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High‑resolution spectral information enables 
phenotyping of leaf epicuticular wax in wheat
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Abstract 

Background:  Epicuticular wax (EW) is the first line of defense in plants for protection against biotic and abiotic fac‑
tors in the environment. In wheat, EW is associated with resilience to heat and drought stress, however, the current 
limitations on phenotyping EW restrict the integration of this secondary trait into wheat breeding pipelines. In this 
study we evaluated the use of light reflectance as a proxy for EW load and developed an efficient indirect method for 
the selection of genotypes with high EW density.

Results:  Cuticular waxes affect the light that is reflected, absorbed and transmitted by plants. The narrow spectral 
regions statistically associated with EW overlap with bands linked to photosynthetic radiation (500 nm), carotenoid 
absorbance (400 nm) and water content (~ 900 nm) in plants. The narrow spectral indices developed predicted 
65% (EWI-13) and 44% (EWI-1) of the variation in this trait utilizing single-leaf reflectance. However, the normalized 
difference indices EWI-4 and EWI-9 improved the phenotyping efficiency with canopy reflectance across all field 
experimental trials. Indirect selection for EW with EWI-4 and EWI-9 led to a selection efficiency of 70% compared to 
phenotyping with the chemical method. The regression model EWM-7 integrated eight narrow wavelengths and 
accurately predicted 71% of the variation in the EW load (mg·dm−2) with leaf reflectance, but under field conditions, 
a single-wavelength model consistently estimated EW with an average RMSE of 1.24 mg·dm−2 utilizing ground and 
aerial canopy reflectance.

Conclusions:  Overall, the indices EWI-1, EWI-13 and the model EWM-7 are reliable tools for indirect selection for 
EW based on leaf reflectance, and the indices EWI-4, EWI-9 and the model EWM-1 are reliable for selection based on 
canopy reflectance. However, further research is needed to define how the background effects and geometry of the 
canopy impact the accuracy of these phenotyping methods.
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Background
Wheat is a major staple food and an important source 
of calories in developing countries [1]. More than 220 
million ha of wheat is cultivated worldwide [2], and 600 
million tons of wheat grain is produced each year [3]. 
The expected global population of 9 billion by 2050 will 

require an increase in wheat production of 60% to 100% 
[2, 4], but the current genetic gains of < 1% per year [5] 
will be insufficient to fulfill this expected demand. Annu-
ally, more than 600 million tons of wheat are harvested 
[6], but maintaining this production is already a challenge 
in the face of climate change. It is estimated that climate 
change can reduce global wheat production by 6% for 
every degree centigrade increase in the temperature [7]. 
Therefore, the development of wheat cultivars that are 
adapted to high temperatures and limited irrigation is 
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crucial for responding to a changing climate and ensur-
ing wheat production.

Developing wheat cultivars that are adapted to a wide 
range of environments, have resilience to abiotic stresses 
and high yield potential are priorities of the main pub-
lic breeding programs [2]. Physiological trait-based 
improvements for tolerance to heat and drought stress 
rely on the favorable expression of morphological and 
physiological plant traits (PT) [8–10]. Independent 
conceptual models for grain yield (GY) under heat and 
drought have been proposed based on the following main 
drivers: light interception (LI), radiation use efficiency 
(RUE), partitioning of total assimilates [8], water use effi-
ciency (WUE) and harvest index [11]. Each of these main 
drivers contains genetically determined PTs that can 
potentially lead to an additive genetic effect for resilience 
to heat and drought when combined through strategic 
crossing [12, 13]. Physiological traits such as canopy tem-
perature (CT) are already utilized as selection criteria in 
breeding pipelines [5, 10], but key PTs such as epicuticu-
lar wax (EW) remain unexplored because of the expen-
sive, subjective and laborious method for phenotyping 
[14].

EW is the outermost layer of leaves that is located on 
the top of the cutin matrix and intracuticular wax [15] 
and consist of hydrocarbon compounds [16, 17] derived 
from long chains of C20 and C30 fatty acids [18, 19]. The 
hydrophobic layer that creates the EW covers the aerial 
epidermis of plants maintaining the integrity of the plant 
against high UV radiation [20] and external environmen-
tal stresses such as insect infestation [21, 22] and patho-
gen infection [23]. This cuticle also minimizes the water 
loss via transpiration in wheat [18, 24] and reduces leaf 
temperature [25, 26]. Early studies estimated a decrease 
in the internal temperature of the plant by 0.7° C under 
simulated drought conditions in a glasshouse, saving 30 g 
of water per plant during the growth season and extend-
ing grain filling by 3 days [27].

Waxes and trichomes affect the interaction of the 
plant with the environment, particularly the reflection 
and absorbance of light. Surface waxes are very effective 
in reflecting excessive radiation in specific ranges of the 
spectrum, namely at 330 and 680 nm [28], but the main 
increases in radiation reflection occur at the photosyn-
thetic active radiation (PAR) range to dissipate excess 
energy and avoid damage to the PSII reaction center [29, 
30]. In wheat, increases in light reflectance of 12% to 35% 
were detected at the PAR (400 to 700 nm) range in wax 
covered genotypes [31]. Several studies have reported 
that EW and its constituents are an important protective 
barrier against harmful UV-B radiation [20, 28, 32–35], 
but these fluctuations in reflectance are species-specific 

and can range from < 10% in most species to 70% in oth-
ers [21, 36].

Limitations on field phenotyping restrict our capac-
ity to unravel complex morphological and physiologi-
cal traits. Spectral technologies have the potential to 
increase the efficiency, precision and accuracy of pheno-
typing platforms. In breeding programs, high-precision 
phenotyping can enable the screening of segregating 
material, advanced lines and germplasm [5, 37]. Increas-
ing the accuracy of phenotyping can provide more reli-
able estimates of heritability and variance components 
[38], facilitate gene discovery and enable prediction of 
complex traits with approaches such as genomic selec-
tion [39, 40]. The strong association of spectral secondary 
traits with GY [41, 42] highlights the potential of canopy 
reflectance to increase productivity in wheat. A detailed 
list of sensors and their applications for plant phenotyp-
ing is provided by [43].

Recent advances in technology have maximized the 
throughput of phenotyping measurements under field 
and controlled conditions [44–46]. RGB and hyper-
spectral sensors have enabled the rapid and noninvasive 
acquisition of spectral information. Spectral vegetation 
indices (SVI) are a quick, easy and inexpensive method 
of transforming light reflectance into simple indicators of 
photosynthetic and canopy variations. The simple ratio 
index (SR) [47] and the normalized difference vegetation 
index (NDVI) [48] are two of the first SVIs developed for 
detecting green vegetation. Both indices combine the 
percentage of reflectance at the wavelengths where plants 
absorb (~ 750 to 800  nm) and reflect (800 to 2500  nm) 
light. Several other SVIs have been built for sensing the 
water content of plants [49], photosynthetic radiation 
[50], carotenoid pigments [51], plant height [52], leaf area 
[53], and diseases [54].

In this study, the aim was to develop spectral methods 
to indirectly phenotype EW accumulated on the surface 
of leaves. This wax index will serve as a proxy to detect 
genotypes with a thick wax cover, in order to integrate 
the trait into breeding pipelines to enhance resilience 
to heat and drought stress. The goal is to facilitate fre-
quent screening for EW at multiple field trial locations 
by replacing conventional sample-based methods. Addi-
tionally, these methods will support ongoing research on 
the underlaying physiological and genetic mechanisms of 
cuticular waxes. We conducted a set of theoretical stud-
ies with the following specific objectives: i) detect the 
wavelengths at which reflectance is affected by cuticular 
waxes, ii) develop spectral indices and models to detect 
wheat cultivars with high and low EW content, and iii) 
validate the spectral methods for phenotyping under field 
conditions.
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Results
Light interactions associated with leaf EW
The differences in the light interactions detected after 
the removal of EW confirmed the role of the cuticle in 
avoiding and dissipating excess radiation (Fig. 1). Varia-
tions in the percentage of light absorbed (Fig. 1a), trans-
mitted (Fig.  1b) and reflected (Fig.  1c) by leaves were 
detected when EW was partially eliminated. The removal 
of the cuticle increased the light absorbance in the vis-
ible range from 0.02 to 0.04%, with a subsequent decrease 
to 0% reflectance at 710  nm and 0.03% in the NIR. An 
increase in light transmission through the leaf from 0.01 
to 0.06% in the visible region was also observed, with a 
significant increment of 0.13% in the red-edge (680 to 
740 nm). In the NIR (740 to 980 nm), the transmittance 
also increased by approximately 0.06%. Light reflectance 
was most affected when the wax cuticle was removed. 
Its removal revealed that EW contributed from 0.05% 
to 0.15% of the increase in reflectance at various wave-
lengths. Further analysis enabled the estimation of both 
positive and negative variations in the percentage of light 
reflected by the unit (mg·dm2) of wax accumulated on 
top of the leaf surface. Figure  1d presents the slopes of 
the linear regression models individually fitted with the 
EW content as the independent variable and the percent-
age of light reflectance detected with the spectroradiom-
eter as the dependent variable. From 424 to 450 nm, there 
was an increase of ~ 0.82% in reflectance, and from 544 
to 575 nm the increase was 0.79%. The light reflectance 
in the 700 and 730 nm was not affected by the cuticular 
wax; however, there was a reduction of 0.77% from 713 to 
720 nm, with the highest peak in 717 nm (− 0.8%), and a 
subsequent increase of ~ 1.5% from 756 to 825 nm.

The partial least square regression (PLSR) analysis 
reduced the total number of spectral bands and inte-
grated only uncorrelated bands in the predictive model 
(Fig.  2). The correlation coefficients of the regression 
between the wavelengths and EW content are presented 
in Fig.  2a. Three main components enabled the maxi-
mum correlation between the wavelengths and the EW 
content and explained 97.34% of the variability of the 
trait. These three components combine the follow spec-
tral regions: 424 to 448, 625, 660, 712 to 727, 775 to 835, 
994 and 997  nm. Most of these wavelengths coincide 
with the regions detected in Fig. 1d. The most influential 

variables were 712 to 727 nm, where the transition from 
low reflectance in the visible region to high reflectance in 
the NIR wavelengths occurs. Overall, the selected latent 
variables or wavelengths enabled the prediction of EW 
content in the data subset for validation and lead to a 
positive linear association between the predicted and the 
actual values of EW (Fig. 2b).

Spectral indices for indirect phenotyping of EW
Spectral indices developed in previous studies for indi-
rect phenotyping of morphological and physiological 
characteristics of the plant (Tables 1 and 2) were calcu-
lated and statistically associated with EW. The spectral 
resolution of the light reflectance extracted from the 
spectroradiometer was adjusted from 1 to 3 nm by aver-
aging the percentage of light reflectance of every 3 bands. 
The broad spectral bands were calculated by estimating 
the average of reflectance w ithin the range (nm) corre-
sponding to the blue, green, yellow, orange, red, red-edge 
and near infrared regions. The ranges in nm of every 
spectral region are included in Table 2. The narrow spec-
tral indices PRI-1 (r = −0.57), CARI-2 (r = − 0.67), PSSR-
b (r = − 0.5 7), PSSR-a (r = − 0.55 ), ARI-1 (r = − 0.52) , 
ARI-2 (r = − 0.58) and SIPI-2 (− 0.61) were significantly 
correlated (p < 0.001) with EW. These indices are effec-
tive to detect variations in carotenoids, chlorophyll and 
anthocyanins in plants [51, 55–58]. However, these indi-
ces were not able to predict more than 38% of the total 
variability of EW. Among the broad vegetation indices 
calculated, only RGRI (− 0.57) and ARI-1 (− 0.67) were 
strongly associated with EW.

The broad and narrow indices developed in this study 
are presented in Table  3. The selection of these indi-
ces was based on their high R2 in the cross validation 
(LOOCV) and low root mean square error (RMSE) esti-
mates in the bootstrapping analysis. EWI-13 and EWI-14 
estimated 65% and 62% of the EW variation combining 
the wavelengths 625, 736 and 832 nm. The indices EWI-
6, EWI-9 and EWI-12 integrated only two wavelengths, 
658 and 712 nm; 670 and 718 nm; and 622 and 718 nm, 
respectively. The proportion of the variance in the EW 
explained by the EWI (R2) was as follow: EWI-6 = 0.52, 
EWI-9 = 0.51 and EWI-12 = 0.51. When the broad spec-
tral bands blue, red and NIR were combined in the spec-
tral indices, the prediction accuracy ranged from 31 to 

Fig. 1  Variation in a absorbance, b transmittance and c reflectance derived by the removal of the EW coat with HPLC chloroform (CHCl3). These 
variations are presented as the difference of the spectral signature of the leaf after the wax coat was removed minus the the spectral response of 
the leaf with the wax coat in place. The red solid lines define the red edge and the dash line mark the end of the visible and start of the NIR region. 
The slope of the linear regression models (d) were fitted as Y = a + bX, where Y corresponds to the independent variable EW (mg·dm−2), X is the 
percentage of light reflectance at one nanometer resolution, a and b are the intercept and the slope of the fitted model, respectively. The statistical 
significance of the models was P ≤ 0.05 or less

(See figure on next page.)
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44%. Specifically, EWI-1 estimated 44% of the variabil-
ity with a RMSE of 1.19 mg·dm−2. The slope of the lin-
ear models (B) in most cases was positive, except those 
for EWI-3, EWI-4, EWI-8, EWI-10 and EWI-11. The 
increase in EW content of 1 mg·dm−2 caused wide vari-
ations in the values of the broad and narrow indices from 
0.002 to 5.73.

Prediction accuracy of spectral indices for phenotyping 
of EW load
The EW content determined with the chemical method 
from samples collected in the field experimental tri-
als of the mapping population ranged from 1.54 to 

2.4  mg·dm−2 (Table  4). The heritability estimate (h2) of 
EW ranged from 0.51 to 0.58 across all three trials. Over-
all, the CV of all trials was low, 6.9 in DS-1, 5.8 in DS-2 
and 7.6 in DS-3. All fourteen indices included in Table 3 
were calculated with ground spectral information. How-
ever, only the indices EWI-1, EWI-2, EWI-3, EWI-4, 
EWI-9 and EWI-13 were strongly associated with EW 
deposition when estimated with canopy reflectance and 
are the only indices included and discussed in Table 4.

The phenotypic (rp) and genotypic (rg) correlations of 
the top performing indices estimated with the ground 
hyperspectral information and EW content are pre-
sented in Fig.  3. All correlations were statistically 

Fig. 2  Correlation coefficients a of the three main partial least square components with the EW content (mg·dm2) and b association of the EW load 
predicted with the PLS’s model vs EW measured by the chemical method

Table 1  Narrow vegetation indices for phenotyping specific traits in plants

Narrow vegetation indices Abbreviation Formula Reference

Water index WI ρ900/ρ970 [49]

Photochemical reflectance index PRI-1 (ρ531 − ρ570)/(ρ531 + (ρ570) [51]

Photochemical reflectance index PRI-2 (ρ570 − ρ539)/(ρ570 + ρ539) [68]

Red-green index RGI ρ690/ρ550 [76]

Normalized difference water index NDWI ρ970/ρ900 [49]

Carotenoids reflectance index-1 CARI-1 ρ510/ρ550 [55]

Carotenoids reflectance index-2 CARI-2 (1/ρ510)/(1/ρ700) [55]

Plant senescence reflectance index PSRI (ρ680 − ρ500)/(ρ750) [77]

Normalized pigment chlorophyll index NPCI (ρ680 − ρ430)/(ρ680 + (ρ430) [69]

Pigment specific simple ratio for chlorophyll-a PSSR-b ρ800/ρ650 [78]

Pigment specific simple ratio for chlorophyll-b PSSR-a ρ800/ρ675 [78]

Anthocyanin reflectance index-1 ARI-1 (1/ρ550)/(1/ρ700) [57]

Anthocyanin reflectance index-2 ARI-2 ρ800(1/ρ550)/(1/ρ700) [57]

Structure insensitive pigment index SIPI-1 (ρ800 − ρ450)/(ρ800 + (ρ650) [58]

Structure insensitive pigment index SIPI-2 ρ800 − ρ440)/(ρ800 + (ρ680) [58]
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Table 2  Broad band vegetation indices for phenotyping specific traits in plants

Broad band VI Abbreviation Formula Reference

Violet wavelength VIO ρ400/ρ451

Blue wavelength BL ρ454toρ496

Green wavelength GR ρ499toρ517

Yellow wavelength YW ρ574toρ589

Orange wavelength OR ρ592toρ619

Red wavelength RED ρ622toρ748

Red-edge wavelength RE ρ691toρ730

Near infrared wavelength NIR ρ751toρ997

Normalized difference vegetation index NDVI (NIR − Red)/(NIR + Red) [48]

Simple ratio index SR NIR/Red [47]

Green normalized difference vegetation index NDVI-green (NIR − Green)/(NIR + Green) [79]

Modified simple ratio MSR Red/(NIR/Red + 1)0.5 [80]

Renormalized difference vegetation index RDVI (NIR − Red)/(NIR + Red)0.5 [81]

Red-green vegetation index RGRI Red − Green [82]

Ratio vegetation index RVI Red/NIR [76]

Difference vegetation index DVI NIR − Red [83]

SR & NDVI SR-NDVI (NIR2 − Red)/(NIR + Red2) [53]

NDVI-Red-edge NDVI-RE (NIR − Rededge)/(NIR + Rededge) [76]

Rededge chlorophyll index CI-Rededge (NIR/Rededge)− 1 [76]

Anthocyanin reflectance index ARI-1 (1/Green)/(1/Rededge) [76]

Modified Anthocyanins reflectance index mARI (1/Green)/
(

1/Rededge
)

∗ NIR [76]

Anthocyanin reflectance index ARI-2 Green/NIR (76)

Table 3  Coefficients of determination (R2) and root mean square error (RMSE in mg·dm−2) of the indices developed for phenotyping 
EW in leaves

R2 was calculated in the training set by a leaving one out cross validation analysis (LOOCV) and the RMSE was estimated in the validation set. B is the slope of the line 
and a is the intercept of the dependent variable

Index Model parameters

a B R2 RMSE 95% CI p-value

Broad indices / RGB and NIR spectral bands

 EWI-1 Blue/Red 0.213 0.04 0.44 1.19 1.037–2.17  < 0.0001

 EWI-2 Blue/NIR 0.07 0.13 0.39 1.18 0.98–1.98  < 0.0001

 EWI-3 (NIR-Red)/Blue − 0.93 − 0.01 0.31 1.19 1.04–1.97  < 0.0001

 EWI-4 (Red
2

-Blue)/(Red-Blue
2

) − 0.09 − 0.03 0.32 1.19 1.09–2.55  < 0.0001

Narrow indices / two narrow spectral bands

 EWI-5 676 0.019 0.005 0.45 0.97 0.75–1.21  < 0.0001

 EWI-6 658/712 0.12 0.03 0.52 1.02 0.70–1.36  < 0.0001

 EWI-7 625/706 0.22 0.05 0.50 0.96 0.67–1.28  < 0.0001

 EWI-8 694/625 − 0.006 − 0.002 0.42 1.08 0.96–1.55  < 0.0001

 EWI-9 (670–718) / (670+718) − 0.85 0.03 0.51 1.04 0.61–1.54  < 0.0001

 EWI-10 (691–661) / (691+661)
2 4.92 − 1.03 0.48 0.99 0.74–1.27  < 0.0001

 EWI-11 (1/661)—(1/694) 29.13 − 5.73 0.48 1.01 0.71–1.35  < 0.0001

 EWI-12 (622/718)-1 0.62 0.12 0.51 0.99 0.74–1.28  < 0.0001

Narrow indices / three narrow spectral bands

 EWI-13 625 (1/736 – 1/832) 0.008 0.004 0.65 1.01 0.622–1.426  < 0.0001

 EWI-14 (625–736) / 832 0.02 0.007 0.62 0.98 0.65–1.35  < 0.0001
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significant at P ≤ 0.01. As expected, genotypic correla-
tions were higher than phenotypic correlations in all 
cases. According to these parameters, the index EWI-4 
and EWI-9 better estimated the variation of EW. The 
average response of rp and rg were -0.51 and -0.55 for 
the EWI-4, and 0.33 and 0.48 for EWI-9.

Although the lack of variance of EW in the mapping 
population used in this study might limit the response 
for direct selection, the moderate h2 of the trait would 
lead to genetic advances when selection is applied 
(Table 5). The genetic gain (GG) for EW with selection 
pressure of 10% is also included in Table 5. In DS-1, the 
GG was 0.65  mg·dm−2; in DS-2, it was 0.89  mg·dm−2, 
and in DS-3 it was 0.59  mg·dm−2. However, when the 
mean of the actual population was considered, the 
genetic advance with direct selection averaged 2.5%. 
The correlated response of the EW indices with the 
EW content derived an increase in EW. Improvement 

in the EWI-1, 2, 9 and 13 resulted in increases of 
0.063, 0.053, 0.047 and 0.043  mg·dm−2 of EW content, 
respectively. On the other hand, decreases of 0.047 and 
0.063 mg·dm−2 were calculated with a positive selection 
of the indices EWI-3 and 4. The efficiency of selection 
(RE) based on the secondary characters or indices (EWI) 
ranged from 46 to 78% in average. However, EWI-1, 2 
and 4 in DS-2 were almost as efficient in selection as the 
direct selection of the trait with the chemical method 
with 112, 99 and 90% efficiency, respectively.

Multivariate regression models integrating narrow spectral 
bands to predict the EW load
The statistics of the multivariate models devel-
oped with the selected bands in the PLSR analy-
sis are presented in Table  6. The final selection of 
the variables led to seven models in single and/or 
multiple combinations of eight wavelengths. The 
spectral response at 424  nm predicted almost 33% 

Table 4  Mean, genetic variance ( σ 2
g ), heritability estimate ( h2 ), error variance ( σ 2

e ) and coefficient of variation (CV in %) of EW content 
(mg·dm−2), EWI-1, EWI-2, EWI-3, EWI-4, EWI-9 and EWI-13

EW and the indices were estimated across three sets of data (DS 1 to 3) collected from wheat inbreed lines evaluated during the agronomic cycle from 2012 to 2013, 
2014 to 2015 and 2016 in the research station of CIMMYT near at Ciudad Obregon, Sonora in Mexico and Bushland, Texas

Mean σ
2
g h2 σ

2
e

CV

EW (mg·dm−2) DS-1 1.72 0.014 0.56 0.014 6.9

DS-2 2.40 0.015 0.51 0.018 5.8

DS-3 1.54 0.016 0.58 0.014 7.6

EWI-1 DS-1 0.31 0.00039 0.78 0.00025 5.0

DS-2 0.37 0.0004 0.86 0.0001 2.9

DS-3 0.41 0.0007 0.78 0.0004 5.2

EWI-2 DS-1 0.31 0.00039 0.83 0.00025 5.1

DS-2 0.17 0.0003 0.77 0.0002 7.9

DS-3 0.41 0.00001 0.46 0.0004 5.2

EWI-3 DS-1 6.72 2.07 0.85 0.72 12.6

DS-2 3.2 0.34 0.78 0.19 13.7

DS-3 26.6 7.4 0.48 16.5 13.9

EWI-4 DS-1 − 1.28 0.0006 0.58 0.0008 22.7

DS-2 -0.23 0.0003 0.65 0.0002 6.8

DS-3 − 0.37 0.0007 0.80 0.0003 5.3

EWI-9 DS-1 -0.48 0.0065 0.84 0.0024 10.2

DS-2 − 0.28 0.0016 0.74 0.0011 12.1

DS-3 − 0.12 0.00006 0.63 0.00007 7.3

EWI-13 DS-1 0.72 0.0001 0.75 0.00007 11.5

DS-2 0.092 0.000039 0.78 0.000023 5.2

DS-3 0.29 0.0001 0.62 0.0001 3.6

Fig. 3  Phenotypic (σp ) and genotypic ( σg) correlation of the epicuticular wax indices (EWI) 1, 2, 3, 4, 9 and 13 with EW content measured with the 
chemical method (mg·dm−2). All six indices were statistically significant (P < 0.01) across all three sets (DS-1, 2 and 3)

(See figure on next page.)
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of the total variability of the trait in the validation 
set. However, when as many as seven spectral bands 
were incorporated in a model (424, 547, 574, 658, 
712, 721, 775 and 817  nm), the accuracy increased 
by 38% (EWM-7 with R2 = 0.71). The RMSE of the 
prediction was consistent across the models, ranging 
from 0.49 to 0.52 mg·dm2.

The RMSE of the seven EW models was estimated 
in the four experimental trials in which ground and 
aerial reflectance were collected. The square root of 
the residuals is presented in Fig.  4a. A considerable 
increase in the error of the prediction models calcu-
lated with ground and aerial hyperspectral informa-
tion was observed across all trials in comparison to 
the RMSE estimated with reflectance from single 
leaves. The highest prediction accuracy was obtained 
with EWM-1, with an average RMSE of 1.4  mg·dm−2 
from the ground measurements and of 0.63  mg·dm−2 
from the aerial information. EWM-2 seems to accu-
rately estimate EW load utilizing light reflectance in 
the same way as EWI-1. However, in cases as DS-1, the 
prediction accuracy with the EWM-2 led to a RMSE as 
high as 5.7 mg·dm−2.

Discussion
In this study we evaluated the spectral response of leaves 
and derived and validated a set of indirect methods for 
phenotyping the trait. Furthermore, differences in light 
interaction derived by cuticular waxes and detected in 
this study coincide with results from studies conducted 

in Vitis vinifera [59], Leucadendron lanigerum [60] and 
Cotyledon orbiculata [61]. The increase of approximately 
10% of light reflectance in the NIR region was consider-
ably less than changes in reflectance previously detected 
on wheat ~ 15% [62] and in rosette succulent plants ~ 50% 
[31]. Additionally, the violet (r = 0.64) and blue (r = 0.63) 
spectral regions strongly correlated with EW, and it is in 

Table 5  Genetic gain (GG in mg·dm−2), genetic advance with 
respect to the mean (GAM in %) and response to direct selection 
(R) of EW

Correlated response (CR) of EW content and indices, and relative efficiency of 
indirect selection (RE) of EW with indices 1, 2, 3, 4, 9, and 13

DS-1 DS-2 DS-3

GG EW 0.65 0.89 0.59

GAM (%) EW 2.5 1.7 3.3

R EW 0.09 0.08 0.12

CR EW & EWI-1 0.05 0.08 0.06

CR EW & EWI-2 0.03 0.08 0.05

CR EW & EWI-3 − 0.03 − 0.05 − 0.06

CR EW & EWI-4 − 0.06 − 0.07 − 0.06

CR EW & EWI-9 0.02 0.05 0.07

CR EW & EWI-13 0.02 0.03 0.08

RE EW & EWI-1 0.65 1.12 0.55

RE EW & EWI-2 0.46 0.99 0.46

RE EW & EWI-3 − 0.41 − 0.66 − 0.48

RE EW & EWI-4 − 0.71 − 0.90 − 0.53

RE EW & EWI-9 0.27 0.67 0.62

RE EW & EWI-13 0.26 0.45 0.66

Table 6  Statistics of regression models (EWM)

The coefficient of determination (R2) and the C(p) were calculated in the training set, while the root mean square error (RMSE) was estimated in the validation set. The 
multivariate models were significant at 5% of probability or less

Bold values indicate the parameters of the statistical model: intercept and wavelength range in nanometers (nm)

Spectral band in nanometers RMSE R2

EWM-1 Intercept 424 0.49 0.33

0.46 52

EWM-2 Intercept 658 721 0.50 0.45

0.31 90.3 − 3.88

EWM-3 Intercept 712 721 775 817 0.51 0.58

0.71 160.7 − 183.1 − 33.7 80.2

EWM-4 Intercept 658 712 721 775 817 0.51 0.60

0.19 40.8 109.6 − 128.4 − 65.8 99.1

EWM-5 Intercept 574 658 712 721 775 817 0.51 0.61

-0.22 17.3 16.9 82.9 − 109.1 − 122.2 153.4

EWM-6 Intercept 424 574 658 712 721 775 817 0.52 0.66

1.13 − 76.4 1.9 134.7 76.4 − 109.9 − 45.1 78.1

EWM-7 Intercept 424 547 574 658 712 721 775 817 0.52 0.71

− 3.1 − 73.5 58.9 − 82.7 146.9 89.6 − 188.8 − 91.6 134.3
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line with preliminary studies where waxes were reported 
as photoprotective mechanisms against short wavelength 
radiation [17, 63–65]. A significant number of research 

studies also reported that waxes enhance UV (~ 100 to 
400  nm) reflectance [17, 28, 63, 66], but the analysis of 
these wavelengths is outside of the scope of this study 

Fig. 4  Root Mean Square Error (RMSE in mg·dm−2) of the multivariate models (EWM) for predictions of epicuticular wax load utilizing the 
ground-based and aerial hyperspectral reflectance. The RMSE of prediction for the ground-based information is presented as the average response 
across the four sets of wheat inbreed lines evaluated. DS stands for data set 1 to 3 and Aerial corresponds to the hyperspectral information collected 
with the aircraft. (O-P)2 is the square of the difference between the observed minus the predicted values



Page 11 of 17Camarillo‑Castillo et al. Plant Methods           (2021) 17:58 	

due to limitations of the equipment utilized to collect the 
spectral information.

The wax cuticle enhances light reflectance almost by 
1% per every unit of wax (mg·dm−2) accumulated on 
top of the leaf surface, but specifically in the PAR wave-
lengths where the absorption of photosynthetic pigments 
occurs [17]. In sorghum (Sorghum bicolor L.), a similar 
increase of 3% in reflectance by the cuticular leaf coat was 
reported, but the result was based on wavelengths of the 
spectrum from 400 to 1000 nm, without a detailed exam-
ination of specific narrow spectral bands [67]. Among the 
spectral regions associated with EW, the wavelength at 
424 and 448 nm are linked to the absorption of light by 
carotenoids in plants [56], while the surrounding wave-
lengths at approximately 500 nm are associated with the 
dissipation of excess radiation and the efficiency of pho-
tosynthetic radiation [50, 68, 69]. Additional peaks of 
absorption of chlorophyll a and b in the 600 nm coincides 
with two main wavelengths linked to EW in 625 and 
660 nm.

Several narrow and broad indices for phenotyp-
ing additional traits in plants were correlated with EW 
load, but the moderate to low correlation (Table  7) of 
these indices with EW limits any form of application for 

phenotyping. Although a reasonable r2 value of 0.65 was 
estimated when three narrow spectral bands were inte-
grated in the novel spectral indices (EWI-13 and EWI-14 
in Table 2), the high cost of sensors required to acquire 
hyperspectral reflectance can limit the utilization of 
these indices. On the contrary, EWI-1 requires two main 
spectral ranges (blue and red) that can easily be extracted 
from RGB images. Broad-sense heritability was estimated 
for the EW indices and the EW measured by the chemi-
cal method (Table 4). In all three trials h2 was consider-
ably higher than in prelaminar published results [70]. 
The six EW indices enabled a more reliable and precise 
quantification of the proportion of the genetic variance 
of the trait by considerably decreasing the error variance. 
However, the coefficients of variation of the indices EWI-
3, EWI-4, EWI-9 and EWI-13 in DS-1 were considerably 
large due to the dispersion of the data around the mean 
of the population.

The moderated h2 of EW let to genetic gains of up to 
3%, a reasonable advancement for a quantitative trait 
and superior to genetic gains of ~ 1% in grain yield [71, 
72]. All four broad and two narrow indices presented in 
Table  5 positively improve EW content, except EWI-3 
and EWI-4, for which negative selection is needed to 

Table 7  Correlation of the narrow and broad vegetation indices and the EW content (mg·dm−2)

ns not significant; a and bSignificant at 5% and 1% probability, respectively

Narrow vegetation indices Correlation 
coefficient (r)

Broad vegetation indices Correlation 
coefficient (r)

Water index − 0.18ns Violet wavelength 0.64b

Photochemical reflectance index-1 − 0.57b Blue wavelength 0.63b

Photochemical reflectance index-2 0.41b Green wavelength 0.48b

Red-green index − 0.08ns Yellow wavelength 0.49b

Normalized difference water index − 0.45b Orange wavelength 0.52b

Carotenoids reflectance index-1 0.46b Red wavelenght 0.33a

Carotenoids reflectance index-2 − 0.67b Red-edge wavelenght − 0.006ns

Plant senescence reflectance index − 0.31a Near infrared 0.39b

Normalized pigment chlorophyll index − 0.44b Normalized difference vegetation index 0.08ns

Pigment specific simple ratio for chlorophyll-a − 0.57b Simple ratio index 0.11ns

Pigment specific simple ratio for chlorophyll-b − 0.55b Green normalized difference vegetation index − 0.34a

Anthocyanin reflectance index-1 − 0.52b Modified simple ratio 0.28a

Anthocyanin reflectance index-2 − 0.58b Renormalized difference vegetation index 0.31a

Structure insensitive pigment index-1 − 0.34b Red-green vegetation index − 0.57b

Structure insensitive pigment index-2 − 0.61b Ratio vegetation index − 0.08ns

Difference vegetation index 0.37**

Simple ratio and normalized difference vegetation index 0.33a

Normalized difference vegetation index- Red-edge 0.42b

Rededge chlorophyll index 0.43b

Anthocyanin reflectance index-1 − 0.67b

Modified Anthocyanins reflectance index − 0.45b

Anthocyanin reflectance index-2 0.32a
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increase the EW load on leaf surfaces. The efficiency of 
indirect selection with the spectral indices was highly 
dependent on the experimental trial and its coefficient 
of variation, as it is the case in the DS-2 where selection 
with the EWI-1 was 12% more efficient that the direct 
selection. Examining the residuals of the model against 
the EW measurements, we observed a shift towards an 
increase in the residuals of EWI-1 as the EW content 
increases, suggesting a potential restriction on utilizing 
this index for phenotyping genotypes where the EW is 
above 6 mg·dm−2. However, this was not observed with 
the residuals of EWM-2. We suspect that implement-
ing the EWI developed in this study with aerial spectral 
reflectance might lead to a low-quality phenotyping of 
EW and could potentially lead to confounding results.

Conclusions
EW is the outermost cuticle of leaves and directly affects 
light interactions, especially reflectance. This cuticle 
increases light reflectance at the visible and NIR regions 
by 0.5% and 1.6%, respectively. Integrating specific nar-
row wavelengths that are highly sensitive to variations in 
the EW load, we generated several spectral linear models 
and vegetation indices for predicting the EW content and 
detecting cultivars with low and high EW. The prediction 
accuracy of these phenotyping methods was dependent 
on the characteristics of the sensor utilized to capture 
the spectral information, as well as on the canopy archi-
tecture and the distance of the sensor from the ground. 
With light reflectance captured from either the adaxial 
or abaxial side of the leaf, the broad index EWI-1 and 
the narrow index EWI-13 can accurately estimate EW. 
However, for canopy reflectance, the indices EWI-4 and 
EWI-9 more accurately estimate the density of the cuticle 
and led to a similar genetic advance than that from direct 
selection for the trait. The multivariate regression model 
EWM-7 integrated eight wavelengths distributed across 
the visible and NIR spectra and estimated 71% of the var-
iation of the trait from the reflectance of a single leaf. In 
contrast, with ground and aerial reflectance, EWM-1 and 
EWI-2 accurately estimated the EW content (mg·dm−2), 
but insensitivity to variation at EW values larger than 
6 mg·dm−2 was detected for EWI-1.

Methods
Plant material and culture
The first set of genotypes evaluated were twenty-four 
recombinant inbred lines (RILs) derived from a cross of 
the spring cultivars Halberd (tolerant to heat stress) and 
Len (susceptible to heat stress). The lines were grown in 
a completely randomized design (CRD) with four repli-
cations in a growth chamber programmed with intervals 
of twelve hours of light and dark. Plants were sown in 

nursery pots 0.185 m in height with a diameter of 0.162 m 
that were filled with peat moss. The plants were fertilized 
twice during the growing season with the standard ferti-
lizer 20–20-20 (N-P2O5-K2O).

Leaf radiometric measurements
The spectral response from 350 to 1050 nm was captured 
with a CI-710 miniature leaf spectrometer from CID 
Bio-Science in 3022 spectral channels. The equipment 
was calibrated every five minutes with an integrated 
BaSO4 white reference disk for 100% reflectance and a 
black panel for 0% reflectance. Ten readings of the light 
reflected by the flag leaf were obtained prior to collect-
ing the leaf sample for wax quantification. The spectral 
range of the signatures were adjusted to 400–900 nm and 
the spectral resolution to 3 nm by averaging the spectral 
channels included every 3 nm. The last step was to esti-
mate the average of the ten spectral readings, only the 
averaged signature was considered for further analysis.

Quantification of epicuticular wax
Leaf samples were collected after the light reflectance 
at the adaxial and abaxial sides of the leaf was recorded, 
approximately 10  days after pollination (DAP). Each 
sample consisted of six leaf punches of 0.01 m diameter 
and were collected in 2.0  ml (ml) glass vials. The EW 
was extracted by immersing the leaf punches in 1.5  ml 
of HPLC chloroform (CHCl3) for 20 s, and the EW was 
quantified via the colorimetric method described by [14]. 
The optical density of every sample at 590 nm was meas-
ured with PHERAstar® spectrophotometer. A standard 
curve was developed to transform the readings of absorb-
ance to milligrams (mg) per square decimeter (dm2) of 
EW.

Partial least square (PLSR)
A supervised multivariate model was built to predict EW 
(Y) in a training set of data by applying the partial least 
square regression (PLSR) approach. PLSR is a statistical 
method that combines the theoretical principles of mul-
tiple linear regression and principal component analysis 
(PCA) to address the situations where several highly cor-
related predictor variables and relatively fewer samples 
exist. This approach decomposes the response variables 
(X) into orthogonal scores (T), loadings (P) and the error 
(E) while simultaneously incorporating the information 
from the variables:

Two hundred spectral bands were integrated in the 
PLS analysis to identify a set of components that best 

(1)X = TP′
+ E
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estimated EW content. The RMSE (root mean square 
error) of the prediction was estimated with a leave-one-
out cross-validation analysis (LOOCV) in a subset of 
the data with 66.7% of the observations. The EW con-
tent was predicted in the remaining 33% of the observa-
tions (validation set), integrating the optimum number 
of components detected in the PLSR model. The anal-
ysis was conducted with the plsr function included in 
the pls package in the statistical software R [73].

Narrow and broad empirical spectral indices 
for the indirect estimation of the EW content of leaves
Vegetation indices developed to phenotype the mor-
phological and physiological characteristics of the plant 
(Tables  1 and 2) were calculated with the light reflec-
tance. The correlation coefficients and the statistical 
significance of each of the VIs and the EW content were 
estimated with the cor function in the statistical soft-
ware R.

Spectral indices were calculated by combining the 
light reflectance at different wavelengths. Eleven math-
ematical combinations of the spectral bands were cal-
culated including the reflectance at every 3  nm. The 
adjustment of the spectral resolution was done by 
averaging the percentage of light reflectance every 3 
wavelengths. Additional combinations were also calcu-
lated with the average light reflectance of the spectral 
range of the blue, green, yellow, red and NIR regions 
(Table  2). In each of the mathematical combinations 
one, two and up to three bands were integrated. The 
significance of the linear models and the coefficient of 
determination (R2) of every pairwise combination of 
the spectral bands was calculated with the lm function 
in a leave one out cross-validation (LOOCV) analysis. 
The format of the linear models was the follow:

where yi corresponds to the EW content (mg·dm−2), xi 
is the value of the spectral index, and β0 and β1 are the 
intercept and the slope of the model, respectively. A set 
of indices were selected based on the highest R2 criteria 
in a LOOCV analysis. An inverse prediction approach 
was applied for assessing the predictive capability of the 
indices selected. These selected indices were fitted in a 
calibration data set (66% of the observations) using the 
same format as in Eq 2 but with yi as the spectral index 
and xi the EW content [74, 75]. The step after the mod-
els were fitted was to solve for xi with the estimates of 
the parameters calculated in the training data set with 
the follow equation: Xi =

yi−β0
βi

 . Estimates of the RMSE 
were bootstrapped 1000 times for each of indices and in 

(2)yi = β0 + β1(xi)

the remaining 34% of the observations with the estimated 
values of EW with the equation and the chemically meas-
ured EW content.

Stepwise regression (SWR)
The spectral bands statistically associated with the EW 
content (Figs.  1 and   2) were incorporated to build a 
multivariate model for prediction. These variables were 
included and/or removed based on the significance of the 
partial F-values. The final models were selected when the 
inclusion of more spectral bands was statistically not jus-
tifiable. This analysis was conducted with the PROC REG 
statement in the statistical analysis software SAS [84] in a 
random training set of the total data (60% of the observa-
tions). The prediction models were selected based on the 
Mallows’ Cp estimator. The estimate of the RMSE of each 
prediction model was calculated in the remaining 40% of 
the observations, and final models were choosen based 
on the lowest value of the RMSE.

Plant material and field experimental trials for validation
Two panels of spring wheat cultivars were evaluated dur-
ing the agronomic cycle in 2013 at the Norman E. Bor-
laug Experimental Station (CENEB), Ciudad Obregon, 
Sonora in northwestern Mexico (27.20°N, 109.54°W, 38 
masl). The panels were two sets of 114 and 216 landraces 
and product of interspecific hybridization with wild rela-
tives. These experimental trials were established as an 
alpha-lattice design with two replications in a raised bed 
system with two rows per bed and were planted 80 days 
later than the normal planting date of wheat in the Yaqui 
Valley. Late panting allowed the genotypes to be exposed 
to average daily temperatures of 28  °C and maximum 
environmental temperatures of 39  °C during the head-
ing and anthesis stages of the crop. There was an intern 
row spacing within each bed of 10 cm (cm), and a space 
between beds of 80  cm. In 2016, an additional panel of 
synthetic derived wheat lines (SDLs) was also evaluated 
in Bushland and College Station, Texas under non-irri-
gated conditions. The panel of SDLs were established in 
an alpha-lattice design with two replications and a plot 
size of 3.0 × 1.5 m.

Ground base radiometric measurements for the direct 
validation
The canopy reflectance was collected with a Field-
Spec 4 Hi-Res spectroradiometer that captured the 
light reflected in 2151 continuous bands with a spectral 
resolution of 3 nm (nm) from 0.35 to 0.7 µm and 8 nm 
from 1.4 to 2.1  µm. The measurements were collected 
from 11 AM to 1 PM by placing the optic fiber of the 
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spectroradiometer 40  cm (cm) above the canopy. The 
sensor was radiometrically calibrated with a white BaSO4 
reference card for 100% reflectance and by blocking the 
light intercepted by the optic fiber for 0% reflectance. Ten 
readings per plot were captured and the average response 
of these signatures at a single wavelength was utilized in 
further analysis.

Airborne hyperspectral information
A set of aerial hyperspectral images were captured from 
the panel of wheat SDLs in College Station, Texas. The 
images were obtained with an Aisa KESTREL-10 hyper-
spectral camera, developed by SPECIM®, and mounted 
on a Cessna 355 II aircraft. An altitude of 5000 feet (ft) 
and a speed of 192 km per hour (km/h) were maintained 
through the flight of the aircraft. The camera captured 
120 spectral bands with spectral and spatial resolutions 
of 5 nm and 0.25 m, respectively. For calibration, four 8 m 
by 8 m ground tarps with nominal reflectance values of 
8%, 16%, 32% and 48% were laid out in the field and cap-
tured in the hyperspectral images. The exact percentage 
of reflectance of the tarps was captured with a Hand-held 
2 spectroradiometer. The range of this spectroradiometer 
is from 0.325 to 1.075 µm, and the spectral resolution is 
3 nm. The hyperspectral images were georeferenced and 
ensembled using the image analysis software ERDAS®. 
Digital counts (DCs) were extracted individually for each 
tarp and for individual plots with the software ENVI®. 
A linear regression model for a single spectral band was 
developed using light reflectance captured with the spec-
troradiometer from the tarps as the response variable 
(dependent) and the DCs as the independent variable. 
The linear equations were utilized for the estimation of 
the total canopy reflectance of each of the two hundred 
spectral bands in each plot.

Efficiency of indirect selection of EW with spectral 
information
The fourteen spectral indices (EWI) and the eleven 
regression models developed in this study (Table 4) were 
calculated with the ground based and aerial spectral 
information collected in the four experimental trials. 
Each of the indirect selection methods (spectral indices 
and models) was considered as an independent variable 
and subjected to an analysis of variance (ANOVA) for an 
alpha-lattice experimental design with the lmer function 
included in the package lme4 in the statistical software R. 
The variance components were extracted with the func-
tion varComp and estimates of the heritability in a broad 
sense ( h2) calculated according to the formula described 
by [85]: h2 =

σ 2
g

σ 2
g +(σ 2

e /r)
 where σ 2

g  corresponds to the 

genetic variance, σ 2
e  to the error variance and r is the 

number of replications in the experimental trial.
The statistical relationship of the target trait (pheno-

typic correlation) and the spectral method was calculated 
with the cor function of the stats package, while the 
genetic relationship of the traits (genotypic correlation) 
was estimated with the following equation: 
σg =

COVXY√
VarxVary

 , where COVXY corresponds to the covari-
ance estimate of the EWI and EW content calculated 
with the chemical method, Varx is the variance of the 
EWI and Vary is the variance of EW [86]. The COVXY was 
calculated with the cov function, and Varx and Vary with 
the varComp function in R. The genetic correlation of the 
traits helps us to understand the pleiotropic action of the 
genes controlling the trait and its indirect selection.

The genetic gain (GG), the genetic advance (GA), 
the genetic advance with respect to the mean (GAM), 
the expected response to selection (R), the correlated 
response to selection (CR), the relative efficiency of indi-
rect selection (RE) were all calculated according to Fal-
coner [87]. GG, GAM, R, CR and RE were estimated as 
follows:
GG = h2 ∗ SDiff  , where h2 is the estimate of the broad 

sense heritability of the trait, and SDiff is the selection 
differential of the trait (EW) with a selection pressure of 
10% ( SDiff = xp − xS).
GA = K

(

σp
)

h2 where K is the selection differential, 
σp is the phenotypic standard deviation of every spec-
tral index or prediction model, and h2 corresponds to 
the broad sense heritability. The k was estimated for 10% 
selection intensity as k = xp − xs , where xp and xs , are 
the population mean and the mean of the selected indi-
viduals, respectively.
GAM(%) = GA

x x100 , where x is the grand mean of the 
specific character.
R = hxσx , where hx is the square root of the heritability 

and σx is the genotypic standard deviation.
CR = hxrgxσgy , where hx is the square root of the her-

itability for trait X (spectral index), rgx is the genetic 
correlation of the spectral index and EW, and σgy is the 
genotypic standard deviation of trait Y (EW).
RE =

CR
R  , where CR is the correlated response to selec-

tion and R is the expected response to selection for the 
trait.
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