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Abstract 

Annotating gene structures and functions to genome assemblies is necessary to make assembly resources useful for 
biological inference. Gene Ontology (GO) term assignment is the most used functional annotation system, and new 
methods for GO assignment have improved the quality of GO-based function predictions. The Gene Ontology Meta 
Annotator for Plants (GOMAP) is an optimized, high-throughput, and reproducible pipeline for genome-scale GO 
annotation of plants. We containerized GOMAP to increase portability and reproducibility and also optimized its per‑
formance for HPC environments. Here we report on the pipeline’s availability and performance for annotating large, 
repetitive plant genomes and describe how GOMAP was used to annotate multiple maize genomes as a test case. 
Assessment shows that GOMAP expands and improves the number of genes annotated and annotations assigned 
per gene as well as the quality (based on Fmax ) of GO assignments in maize. GOMAP has been deployed to annotate 
other species including wheat, rice, barley, cotton, and soy. Instructions and access to the GOMAP Singularity con‑
tainer are freely available online at https://​bioin​forma​pping.​com/​gomap/. A list of annotated genomes and links to 
data is maintained at https://​dill-​picl.​org/​proje​cts/​gomap/.

Keywords:  Functional annotation, Gene ontology, CAFA, Plant genomes

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Plant genomes are notably repetitive and hard to assem-
ble. As such, long-read sequencing technologies have 
been quickly and widely adopted [1, 2] to enable high-
quality de novo assembly of plant genomes. The number 
of plant long-read, whole-genome sequencing datasets 
are rapidly increasing (see Table  1) and would lead to 
increased number of high-quality plant genome assem-
blies in near future. In order to make the best use of high-
quality assemblies for functional genomics applications, 
improved computational tools for gene structure and 
function prediction must also be developed and adopted.

In 1998, the Gene Ontology (GO) consortium released 
the first common vocabulary describing gene func-
tion across species, thus enabling a genome-wide and 

comparative approach to functional genomics [3]. GO is 
divided into three categories or sub-ontologies, namely 
cellular component (CC), molecular function (MF) and 
biological process (BP). Various tools and approaches 
were developed to assign GO terms to genes, and a raft of 
statistical methods to interpret high-throughput experi-
mental results for GO-based gene function implica-
tions were developed and released [4–8]. More recently, 
the Critical Assessment of protein Function Annota-
tion (CAFA) competition has enticed research groups 
to develop tools that improve the accuracy and cover-
age of gene function prediction [5, 7, 9]. Unfortunately, 
methodologies developed through CAFA have not been 
widely adopted for annotating plant genomes, and exist-
ing plant-specific GO annotation pipelines mainly focus 
on subsets of GO terms rather than the full set of terms 
available [10, 11].

We sought to assess the performance of some of the 
best-performing methods produced through CAFA1 
for assigning gene function to plant genomes and to 
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produce an improved functional annotation dataset for 
maize. These efforts were successful, with improvements 
to prediction outcomes measured in terms of preci-
sion, recall, and coverage [12]. Obvious next steps were 
to generalize the developed pipeline and to apply it to 
other maize lines and additional plant species then to 
evaluate its performance for annotating gene function to 
those genomes. Here we present GOMAP (Gene Ontol-
ogy Meta Annotator for Plants) pipeline that generalizes 
the methods used to produce the maize-GAMER data-
sets, with improvements to computational performance, 
reproducibility, and portability. We also present the util-
ity of GOMAP by annotating genomes assemblies of 
four maize inbred lines, namely B73 RefGen_v4 (B73v4), 
W22, PH207 and Mo17 [1, 2, 13, 14]. The GOMAP anno-
tations are compared to the community annotations for 
B73v4 and PH207. Gramene annotated B73v4 RefGen_v4 
using Ensembl Compara method and produced a high-
confidence and high-coverage GO annotations [15]. The 
PH207 dataset was obtained from the additional tables 
of the PH207 genome sequencing paper [13]. GO terms 
for PH207 genes were annotated using InterProScan v5.0 
that uses domain presence to assign GO terms to input 
protein sequences [13]. We compared GOMAP to com-
munity methods used to annotate B73v4 and the PH207 
to illustrate the differences among datasets produced by 
three approaches for GO annotation.

Materials and methods
Overview of the annotation of input sequences
The GOMAP uses sequence-similarity, domain-presence 
and mixed-method pipelines to annotate GO terms to the 
input protein sequences to produce a single unique and 
non-redundant GOMAP aggregate dataset as the result 
(see Fig. 1). Sequence similarity searches are performed 
against two plant datasets: Arabidopsis and UniProt. The 
Arabidopsis dataset contains protein sequences down-
loaded from TAIR and curated GO annotations [16]. The 
UniProt dataset contains protein sequences from the top 
plants species that were ranked by number of curated 

GO annotations available in UniProt [17]. The first set of 
annotations is generated using BLAST to obtain recipro-
cal-best-hits between input and Arabidopsis sequences, 
and inheriting curated GO terms from Arabidopsis to 
the input sequence [18]. A second set of annotations is 
obtained using a similar approach, but instead of Arabi-
dopsis the search is performed against the top ten anno-
tated plant species in the UniProt database. Presence of 
valid domains in the input sequences is identified using 
the InterProScan5 pipeline. InterProScan uses fourteen 
types of protein signatures to detect putative domains in 
the input sequences, and assign GO terms [19]. As per 
documentation, InterProScan only reports valid domains 
and GO annotations for the valid domains, so the GO 
annotations are not filtered based on scores for this step. 
Three mixed-method pipelines from the first iteration of 
the CAFA competition (CAFA1 tools) are used to anno-
tate GO terms to the input sequences, namely Argot2.5, 
FANN-GO and PANNZER [7, 20–22]. Two CAFA1 tools 
require preprocessing of input sequences before they 
can be used to annotate GO terms. Argot2 requires the 
BLAST hits of the input sequences to the UniProt data-
base and Pfam hits identified by HMMER search against 
the Pfam domain database [17, 23, 24]. PANNZER only 
requires the BLAST hits to the UniProt database for the 
annotation process. The 6 annotation datasets generated 
from previous steps are aggregated. Next any redundancy 
or duplication introduced by aggregation is removed 
to produce a final aggregate dataset. See Defoin-Platel 
et  al. for the definitions of redundancy and duplication, 
and maize-GAMER for more details about the annota-
tion methods used in GOMAP [12, 25]. For the analy-
ses described here, non-plant-specific annotations were 
not removed. See the accompanying GitHub repository 
for a R script that can be used to filter for plant specific 
terms. The removal of non plant-specific GO terms did 
slightly reduce the number of annotations per GO cat-
egory (see Additional file 1: Table ST2). The GOMAP and 
community annotations retained about 99% the original 
annotations. This enables researchers to use such terms 
to formulate novel hypotheses about potential plant 
gene functions that could be inspired by data obtained in 
non-plant systems (e.g., genes involved in the initiation 
of neurons could be involved in initiation of root hairs, 
information on flagellar function in lung cells could 
inform ideas on flagellated sperm function in gymno-
sperms, etc.).

Implementation and containerization of GOMAP
The GOMAP pipeline was developed by containerizing 
the refactoring maize-GAMER code into one singularity 
container [12, 26]. The GOMAP Pipeline is implemented 
in Python and R. Python code is used to run open-source 

Table 1  Comparison of maize input sequences

NCBI SRA was queried on Jan 30, 2021 with the following parameters: ((“pacbio 
smrt”[Platform]) OR “oxford nanopore”[Platform]) AND Embryophyta[Organism] 
AND wgs[strategy])

Year Studies Runs

2016 16 606

2017 33 880

2018 77 1399

2019 148 4104

2020 230 2614
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tools for annotating GO terms, and R code is used to 
aggregate and clean annotation results. GOMAP was 
containerized to improve usability, portability and repro-
ducibility. Containerization eliminates the need to install 
and configure dependencies. Singularity containerization 
was chosen because it works seamlessly in high perfor-
mance computing (HPC) environments [26], and it has 
been widely adopted by HPC clusters. Several bottle-
necks were encountered when containerizing GOMAP: 
the large size of the pipeline, long runtime on a single 
machine, and the use of MySQL and MATLAB by mixed-
method pipelines (Fig. 2).

The uncompressed data required for GOMAP pipe-
line uses about 110 GB of local disk space. This large size 
is due to the inclusion of external tools and data, which 
results in a large container that creates issues during the 
development and distribution of GOMAP via free public 
resources. Some tools such as PANNZER were depend-
ent on a back-end MySQL database, and FANN-GO 

included MATLAB specific code for the annotation. 
These two components complicated the complete con-
tainerization and subsequent efforts to run GOMAP on 
HPC systems. The original PANNZER code was updated 
to use a SQLite database, and the SQLite database file 
works seamlessly in HPC systems eliminating the need 
for MySQL. The FANN-GO code was updated to use 
open source GNU Octave instead of MATLAB. The abil-
ity to include Octave in the container enabled GOMAP 
to be run on any HPC system and completely enclose 
all the data and software required for GOMAP in the 
container. The pre-built GOMAP containers are cur-
rently shared via CyVerse1 and GitHub2 [27]. Run time 
for GOMAP on a single machine on a single node in the 

Fig. 1  Overview of processes used to create GOMAP Annotations Top: data inputs are shown as a white box. Sequence similarity components 
are shown in lime green. InterProScan domain-based annotations are shown in orange. For the CAFA processes (Argot2.5 and PANNZER; shown 
in tan boxes) pre-processing steps are shown in purple and blue, respectively. The CAFA process FANN-GO does not require preprocessing (red). 
Once each annotation type is produced, these are combined, duplicates and redundancies are removed, and the aggregate dataset is assembled 
(turquoise)

1  http://​datac​ommons.​cyver​se.​org/​browse/​iplant/​home/​shared/​dillp​icl/​
gomap/​GOMAP.
2  https://​github.​com/​Dill-​PICL/​GOMAP-​singu​larity.

http://datacommons.cyverse.org/browse/iplant/home/shared/dillpicl/gomap/GOMAP
http://datacommons.cyverse.org/browse/iplant/home/shared/dillpicl/gomap/GOMAP
https://github.com/Dill-PICL/GOMAP-singularity
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Iowa State University HPC Condo Cluster3 for 40,000 
protein sequences takes between 12-14 days. To improve 
runtime, GOMAP was separated into different steps 
that run concurrently. Moreover, the 2 steps with long-
est runtime, InterProScan (1-2 days) and BLAST search 
against the UniProt sequence database (8-10 days), were 
parallelized. Most HPC environments have shorter time 
limits (e.g. 2-5 days), so parallelizing is necessary to com-
plete these steps within such limitations.

Annotation of maize genomes as a test case
Two versions of the Maize B73 reference genome releases 
were annotated for the maize-GAMER project. At the 
completion of containerizing GOMAP, genomes of 
three more maize inbred lines had been released: W22, 
Mo17, and PH207. The GOMAP container was used to 
annotate the three newly released genomes and replicate 
the annotations for B73 RefGen_v4. The input files were 
downloaded from MaizeGDB as shown in Table ST1. The 
protein sequences downloaded for each genome were 
filtered to retain only the longest translated transcript 
for each gene. Each input fasta file from the 4 different 
maize genomes was annotated by GOMAP on the Pitts-
burgh Supercomputing Center (PSC) Bridges HPC Clus-
ter4. GOMAP steps were run on Regular Shared Memory 
nodes. Each regular shared memory node is configured 
with two Intel Haswell (E5-2695 v3) CPUs (28 Total CPU 
cores) and 128 GB memory. In addition, two community 

annotation datasets for B73 RefGen_v4 and PH207 were 
obtained for comparison. The community annotation for 
B73 RefGen_v4 was downloaded from Gramene using 
GrameneMart tool [15, 28]. The community annota-
tions for PH207 (PH207-community) were obtained from 
the supplemental methods of the original publication 
by Hirsch et al. [13]. The GOMAP datasets for the four 
inbred lines and the two community datasets were used 
for downstream comparison and evaluation.

Assessment and comparison of analysis and evaluation 
metrics for maize annotation datasets
Maize annotation datasets were assessed using two dif-
ferent metrics: analysis metrics and evaluation metrics. 
Analysis metrics were used to assess and compare the 
quantity of the annotations among the datasets, whereas 
the evaluation metrics assess the quality of the annota-
tions by comparing against a gold-standard dataset pro-
duced by manual curation. The data and R code used to 
evaluate the datasets are available via GitHub5.

Three analysis metrics, coverage, number of anno-
tations normalized by gene count (i.e., number of 
annotations), and , were used for the assessment and 
comparison of maize annotation datasets. Coverage rep-
resents the proportion of the total genes that have at least 
one GO annotation in the predicted dataset. The num-
ber of annotations represent the total number of anno-
tations divided by the number of genes with at least one 
GO annotation. The specificity for a single annotation is 

Fig. 2  Comparison of runtime for GOMAP steps across four maize genomes. Steps are color-coded as shown in the figure key at right. Start time 
occurs at zero. The four steps shown simultaneously within a single maize genome (i.e., seqsim, domain, mixmeth-blast, and fanngo) run in parallel. 
For all maize genomes, the full annotation time took less than 24 hours on the PSC Bridges cluster

4  https://​www.​psc.​edu/​resou​rces/​bridg​es/. 5  https://​github.​com/​wkpal​an/​GOMAP-​maize-​analy​sis.

3  https://​www.​hpc.​iasta​te.​edu/​guides/​condo-​2017.

https://www.psc.edu/resources/bridges/
https://github.com/wkpalan/GOMAP-maize-analysis
https://www.hpc.iastate.edu/guides/condo-2017
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calculated by counting the number of ancestral terms, 
and the mean specificity for all annotations represents 
the specificity of a dataset. See Defoin-Platel et  al. for 
detailed definitions of the analysis metrics [25]. A gen-
eral comparison of analysis metrics were performed for 
the four GOMAP and two community maize annotation 
datasets. As the next step, annotations were separated 
into each GO category and analysis metrics were calcu-
lated and compared for each GO category. The same GO-
category-specific approach was used for the generation 
and comparison of evaluation metrics.

A set of gold-standard annotations are required to 
calculate evaluation metrics. The gold-standard data-
set used in maize-GAMER that was obtained from 
MaizeGDB was curated for the B73 RefGen_v3 gene 
models and not for B73 RefGen_v4 nor other inbred lines 
[29]. However, MaizeGDB has assigned gene models 
from B73 RefGen_v3 to other inbred lines’ gene models 
and created a cross reference file.6 This cross reference 
file was used to inherit curated GO terms from B73 Ref-
Gen_v3 to other inbred lines and create gold-standard 
datasets for all four inbred lines used in this project. The 
R script that was used to assign the GO terms is available 
as part of the GitHub repository. The gold-standard GO 
terms inherited from B73 RefGen_v3 to B73 RefGen_
v4, Mo17, PH207, and Mo17 were used to calculate the 
protein-centric evaluation metrics defined by Clark and 
Radivojac [30] and used for the CAFA [5, 7, 9, 31]. The 
three protein-centric evaluation metrics calculated were 
Precision (Pr), Recall (Rc) and Fmax.

Comparison of the GOMAP and the community, 
and gold‑standard annotations
The comparison of maize annotations produced by 
GOMAP to the community annotations was restricted 
to the two inbred lines that had community annotation 

datasets, namely B73v4 and PH207 [1, 13]. Analysis and 
evaluation metrics were generated for both datasets and 
compared to GOMAP-derived datasets. In addition, 
gold-standard annotations were overlapped with pre-
dicted annotations from the community and GOMAP 
datasets and directly compared. The gold-standard 
terms that contained only leaf terms were expanded 
to include all the ancestral terms to the root node, and 
the same expansion was performed for the predicted 
annotations. The intersection of gold-standard and pre-
dicted terms was performed in three types of objects: 
gold-standard genes, gold-standard GO terms, and gold-
standard annotations. This analysis was used to identify 
the gold-standard genes, GO terms and GO annotations 
that were found in both predicted datasets (GOMAP and 
Community), only in one predicted dataset (GOMAP or 
Community), or not found in either dataset (only gold-
standard). This comparison was performed separately for 
each GO category for both B73 and PH207.

Results
Annotation of maize genomes using GOMAP
The GOMAP container was tested by annotating GO 
terms to the protein coding genes of four maize inbred 
lines (B73, Mo17, W22, and PH207). The size the the 
number protein coding genes were similar among the 
maize lines as expected (see Table 1). The total predicted 
protein coding length varied slightly among the inbred 
lines. W22 has the highest total length, and B73v4 has the 
longest. The shortest genes that were annotated are less 
than five amino acids long in all inbreds except B73v3. 
These are potential annotation errors in the database, but 
are reported as valid gene models. The median and mean 
length of the genes in the annotations are similar but vary 
within a narrow range, and PH207 has the lowest median 
and mean gene length. Three inbred-lines have longest 
genes that are over 5000 amino acids long. The genes that 
are smaller than 50 amino acids present a challenge to 
predicting GO terms. Mo17 had the highest proportion 

Table 2  Comparison of maize input sequences

1This indicates the protein coding genes
2Any protein smaller than 50 amino acids was classified as small

Inbred Gene Count 1 Total AA Length Small 
Proteins(%)2

min mean median max

B73v3 39,475 14,382,005 25 364.33 306 4,743 0.56

B73v4 39,324 15,373,604 2 390.95 316 5,267 0.86

Mo17 38,620 14,640,283 5 379.09 306 5,426 3.44

PH207 40,557 14,311,872 2 352.88 280 4,947 0.33

W22 40,690 15,439,503 1 379.44 304 5,426 0.25

6  https://​maize​gdb.​org/​search/​gene/​downl​oad_​gene_​xrefs.​php?​relat​ive=​v4.

https://maizegdb.org/search/gene/download_gene_xrefs.php?relative=v4
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of genes smaller than 50 amino acids in length (>1300), 
which incidentally has the lowest annotated gene count. 
All the other inbred lines have less than 1% of genes 
shorter than 50 amino acids (Table 2).

Run times of GOMAP steps for different maize genomes
Run times for GOMAP were determined using the PSC 
Bridges HPC cluster. The manual annotation process of 
maize-GAMER is complex with over 40 interdepend-
ent steps required for end-to-end annotation of a plant 
genome. To make the annotation process intuitive and 
convenient, the GOMAP annotation process combined 
the maize-GAMER steps into just seven discrete steps 
(see Table 3). The first four steps, seqsim, fanngo, domain, 
and mixmeth-blast, are setup to be run concurrently as 
independent processes. The last three steps, mixmeth-
preproc, mixmeth, and aggregate, depend on the output 
of the first four steps. The total time taken to complete 
the annotation of the maize genomes were between 
thirty-three and thirty-six hours. The total predicted pro-
tein length and gene number had negligible impact on 
the total runtime of GOMAP for maize genomes, though 
runtimes of steps were impacted by the load of the clus-
ter. Two parallelized steps, domain and mixmeth-blast, 
ran longer than other steps, but the runtime has been 
considerably shortened compared to the un-parallelized 
versions. The domain step runs for over five days with-
out parallelization and mixmeth-blast runs for over ten 
days without parallelization. Notably, running steps 1-4 
concurrently allows GOMAP to complete the annota-
tion of maize genomes within twenty-four hours for each 
genome tested.

Assessment and comparison of the analysis metrics 
for maize annotations
Coverage, number of annotations, and specificity (see 
Table  4) were calculated for the GOMAP and commu-
nity datasets. High coverage of around 100% is observed 
for all GOMAP datasets. In comparison, the community 

datasets for B73v4 and PH207 have about 77% and 45% 
overall coverage, respectively. The gold-standard data-
sets only cover around 3–4% of genes and provide only 
a smaller number of genes to calculate the CAFA evalua-
tion metrics (Table 4). The annotations were separated by 
each category to get a more clear picture of the coverage 
(see Fig. 3). The coverage changes substantially across the 
categories for all datasets. The GOMAP datasets have the 
highest coverage in the biological process category for all 
inbred lines (i.e., ∼100%), and have lower coverage other 
categories (CC:86–92%; MF:82–95%). However, both 
community datasets have highest coverage in the molec-
ular function category. The PH207 community dataset 
had the lowest coverage among annotation datasets in all 
three GO categories, and the PH207-community dataset 
covered only about ∼10% genes in the cellular compo-
nent category. The Gramene dataset had higher cover-
age than the PH207-community, but had lower coverage 
than GOMAP in all GO categories. This indicates that 
GOMAP produces higher-coverage datasets than both 
Gramene or PH207-community methods.

The number of annotations were normalized by divid-
ing the total number of annotations by the number of 
genes. This normalization allows for comparison among 
different datasets for the same genome and different 
genomes. The number of annotations vary among the 
inbred lines and datasets. B73v3 has the highest num-
ber of annotations among the GOMAP datasets, even 
though W22 had the highest number of protein-coding 
genes. GOMAP datasets had the highest number of 
annotations across all inbred lines, followed by the com-
munity datasets. The gold-standard datasets had the 
lowest number of annotations by a significant margin 
(see Table 4). In some inbreds, such as B73v4 and Mo17, 
GOMAP had nine times the number of annotations than 
the corresponding gold-standard dataset. The commu-
nity datasets also have higher number of annotations 
than the gold-standard datasets, but the magnitude of 
difference was lower ( ∼1-3x). The number of annotations 

Table 3  Comparison of the runtime of different GOMAP steps on PSC Bridges Cluster

1These steps have been parallelized to be run on MPI based HPC workload manager

Num Step Description Depends On Nodes B73v4 Mo17 PH207 W22

1 Sseqsim Runs sequence similarity steps NA 1 2h51m 2h45m 2h40m 3h41m

2 Domain1 Run InterProScan5 NA 10 5h16m 4h40m 4h49m 4h51m

3 Mixmeth-blast1 Run the BLAST step against UniProt NA 10 15h55m 14h54m 14h49m 15h51m

4 Fanngo Run FANN-GO NA 1 2h24m 4h20m 4h40m 4h49m

5 Mixmeth-preproc Convert output from UniProt BLAST and Run HMMER 3 1 4h30m 4h26m 3h16m 5h57m

6 Mixmeth Submit jobs to Argot2.5 webserver and Run PANNZER 5 1 2h40m 2h25m 2h20m 2h11m

7 Aggregate Combine all GO annotations, clean, and generate 
aggregate dataset

1,2,4,6 1 0h10m 0h10m 0h10m 0h10m
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Fig. 3  Analysis metrics calculated for the maize annotations from community and GOMAP annotations. Left column: Cellular Component. 
Middle column: Molecular Function. Right column: Biological Process. Top row: Percentage of genes with an annotation. Middle row: number 
of annotations per gene. Bottom row: specificity of the annotations. Inbred lines are denoted along the x-axis. GOMAP annotations are denoted 
by a green circle. Community annotations are denoted by a orange triangle. Coverage is shown as an overall percentage, but both number of 
annotation per gene and specificity are represented as mean values across all annotations in the dataset. Error bars indicate standard error. The 
confidence interval is very small so the high and low error bars overlap each other for most datasets

Table 4  Analysis metrics of GOMAP annotations for maize genomes

Inbred Source Total Genes Coverage (%) Annotations/Gene Specificity

Curated Predicted Curated Predicted Curated Predicted

B73v4 GOMAP 39,324 1.26 11.46 3.54 100.00 11.99 10.85

B73v4 Community 39,324 1.26 3.95 3.54 76.94 11.99 12.80

Mo17 GOMAP 38,620 1.26 11.53 3.42 100.00 11.99 10.85

PH207 GOMAP 40,557 1.26 11.48 3.34 100.00 12.05 10.67

PH207 Community 40,557 1.26 2.21 3.34 45.44 12.05 11.30

W22 GOMAP 40,690 1.24 11.57 3.08 100.00 12.09 10.78
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were separated by GO category and compared among 
each other. This allowed for the number of annotations 
to be compared among different inbred lines, annota-
tion sources, and GO categories. The highest number 
of annotations was seen in GOMAP datasets in the BP 
category ( ∼ 7 annotations per gene), which is significantly 
higher than the community datasets in BP (B73v4:∼3x; 
PH207∼6x) and GOMAP datasets in other GO catego-
ries. GOMAP datasets have a higher number of anno-
tations compared to the community datasets in all GO 
categories, but the magnitude of difference is not as high 
in CC and MF categories. The PH207 community data-
set shows the lowest number of annotations across all 
three GO categories, and this number is especially low 
in the CC category. In comparison, GOMAP shows low-
est number of annotations in the MF category. Gramene 
datasets for B73v4 has the highest number of annotations 
in MF and has the lowest in CC.

Specificity indicates the number of ancestral terms 
for a given annotations given the GO hierarchy, and the 
mean of all annotations for a particular dataset. Speci-
ficity represents a measure of information provided by 
a specific term. This metric is higher in the community 
datasets and gold-standard datasets in all three catego-
ries (see Table 4), compared to coverage and number of 
annotations. The Gramene dataset for B73v4 has higher 
specificity than even the gold-standard dataset. The 
GOMAP datasets also had lower specificity than gold-
standard datasets. A more detailed analysis separated by 
each GO category allowed similar comparisons for cover-
age and number of annotations (see Fig. 3). All datasets 
had higher specificity in BP and MF categories than CC. 
The Gramene B73v4 dataset has highest specificity across 

all GO categories, but achieved significantly higher speci-
ficity in the BP category. The PH207 community dataset 
has higher specificity than GOMAP only in BP category, 
but GOMAP has slightly higher coverage in both CC and 
MF categories.

Assessment and comparison of the evaluation metrics 
for maize annotations
The evaluation metrics were calculated by comparing 
the predicted annotations to the gold-standard datasets. 
Three protein-centric evaluation metrics from CAFA 
were used to assess the annotations: Precision (Pr), 
Recall(Rc), and Fmax . Precision measures the propor-
tion of predicted annotations that overlap gold-standard. 
Recall measures the proportion of gold-standard annota-
tions that are correctly predicted. Fmax is the harmonic 
mean of Pr and Rc and provides a single number for 
comparison among different methods. The evaluation 
metrics were calculated separately for each GO category 
(see Fig.  4). An important factor to notice is the total 
number of gold-standard annotations are imbalanced 
and are skewed toward the CC category (see Table  5). 
This skewed distribution of gold-standard data directly 
affects the calculation of the evaluation metrics, and this 
is indicated by the wider standard error bars seen in MF 
and BP categories in Fig. 4. Evaluation metrics compare 
the performance of the methods used for annotation, 
thus the following conventions are used to describe the 
annotation methods for maize datasets. The community 
method used to annotate B73v4 is called “Gramene” and 
the community method used to annotate PH207 is called 
“PH207-community” in the following section.

Table 5  Number of gold-standard genes, GO terms, and annotations that were assigned by GOMAP, the community annotation, and 
the gold-standard

aThe gold-standard data overlaps with only GOMAP
bThe gold-standard data overlaps with only Community
cThe gold-standard data does not overlap with GOMAP or Community

Inbred Line Type Cellular Component Molecular Function Biological Process

Genes Terms Annotations Genes GO Terms Annotations Genes Terms Annotations

B73v4 Both 980 64 8,014 56 183 518 126 271 1,305

GOMAPa 317 4 5,013 2 23 31 15 85 504

Communityb 2 0 94 0 1 36 0 22 35

Curatedc 14 34 2,703 0 32 57 1 206 1,184

Total 1313 102 15824 58 239 642 142 584 3028

PH207 Both 151 22 784 40 100 283 71 77 304

GOMAPa 1,104 46 11,712 15 94 245 63 260 1,319

Curatedc 24 34 2,987 0 41 96 1 234 1,194

Total 1279 102 15483 55 235 624 135 571 2817
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All methods had higher Precision in the CC category 
compared to other categories, while BP category had 
the lowest Precision overall. PH207-community method 
achieved the highest Precision among all datasets in all 
three GO categories. Furthermore, PH207-community 
has substantially higher Precision than GOMAP in CC 
and BP categories. Gramene also obtained higher pre-
cision for B73v4 than GOMAP in all three categories, 
although the magnitude of difference was lower. The 
method employed by the PH207-community is more pre-
cise in comparison to other methods. Recall values did 
not show a clear performance trend as seen with Preci-
sion. The recall performance varied among the meth-
ods, and no single method performed better than other 
methods across all GO categories. GOMAP achieved 

better Recall in both CC and BP categories, but Gramene 
showed slightly better recall (GOMAP = 0.8229433; 
Gramene = 0.8250246) than GOMAP in the MF cat-
egory. It was clear both GOMAP and Gramene outper-
formed PH207-community method in all categories, and 
the recall was more than 5-10x higher for GOMAP in 
both CC and BP categories. GOMAP is the only method 
that achieved higher or comparable performance to other 
methods in all three categories.
Fmax gives a single number for the comparison of the 

performance of the three methods. Similar to Recall, 
no one method showed higher performance in all three 
GO categories. Gramene showed higher performance in 
MF and BP categories, but GOMAP had higher Fmax in 
CC category. The higher precision achieved by Gramene 

Fig. 4  Evaluation metrics calculated for the maize annotations from the community and GOMAP. Left column: Cellular Component. Middle column: 
Molecular Function. Right column: Biological Process. Top row: Precision. Middle row: Recall. Bottom row: Fmax . Inbred lines are denoted along the 
x-axis. GOMAP annotations are denoted by a green circle. Community annotations are denoted by a orange triangle. Precision and recall are shown 
as the mean value of all annotations with error bars indicating standard error, but Fmax is represented as an absolute value for a specific dataset
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edged Gramene ahead of GOMAP in both categories, 
and higher recall edged GOMAP ahead in the CC cat-
egory. PH207-community method had lower Fmax in all 
three categories, and especially lower by a significant 
margin in the CC category. PH07-community method 
showed comparable although slightly lower performance 
than GOMAP only in MF category. The performance of 
the PH207-community method was affected by the lower 
recall observed in all categories.

Comparison of to GOMAP the community and curated 
annotations
A comparison of genes, GO terms, and annotations 
between the GOMAP dataset and community dataset 
was performed for B73v4 and PH207 in each GO cate-
gory. This comparison was restricted to the gold-stand-
ard terms to provide biological validity to the data that 
was being compared. The recall values of less than one 
observed in all datasets across all GO categories indicate 
that no method managed to predict all the annotations 
in the gold-standard dataset (Fig.  4). The comparison 
allowed for the identification of unique genes and GO 
terms that were only annotated by a particular method. 
The comparative proportions of the comparisons are pre-
sented in Fig.  5 and absolute numbers are presented in 
Table 5.

GOMAP has annotated more gold-standard genes in 
both B73v4 and PH207 across all three GO categories 
than Gramene and PH207-community methods. The 
majority of genes have annotation from both GOMAP 
and Gramene for B73v3, but GOMAP and PH207-com-
munity methods have annotated a majority of the genes 
only in MF and BP categories. Due to higher coverage 
observed in Gramene and GOMAP, the portion gold-
standard genes both is higher in all GO categories com-
pared to the proportion of genes annotated by GOMAP 
and the PH207-community method. Only a few gold-
standard genes from CC and BP categories in B73v4 have 
been annotated by only Gramene, but a larger number 
of gold-standard genes in CC and BP have been anno-
tated only by GOMAP. No genes were annotated by the 
PH207-community method that were not annotated by 
GOMAP, and a substantially higher proportion of PH207 
genes have only been annotated by GOMAP. The same 
trend is also observed in GO terms annotated by differ-
ent methods. The majority of GO terms were annotated 
by both methods for B73v4, but GOMAP annotates more 
terms to gold-standard genes than Gramene. Gramene 
has annotated only a few terms in BP and one term in 
MF that were not annotated by GOMAP to any gold-
standard genes. GO terms annotated by the PH207-com-
munity method are a subset of GOMAP GO terms, and 
GOMAP has annotated more than twice the number of 

GO terms annotated by the PH207-community method 
to gold-standard genes in both the CC and BP categories. 
Unfortunately, a proportion of GO terms in the gold-
standard data has not been annotated by any method for 
both inbreds. This number varies among GO categories, 
but is higher in CC and BP than MF. Next, the compari-
son was performed using the gold-standard annotations 
(i.e., Curated Gene-GO term pairs). GOMAP outper-
forms Gramene in the proportion of gold-standard anno-
tations that are correctly predicted in CC and BP, but 
Gramene outperforms GOMAP for MF. Although the 
number of gold-standard annotations in MF that are only 
predicted by GOMAP (31) are similar to Gramene (35), 
the Fmax difference is significant. The PH207-community 
annotations are a subset of GOMAP annotations and a 
substantial number of annotations are only found in 
GOMAP. This is expected based on the recall values seen 
in Fig.  4. Smaller proportions of gold-standard annota-
tions are not predicted by either method in CC ( ∼11%) 
and MF ( ∼8%) categories, but this number increases to 
( ∼40%) in the BP category.

Discussion
Over the course of the maize-GAMER project our main 
goal was to improve the maize GO annotation landscape, 
and develop a reproducible method for annotating plant 
genomes. During the GOMAP project, we focused on 
developing a reproducible and high-throughput pipe-
line that can produce high-coverage and high-quality 
plant GO annotations. Furthermore, we also wanted the 
pipeline to be portable across different systems, and be 
usable by researchers of different backgrounds with mini-
mal effort. We achieved high-quality and high-coverage 
annotation by streamlining and generalizing GAMER 
code. We containerized GOMAP for portability and 
reproducibility, which decreases the effort needed to 
run the GOMAP pipeline. Moreover, we parallelized the 
time-consuming steps and decreased the overall runt-
ime from a few weeks to a few days. Since we released 
GOMAP, six graduate students have annotated gene 
functions to thirteen plant genomes over the course of 
an eight-week rotation, and one undergraduate student 
annotated the grape genome over the course of a single 
semester for research course credit [32–46].

The comparison of GOMAP to the community annota-
tions illustrates that the GOMAP datasets are higher cov-
erage than other methods as evidenced by coverage and 
number of annotations. GOMAP shines in recall due to 
higher coverage, but this comes at the cost of precision. 
Moreover, a careful comparison of the gold-standard 
annotations also confirmed that GOMAP does indeed 
have a significantly lower number of False Negatives 
(FNs) than other methods. We can accept the sacrifice in 
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Fig. 5  Comparison of the GOMAP and community annotations based on whether gold standard terms were annotated. Left column: Cellular 
Component. Middle column: Molecular Function. Right column: Biological Process. Top row: Percentage of genes with at least one annotation. 
Middle row: proportion of unique GO terms recovered. Bottom row: proportion of expanded GO annotations recovered. Gold standard genes 
or annotations recovered by both the community and GOMAP methods are shown in pink. Those recovered by GOMAP but not the community 
method are shown in blue. Those recovered by the community annotation but not GOMAP are shown in green. Those annotated in the 
gold-standard that were not recovered by either method are shown in lavender
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precision as long as the potential False Positives (FPs) fall 
within an acceptable margin for a high-coverage annota-
tion pipeline such as GOMAP. We have used the current 
set of maize gold-standard annotations to optimize the 
balance between precision and recall for GOMAP. The 
gold-standard data available for maize are incomplete 
and sparse and inflate the number of FPs. The inflation 
of FPs leads to underestimation of precision, and under-
optimized annotation parameters. At present, the accu-
rate identification of FPs with incomplete gold-standard 
data has been difficult even for larger-scale efforts such 
as CAFA. Moreover, the sparse gold-standard data also 
leads to an inflation of FPs for methods that have higher 
number of annotations, and in this case the Gramene 
and GOMAP are affected more than PH207-community 
approach. PH207-method has higher precision in CC 
and BP categories, and PH207-community in these two 
categories have lower number of annotations and cover-
age. In comparison, both GOMAP and Gramene have 
lower precision in those categories, indicating that some 
of the correct predictions have been classified as FPs. We 
expect the gradual accumulation of gold-standard anno-
tations will not only improve the optimization of annota-
tion methods, but also precision metric calculation.

However, the number of annotations predicted by 
GOMAP in the BP category is high enough that it is 
possible that GOMAP is producing more FPs. GOMAP 
annotations show higher overall recall but that could be 
at the cost of precision. The BP category is known to be 
the most difficult to predict based on sequence informa-
tion alone [7], and this is clearly seen in the performance 
of GOMAP. For future iterations of GOMAP, improve-
ments to the performance of BP category prediction will 
be a focus for improvements. The lower specificity values 
for GOMAP-produced datasets compared to those pro-
duced by Gramene are explained by the higher number 
of GOMAP-only annotations that have lower specific-
ity. This interpretation is suggested by Additional file  1: 
Figure S1, which shows more lower-specificity annota-
tions. GOMAP is especially affected with a large num-
ber of lower specificity annotations in the BP category. 
However, when the specificity calculation was restricted 
to genes annotated by community methods, GOMAP 
showed higher specificity in CC and comparable specific-
ity for MF (see Additional file 1: Figure S2).

Comparison of the methods also indicates that 
GOMAP annotation quality is comparable to the 
Gramene method. We designed GOMAP not as a 
replacement for Gramene but as a supplemental source 
of annotations. Gramene has been a important resource 
that provides the plant community with high-quality 
annotations and invaluable community outreach, and is 
a federally funded organization. The latest updates from 

Gramene indicate large-scale curation efforts to improve 
functional annotations [47]. The curation efforts will 
improve the annotations of the plant genomes currently 
available in Gramene, but will not be easily transferable 
to newly assembled genomes. Unfortunately, Gramene 
doesn’t include all newly released plant genomes. For 
example, Three out of the four inbred lines that were 
annotated in this paper are not currently available in 
Gramene. We expect GOMAP to allows researchers to 
annotate their own plant genomes or translated tran-
scriptomes in a high-throughput manner and produce 
annotations of comparable quality to sophisticated meth-
ods employed by Gramene. This reduces the time for 
functional annotation of newly assembled genomes and 
leads to better understanding of the sequenced genomes.

The current version of GOMAP focuses on genome-
wide functional annotation using multiple methods, 
some of which are themselves computationally inten-
sive, which results in high computational requirements 
for the GOMAP system. GOMAP’s component methods 
including InterProScan and the sequence comparison 
to the UniProt sequence database significantly contrib-
ute to the computational requirements compared to, for 
example, the simple BLAST searches used by the com-
munity to annotate PH207 [13]. It would be interest-
ing to compare computational requirements between 
GOMAP and Gramene’s annotation pipeline given that 
both are systems that are reported to use multiple meth-
ods. However, the pipeline used by Gramene does not 
have sufficient documentation to enable anyone outside 
of outside of Gramene to reproduce their annotations 
directly. Gramene has evolved over the course of vari-
ous releases, and incorporates multiple methods such as 
the Ensembl Compara pipeline for building phylogenies, 
InterProScan for domain annotation, and cellular locali-
zation signals for functional annotation. Dataset content 
also indicates that Gramene likely inherits GO annota-
tions from Uniprot GOA, InterProScan, curated datasets, 
and other sources [47]. The lack of detailed documenta-
tion precludes a direct computing performance compari-
son between GOMAP and the Gramene systems, but this 
is understandable given that the scope of the Gramene 
project is well beyond GO-based functional annotation 
for genes [47].

We started developing GOMAP after the first round 
of the CAFA competition (CAFA1) results had been 
announced. GAMER and subsequently GOMAP were 
developed based on three of the top performing CAFA1 
methods. Overall performance of CAFA1 methods were 
better than naive methods such as BLAST or Pfam. We 
are grateful for the effort to organize the CAFA com-
petitions and the function prediction community for 
developing these methods for GOMAP. Moreover, the 
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CAFA competition standardized evaluation methods and 
provided an unbiased and effective method to compare 
across different annotation methods. While methods that 
participated in CAFA improved the quality of the predic-
tions, they were not assessed in the context of annotat-
ing non-model plants nor for genome-wide performance. 
GOMAP bridges the gap between the top performing 
functional annotation methods and adapts them to a 
plant-specific context. Over the course of the GOMAP 
project, we also assessed and optimized the quantity of 
annotations produced for entire genomes. We have seen 
continuous improvement in the function prediction 
methods over CAFA2 and CAFA3. The top performing 
methods of CAFA2 and CAFA3 have improved the qual-
ity of the annotations further as evidenced by Fmax . We 
expect GOMAP can be further improved by adding top 
performing methods from CAFA2 and CAFA3 to the sys-
tem. Assessing newer tools could also allow us to decou-
ple GOMAP from external methods such as Argot2 and 
create a self-contained pipeline without sacrificing the 
quality of annotations produced. As additional features, 
the next iteration of GOMAP development for customiz-
ability and a conda package to improve usability.
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