3

Z3 5 S5_1531780-PAV58 8 umc1316-bnl12.30a 5.1 1.0 0.7 − 2.2 18.3

SDW H3 1 lim122-cdo1387b 6 umc85a-isu085a 5.1 0.0 0.0 − 0.2 18.6

Z3 1 asg30b-umc1169 8 cdo460-mmp57 5.5 − 0.1 0.1 0.4 9.4

4 PAV42-PAV5 9 PAV93-PAV30 6.3 0.4 0.4 − 0.6 23.6
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from Z1 and Z2, respectively [19]. Using the RIL-based 
TTC design, a total of 12 main heterotic QTLs related 
to SDW (~ 40  days after sowing) were detected, which 
accounted for 13.6 and 31.3% of the variation due to aug-
mented additive and dominance effects, respectively [20]. 
In our study, we characterized comprehensively heter-
otic QTLs of maize seedling BRTs. Among these, 14 were 
augmented additive and two were augmented dominant 
(Table  1). All four modes of gene action, i.e., additive, 
partially dominant, dominant, and overdominant, were 
observed for these loci. The two overdominant loci were 
detected only in SDW in which one exhibited an aug-
mented dominance effect and the other exhibited a dom-
inance × additive effect (Table 1). This might be ascribed 
to the high MPH (~ 150%) of SDW because complete 
dominance alone might not be sufficient to explain 
such high heterosis and overdominance and/or epistasis 
should be taken into account in terms of the contribution 
to heterosis when heterosis is more than 100%. Moreover, 
the high level of heterosis likely increased the number of 
augmented dominance QTLs detected, partly accounting 
for the fact that augmented dominance QTLs were iden-
tified in SDW but not in other seedling BRTs.
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Fig. 3  Comparison among prediction models. The black dashed line represents the mean of prediction accuracies with 1000 iterations
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Fig. 4  Prediction accuracies of seedling BRTs based on different 
imputed marker groups. Prediction accuracies are expressed as the 
mean ± standard deviation of 1000 cross-validations. Numerals on 
the X-axis represent the maximum missing rate of markers for each 
group. The marker with a missing rate (proportion of individuals 
with missing genotype at the given marker locus) lower than the 
maximum missing rate would be imputed, and a marker higher than 
the maximum missing rate would be excluded from that group. 
The number 0 indicates that the group is comprised of non-missing 
markers, and 1 indicates that the group is comprised of all of 1631 
markers. For each group, the error bars were separated to avoid 
overlapping with each other
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The epistatic effects have been demonstrated to play a 
prominent role in heterosis [19, 38, 39]. In our study, we 
revealed three QTLs with a dominance × additive effect in 
one-dimensional scan for Z3, reflecting QTL × genetic back-
ground interactions, as well as ten marker pairs of the addi-
tive × additive epistatic interaction in H3 and six marker pairs 
of the dominance × dominance epistatic interaction in Z3 with 
a two-dimensional scan. Among these epistatic interactions, 
six additive × additive epistatic interaction displayed negative 
directions. According to the expression of heterosis MPH = [d] 
– 0.5[aa] [28], these negative additive × additive epistatic 
effects could contribute positively to heterosis. Hence, even 
small epistatic interactions can be important for heterosis. The 
comprehensive identification of the main and interactive het-
erotic QTLs proven the high efficiency and robustness of RIL-
based TTC approach.

QTL-associated markers with major effects are generally 
used to select individuals for simple traits by marker-assisted 
selection. In comparison, a genomic selection approach 
can incorporate all of the molecular markers of the whole 
genome regardless of marker effects to predict the perfor-
mance of candidates for selection [4]. Some biomass-related 
traits in maize have been subject to genomic prediction. For 
dry matter yield of whole-plant aboveground biomass in the 
harvested materials, the prediction accuracy displayed a con-
siderably large range between 0.5 and 0.8 for most of the vari-
ous predictors and predictor combinations [8]. In contrast, 
the prediction accuracy of SDW in our analysis was less than 

0.5. The discrepancy may be caused by the change in herit-
ability of SDW from early (0.49) to later (0.82) developmen-
tal stages due to the fact that high heritability can lead to an 
increase in prediction accuracy [40]. Moreover, this is also 
supported by the consistent tendency between prediction 
accuracy and heritability among seedling BRTs. In addition 
to heritability, marker density has been demonstrated to sub-
stantially influence prediction accuracy before a prediction 
plateau where additional markers no longer had an effect on 
prediction accuracy improvement. The marker numbers that 
reached a plateau varied from dozens to thousands in numer-
ous previous studies [6, 8, 41]. For seedling BRTs, 800 markers 
almost achieved the prediction plateau (Additional file 2: Fig. 
S2), indicating 1631 markers are sufficient to obtain the maxi-
mum prediction accuracy.

QTL-based genomic prediction in maize focused on the 
disease traits [10, 17, 18]. A slight improvement and decrease 
of prediction accuracy were both observed in BLUP models 
when incorporating disease resistance QTLs into genome-
wide markers in those studies. In comparison with 1545 
genome-wide markers, the inclusion of additional markers 
closely linked to major heterotic QTLs and epistatic interac-
tions of seedling BRTs did not result in a dominant change of 
the prediction accuracy (Fig. 5). Three aspects could be con-
sidered to account for such results. The first explanation may 
be that the GCA and SCA model implemented belongs to the 
BLUP approach. This was evidenced indirectly in a stochastic 
simulation analysis in which the GBLUP model was found to 
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have a constant accuracy irrespective of the number of QTLs 
under conditions of a given heritability and sample size [42]. 
The second explanation could be that the QTLs identified 
did not cover all of the loci, even those that were numerous 
with small effects, across the genome. For enhancing the 
prediction accuracy, one way is to incorporate all of the pub-
lic markers detected significantly by either QTL mapping or 
genome-wide association analysis into the prediction model 
[43]. The third reason may be that the QTLs revealed are 
related to heterosis but not the performance per se of seedling 
BRTs. The heterotic QTLs might not favor the improvement 
of prediction for performance per se as a consequence of the 
subtle role of QTLs in the performance.

Apart from BLUP prediction models, Bayesian and 
machine learning models such as Random Forest and deep 
learning were also employed to explore the prediction [44]. 
In some cases, these methods could gain a better predic-
tion performance [45–47]. However, due to the complexity 
of prediction, superior prediction models integrating the 
advantages of various methods remain to be developed in 
the future to fit QTLs.

Conclusions
We precisely identified the main and epistatic heterotic 
QTLs of seedling biomass-related traits used triple testcross 
strategy. All four modes of gene action including additive, 
partially dominant, dominant, and overdominant modes 
were observed. We also found that prediction accuracy of 
seedling BRTs ranged from 0.29 for leaf length to 0.56 for 
leaf width and the incorporation of heterotic QTLs did not 
lead to the significant improvement of prediction accuracy. 
These findings demonstrated that the TTC design is suitable 
for detecting heterotic QTLs and evaluating the prediction 
accuracy. The heterotic QTLs are not necessary for genomic 
prediction of seedling BRTs.
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