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Abstract 

Background:  To accurately estimate winter wheat leaf area index (LAI) using unmanned aerial vehicle (UAV) hyper-
spectral imagery is crucial for crop growth monitoring, fertilization management, and development of precision 
agriculture.

Methods:  The UAV hyperspectral imaging data, Analytical Spectral Devices (ASD) data, and LAI were simultaneously 
obtained at main growth stages (jointing stage, booting stage, and filling stage) of various winter wheat varieties 
under various nitrogen fertilizer treatments. The characteristic bands related to LAI were extracted from UAV hyper-
spectral data with different algorithms including first derivative (FD), successive projections algorithm (SPA), competi-
tive adaptive reweighed sampling (CARS), and competitive adaptive reweighed sampling combined with successive 
projections algorithm (CARS_SPA). Furthermore, three modeling machine learning methods including partial least 
squares regression (PLSR), support vector machine regression (SVR), and extreme gradient boosting (Xgboost) were 
used to build LAI estimation models.

Results:  The results show that the correlation coefficient between UAV and ASD hyperspectral data is greater than 
0.99, indicating the UAV data can be used for estimation of wheat growth information. The LAI bands selected by 
using different algorithms were slightly different among the 15 models built in this study. The Xgboost model using 
nine consecutive characteristic bands selected by CARS_SPA algorithm as input was proved to have the best perfor-
mance. This model yielded identical results of coefficient of determination (0.89) for both calibration set and valida-
tion set, indicating a high accuracy of this model.

Conclusions:  The Xgboost modeling method in combine with CARS_SPA algorithm can reduce input variables and 
improve the efficiency of model operation. The results provide reference and technical support for nondestructive 
and rapid estimation of winter wheat LAI by using UAV.

Keywords:  Winter wheat, Leaf area index, Unmanned aerial vehicle, Hyperspectral imaging data, Characteristic 
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Background
Leaf area index (LAI), which is defined as half of the 
all-sided leaf area per unit ground area [1], is a key bio-
physical parameter to determine the photosynthesis, 
respiration, and transpiration of vegetation canopy [2, 
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3]. Winter wheat (Triticum aestivum L.) is a main food 
crop in China. It is of great importance to obtain the win-
ter wheat LAI rapidly and effectively to monitor wheat 
growth, manage water and fertilizer application, and pre-
dict the yield. Destructive methods for measuring winter 
wheat LAI normally provide more precise results, but 
the assessment is time-consuming, labor-intensive, and 
expensive. The basic requirement of modern agriculture 
is to conduct real-time, fast, and accurate measurement 
of winter wheat LAI in the field, yet it is difficult to actual-
ize. Remote sensing is a reliable, fast, and non-destructive 
way to monitor growth parameters of crops. Specifically, 
the newly emerged low-altitude remote sensing detection 
technology based on UAV exhibits characteristics of high 
spatial resolution, strong timeliness, low cost, and low 
flight altitude that does not require a flight permit. This 
technology can fill the gap between ground-based moni-
toring and satellite remote sensing of dynamically moni-
toring crop growth at multiple scales, therefore, has been 
widely used in precision agriculture [4–9].

UAV remote sensing platform can carry digital cameras 
featured with simultaneous interpreting and multispec-
tral or hyperspectral sensors. The accuracy of crop phe-
notypic information by remote sensing are varied due to 
inconsistent performance among devices [10]. Modern 
hyperspectral sensors that continuously cover all spec-
tral regions can successfully reflect the characteristics of 
crops. UAV has been used in earlier studies to analyze 
the characteristic bands related to LAI. The estimation 
models of wheat LAI built based on vegetation indices 
(VIs) are used to extract wheat growth information from 
low- altitude UAV hyperspectral data. For example, by 
combining UAV-based hyperspectral data, Fu et  al. [11] 
used Red Edge Soil Adjusted Vegetation Index (RESAVI) 
to effectively invert winter wheat LAI. Xie et al. [12] esti-
mated the wheat LAI using six spectral indices of UAV 
hyperspectral data. However, spectral indices show dif-
ferent degrees of saturation [13, 14], and their universal-
ity and accuracy are easily disturbed by external factors 
[15].

In recent years, some deep learning algorithms such 
as convolutional neural networks (CNN) and machine 
learning algorithms such as support vector machine 
regression (SVR), partial least squares regression (PLSR), 
neural network, and random forest (RF) have been 
applied to agricultural condition monitoring, plant dis-
ease and insect monitoring, wheat ear identification and 
other aspects, and have shown good results. For example, 
Li et al. [16, 17] used CNN to carry out identification and 
monitoring of plant diseases and insect pests. Xu et  al. 
[18] used CNN to achieve accurate segmentation and 
recognition of the number of wheat ears. In the area of 
UAV spectral monitoring, by using UAV hyperspectral 

data, Gao et  al. [19] extracted spectral features based 
on UAV hyperspectral data and constructed the winter 
wheat LAI estimation model using PLSR. Yue et al. [20] 
constructed estimation model of wheat LAI by using VIs, 
RF and PLSR. In aforementioned studies, the extracted 
spectral parameters and ML algorithms are combined 
to construct inversion models of physiological param-
eters. In recent years, algorithms for spectral features 
extraction such as principal component analysis (PCA), 
variable projection importance (VIP), genetic algorithm 
(GA), and continuous projection algorithm (SPA) have 
been widely used in studies of ground monitoring or 
satellite remote sensing [21, 22]. These algorithms can 
effectively remove the redundancy in hyperspectral data, 
thus reduce the risk of overfitting, and finally obtained a 
model of robust and high prediction accuracy [23–25]. 
Due to the inconsistency in performance of sensors, 
spectral data obtained are varied. However, at present, 
limited research has been conducted on dimensionality 
reduction and characteristic band extraction based on 
UAV hyperspectral imaging data and ML methods for 
winter wheat LAI estimation.

In this study, the UAV hyperspectral data, ASD non-
imaging hyperspectral data, and LAI measurements of 
winter wheat at various key growth stages were obtained. 
Various variables extraction algorithms were used to 
extract characteristic bands related to LAI. Next, three 
ML methods (PLSR, SVR, and Xgboost) were employed 
to construct estimation models of winter wheat LAI 
based on selected spectral variables. Last, these mod-
els were comprehensively compared and a most suitable 
model for estimating winter wheat LAI was determined. 
This study provides the methodology and technical 
support for UAV remote sensing on winter wheat LAI 
estimation.

Materials and methods
Study area and experimental design
Experiments were conducted from 2017 to 2018 at Xin-
dian Regional Test Station, Yancheng District, Luohe 
City, Henan Province, China (113°53′1″E, 33°41′60″N) 
(Fig.  1). The area has a warm wet monsoon climate, 
with precipitation mostly occurring in summer and 
autumn, an average annual temperature of about 14.6 
°C. The contents of soil organic matter, total nitro-
gen, alkali hydrolyzed nitrogen, available phosphorus, 
and available potassium are 13.33  g  kg−1, 1.02  g  kg−1, 
92.33 g  kg−1, 54.02 mg  kg−1, and 299 mg kg−1, respec-
tively. The winter wheat varieties used in this study 
include Zhoumai 27 (ZM27), Yumai 49–198 (YM49-
198), Xinong 509 (XN509), and Aikang 58 (AK58). 
Winter wheats were planted in 44 plots (each of size 
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16  m × 9  m) including three repeats (Fig.  2). Different 
nitrogen was used in each plot. A set of four nitro-
gen treatments were used: 0 (N0), 120  kg.hm−2 (N8), 
225  kg.hm−2 (N15), and 330  kg.hm−2 (N22). The ratio 
of base fertilizer topdressing is 6:4. The base ferti-
lizer was applied before sowing and the topdressing 
was applied at the jointing stage. Winter wheats were 
machine-sown on October 23, 2017, at a sowing rate 
of 180  kg hm−2. Other cultivation and management 

measures were generally the same as those applied in 
high yield wheat fields. The specific design is shown in 
Fig. 2.

Data collection and index determination
All experimental data including UAV-based hyperspec-
tral imaging data, field hyperspectral reflectance, and 
wheat LAI, were collected at three key growth stages 
of winter wheat in 2018. The specific dates for data 

Fig. 1  Study area location

Fig. 2  Experimental design. AK58, ZM27, XN509, and YM49-198 represent different winter wheat cultivars. AK58: Aikang 58; ZM27: Zhoumai 27; 
XN509: Xinong509; YM49-198: Yumai49-198. N0, N8, N15, and N22 represent nitrogen treatments of 0, 120, 225, and 330 kg hm−2, respectively
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collection were March 11 (jointing stage), April 8 (boot-
ing stage), and May 12 (filling stage).

UAV‑based imaging hyperspectral data
The UAV remote sensing platform is composed of 
an AZUP-T8 eight-propeller UAV (XIRO company, 
China), and a UHD185 high-resolution imaging spec-
trometer (Cubert, Germany). The UHD185 acquires 
wavelengths from the visible to the near-infrared (450–
950 nm) from 125 spectral bands. The sampling interval 
of the hyperspectral data is 4 nm, and the spectral reso-
lution is 8  nm. The data acquired by the UHD185 air-
borne hyperspectrometer contained hyperspectral cube 
images with a spatial resolution of 21 cm and panchro-
matic images (in.jpg format) with a spatial resolution of 
1  cm. Hyperspectral data acquisition was carried out 
on cloudless and windless days. The reference plate was 
used to calibrate UHD185 before data collection. The 
height, moving speed, course overlap, and side overlap 
were set as 50 m, 6 m  s−1, 80%, and 60%, respectively. 
The data processing flow is shown in Fig. 3.

Measurement of field hyperspectral reflectance
Canopy reflectance measurement of each plot was col-
lected with an ASD FieldSpec4 Portable high-resolution 
spectrometer (ASD Inc., USA) with the spectral range of 
350–2500 nm. ASD measurement was carried out before 
UAV data acquisition. The measurements were taken 1 m 
above the canopy with a 25° field of view optic. Three 
spectral measurements were acquired per plot (10 spec-
tra as a sampling interval) and averaged to a single meas-
urement for further analysis. The sampling interval of the 
hyperspectral data is 1.4 nm at 350–1000 nm, and 2 nm 
at 1000–2500 nm, and the spectral resolutions are 3 and 
2  nm, respectively. Standard whiteboard correction was 
performed before and after the measurement. The exact 
position of each plot was located by a GPS device.

Measurement of LAI
Winter wheat LAIs were measured at fixed sample points 
of each plot. Ten winter wheat plants were randomly 
sampled from each plot, immediately sealed into a paper 
bag, and brought back to the laboratory for separation of 
stems and leaves. LAIs were measured according to the 
method proposed by Feng et al. [26].

Data analysis
A total of 132 winter wheat LAIs were collected in this 
study. Eight were removed due to test errors, and the 
resulting 124 LAIs were used for the following data anal-
ysis. To evaluate the models’ robustness of temporal vari-
ation, the LAIs of area 1 and 3 (80 samples) were used as 
the calibration set, and the LAIs of area 2 (44 samples) 

were used as the standalone validated set. The LAI data 
are summarized in Table 1.

The characteristic bands of LAI in UAV hyperspectral 
data were extracted with various algorithms including 
the first derivative (FD), successive projections algorithm 
(SPA), competitive adaptive reweighed sampling (CARS) 
and competitive adaptive reweighed sampling combined 
with successive projections algorithm (CARS_SPA). 
In combine with the full spectrum information, three 
ML methods including partial least squares regression 
(PLSR), support vector machine regression (SVR), and 
extreme gradient boosting (Xgboost) were used to con-
struct LAI estimation models. The flowchart of UAV 
hyperspectral imaging data processing and data analysis 
for constructing winter wheat LAI estimation model is 
presented in Fig. 3.

Algorithms for spectral variables extraction
Four algorithms for spectral variables extraction were 
used in the present study. (1) FD can effectively remove 
the interference of linear and near-linear background 
noise in the raw spectrum, enhancing spectral character-
istic differences. (2) SPA selects the combination of varia-
bles with minimum redundancy from the spectral matrix 
to minimize the collinearity among variables, resulting to 
a great reduction in the number of variables used as input 
for modeling. Therefore, the complexity of the model is 
reduced whereas the stability and accuracy of the model 
are improved [27]. (3) CARS is a new variable selection 
algorithm, which follows the principle of “survival of 
the fittest”. The exponential decreasing function (EDF) 
and adaptive reweighting sampling (ARS) are used to 
remove the wavelength variables with low absolute value 
of regression coefficients in PLSR model. After that, root 
mean square error of cross-validation (RMSECV) calcu-
lation are used to select important variables with good 
stability in several iterations, and a final subset of vari-
ables is obtained. The subset with the lowest RMSEV is 
considered as the optimal variable subset [28]. (4) CARS_
SPA. By combining the advantages of the two algorithms 
(SPA and CARS) [29], the CARS_SPA algorithm not 
only minimize the spectral variable redundancy, but also 
reduces the interference of invalid variables during the 
SPA calculation process.

Modeling methods
Three ML methods were used for data mining and matrix 
recognition. (1) PLSR is a regression modeling method to 
predict a set of dependent variables from a set of independ-
ent variables. It combines features of principal component 
analysis, canonical correlation analysis, and multiple regres-
sion analysis. PLSR can solve the multi-collinearity among 
independent variables and is suitable for small sample 
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datasets. (2) SVR. The use of Lagrangian multipliers for 
data regression analysis is an extension of support vector 
machine classification to solve regression problems. It has a 

strong learning ability from small datasets and solves high-
dimensional and nonlinear problems by transforming them 
into linear problems through nonlinear transformation. In 

Table 1  Summary of leaf area index (LAI) of winter wheat

Sample type Sample number Maximum value Minimum
value

Mean value Standard 
deviation

Coefficient 
of variation

Total sample 124 8.38 1.78 5.43 1.70 0.32

Calibration set 80 8.38 1.78 5.33 1.74 0.33

Validation set 44 8.24 3.10 5.62 1.62 0.30

Fig. 3  Flow chart of winter wheat LAI estimation modelling method
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this study, the Gaussian kernel function is used as the ker-
nel function, and the GridSerachCV function is used to 
discover the optimal parameters (penalty coefficient cost 
and gamma). (3) Xgboost is a new efficient ensemble learn-
ing algorithm proposed by Chen [30]. It is an improved 
algorithm of gradient boosting, and uses the Taylor expan-
sion to obtain the second derivative as independent vari-
able. By separating the selection of loss function from the 
optimization of model algorithm and parameter selection, 
the applicability of Xgboost is increased, which makes it 
select loss function on demand. A strategy similar to RF is 
adopted to support data sampling, and make full use of the 
advantages of multi-core CPU parallel computing, which 
greatly improves the operation speed and prediction accu-
racy of the model [31]. The GridSerachCV function is used 
to discover the optimal kernel parameters, the main ker-
nel parameters are as follows: n_estimators, the maximum 
depth of the tree (max_depth), regularization parameters 
(min_child_weight), gamma, sampling method (subsample 
and colsample_bytree), and learning_rate.

Accuracy evaluation
The accuracy of the LAI estimation models was evalu-
ated using the coefficient of determination (R2), root mean 
square error (RMSE), and relative percent deviation (RPD). 
The formulas are as follows:

(1)R2
=

∑n
i=1

(xi − x)2 × (yi − y)2
∑n

i=1
(xi − x)2 ×

∑n
i=1

(yi − y)2

(2)RMSE =

√

∑n
i=1

(yi − xi)2

n

 where, xi , x , yi , and y are the measured LAI, the mean 
measured LAI, the LAI predicted by the model, and the 
mean LAI predicted by the model, respectively; n is the 
number of data points. Larger R2 values indicate a better 
model fit, while a smaller RMSE indicates a higher model 
accuracy. RPD can reflect the prediction performance of 
the model. Briefly, when 1.0 < RPD < 1.4, the prediction 
performance of the model is poor; when 1.4 < RPD < 1.8, 
the model can be used for correlation assessment; when 
1.8 < RPD < 2.0, the model can be used for quantitative 
prediction; when 2.0 < RPD < 2.5, a more accurate quan-
titative prediction can be achieved; when RPD > 2.5, the 
prediction performance of the model is better.

Results and analysis
Reliability verification of UAV hyperspectral imaging data
In order to verify the reliability of UAV hyperspectral 
imaging data, the winter wheat hyperspectral data col-
lected by ASD were resampled into UHD185 bands to 
calculate the average reflectance for each plot. Corre-
lation analysis showed that the spectral reflectance of 
UHD185 and ASD are in high consistence at spectral 
bands between 458 and 830  nm, overlapping in both 
green peak position and red edge region (Fig.  4a). At 
spectral bands between 830 and 950  nm, the spectral 
reflectance of UHD185 gradually decreased, while that of 
ASD deviated from UHD185 and exhibited a flat curve 
(Fig. 4a). This may be due to relatively high noise between 
830 and 950 nm since this range is close to the edge of 
UHD185 sensor spectrum. We compared spectral reflec-
tance of UHD185 and ASD at 458–830 nm and found a 
high correlation (R2 > 0.99) between them (Fig. 4b). These 

(3)RPD =

√

∑n
i=1

(xi − x)2

n− 1
/RMSE

Fig. 4  Reliability verification of UHD185 hyperspectral data. a Comparison of spectral reflectance curves of UHD185 and resampled ASD, b 
Correlation between UHD185 and resampled ASD spectral reflectance
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results indicate that the spectral reflectance of UHD185 
is reliable between 458 and 830  nm (3–96 wavebands) 
and can be used to estimate winter wheat LAI.

Changes in LAI and spectrum under different nitrogen 
treatments at different growth stages
The four winter wheat varieties responded differ-
ently to various N treatments at distinct growth stages 
(Fig.  5a–c). Under various N treatments, the maxi-
mum LAI values were observed under N15 and N22. 
With the wheat growth developed, LAI first increased 
and then decreased, with the maximum LAI value 
obtained at the booting stage. The changes in canopy 
spectral features at 458–830 nm under various N treat-
ments were further analyzed, and the overall trends of 
canopy spectra were consistent among wheat varieties. 
The changes in canopy characteristics of YM49-198 are 
shown in Fig.  5d–f. The overall trend of canopy spec-
tral reflectance was similar under various N treatments: 
the spectral reflectance was low at 458–730  nm (vis-
ible region) and was high in the near-infrared region; 
an absorption valley (red valley) appeared near 674 nm, 
and the spectral reflectance rose sharply at 690–790 nm 
(red-edge region). At 458–730  nm (visible region), 
the spectral reflectance decreased with increasing N 

concentrations, showing N0 > N8 > N15 > N22. The dif-
ference in spectral reflectance among various N treat-
ments was more significant in the near-infrared region 
than in the visible region, and the spectral reflectance 
increased with increasing N concentrations, showing 
N22 > N15 > N8 > N0. The overall trend was consistent 
among different growth stages.

Correlation between winter wheat LAI and UAV 
hyperspectral imaging data
Comparisons were made between the winter wheat LAI 
and raw UHD185 spectral reflectance (458–830  nm), 
and between LAI and FD-transformed UHD185 spec-
tral reflectance (458–830  nm). Between LAI and 
UHD185 spectral reflectance, the maximum negative 
and positive correlation coefficients were at 654  nm 
(r = − 0.80) and 802 nm (r = 0.49), respectively (Fig. 6). 
Between LAI and FD-transformed spectral reflectance, 
the maximum negative and positive correlation coeffi-
cient were at 546 nm (r = − 0.74) and 774 nm (r = 0.83), 
respectively. Spectral bands with absolute correlation 
greater than 0.6 are 498–506  nm, 542  nm, 546  nm, 
738–786 nm, and 830 nm (Fig. 6).

Fig.5  Changes in LAI and spectrum of winter wheat varieties under various nitrogen treatments at distinct growth stages
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Selection of characteristic bands related to winter wheat 
LAI from UAV hyperspectral reflectance data
Four methods including FD, SPA, CARS, and CARS_
SPA were used to select characteristic bands related to 
wheat LAI. The FD correlation analysis demonstrated 
that spectral bands of 498–506  nm, 542  nm, 546  nm, 
738–786 nm, and 830 nm were in high correlation with 
winter wheat LAI (correlation coefficients > 0.6). We 
selected bands corresponding to the maximum value at 
the inflection point, and discarded multiple highly cor-
related bands that are close to the inflection point. In 
this way, spectral bands at 506, 546, 774, and 830  nm 

were selected by FD, which account for 4.25% of the 
total variables.

During the process of SPA algorithm, the minimal and 
maximal numbers of characteristic bands extracted were 
set as 5 and 94, respectively. At the minimum RMSE of 
1.049, a total of 28 optimal characteristic bands (458, 466, 
474, 482, 498, 502, 506, 510, 518, 526, 530, 534, 542, 546, 
558, 566, 570, 574, 610, 626, 650, 658, 686, 698, 710, 762, 
814, and 830 nm), accounting for 29.8% of the total vari-
ables, were selected (Fig. 7).

The number of characteristic bands gradually 
decreased with the increase in CARS iteration (Fig. 8a). 
With the increase in sampling time, the tenfold RMSE 
cross validation first slightly decreased, then increased 
significantly at the CARS iteration of 47 (Fig.  8b). This 
result indicates that certain key information was lost 
after performing 47 iterations of CARS, resulting to a 
poor performance of the model. At the iteration of 24, 
RMSE reached its minimum of 0.9674. Thirteen variables 
(566, 586, 602, 610, 634, 682, 698, 710, 730, 734, 790, 802, 
and 814 nm) accounting for 13.8% of the total variables 
were therefore selected (Fig. 8c).

The 28 characteristic bands selected using SPA algo-
rithm may contain noise due to the complexity in SPA 
calculation process CARS algorithm can effectively 
remove the variables with small weight, and effectively 
select variables closely related to LAI. Therefore, the 
28 characteristic bands selected by SPA algorithm were 
filtered by CARS algorithm to obtain the optimal com-
bination of characteristic bands. The result showed 
the minimum RMSE (0.9718) appeared at the CARS 

Fig. 6  Correlation between UHD185 hyperspectral data and wheat 
LAI

Fig. 7  SPA Variable filtering process. a Change of the root mean square error (RMSE) in the SPA. b The optimal wavebands selected using SPA
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iterations of 15 (Fig. 9). Therefore, nine variables (466, 
474, 518, 526, 610, 658, 710, 814, and 830 nm) account-
ing for 9.57% of the total variables were selected.

We compared the LAI characteristic bands selected 
by the four algorithms, the distributions of character-
istic bands selected by different algorithms were in 
consistent to a large extent, yet differences were also 
observed (Fig. 10).

Construction of winter wheat LAI estimation model 
by different modeling methods
Based on characteristic bands of wheat LAI selected by 
using different variable selection algorithms and full 
spectrum information, three modeling methods includ-
ing PLSR, SVR, and Xgboost were employed to construct 
LAI estimation models. Independent samples including 
calibration and validation sets were used to test these 
models. Table  2 summarizes the results for the models 
obtained by different modeling methods.

A reliable PLSR model was constructed using 9 char-
acteristic bands selected by CARS_SPA algorithm as 
input. In this model, similar results of model evaluation 
indices (R2, RMSE, and RPD) were obtained for the cali-
bration and validation sets. The R2, RMSE, and RPD of 
the calibration set were 0.83, 0.73, and 2.39, respectively, 
and those of the validation set were 0.83, 0.74, and 2.19, 
respectively. The PLSR model constructed based on 28 
characteristic bands selected by SPA algorithm showed a 
poor performance. The R2, RMSE, and RPD of the cali-
bration set were 0.79, 0.81, and 2.14, respectively, and 
those of the validation set were 0.78, 0.81, and 12.01, 
respectively.

The SVR method based on different combinations 
of characteristic bands yield similar results of evalua-
tion indices. Among these SVR models, the one using 9 
characteristic bands selected by CARS_SPA algorithm as 
input showed the best performance. The R2, RMSE, and 
RPD of the calibration set were 0.82, 0.75, and 2.31, and 
those of the validation set were 0.84, 0.65, and 2.75.

Further analysis was performed on the model con-
structed by using Xgboost method. The Xgboost model 
based on the 28 characteristic bands selected by SPA 
algorithm showed a poor performance. The R2, RMSE, 
and RPD of the calibration set were 0.84, 0.73, and 2.37, 
respectively, and those of the validation set were 0.76, 
0.82, and 1.96, respectively. The Xgboost model showed 
the best performance when using 9 characteristic bands 
selected by CARS_SPA algorithm. The R2, RMSE, and 
RPD of the calibration set were 0.89, 0.63, and 2.51, 
respectively, and those of the validation set were 0.89, 
0.55, and 2.92, respectively.

In summary, among all characteristic band combina-
tions, the one containing 9 characteristic bands selected 
by CARS_SPA algorithm outperformed with either of 
the ML modeling methods, followed by models con-
structed using the four characteristic bands selected by 
FD algorithm. This may be due to the fact that these 9 
characteristic bands selected by CARS_SPA algorithm 
are uniformly distributed within the spectral range of 
458–830 nm, which thus well maintain the spectral infor-
mation of the reflectance corresponding to LAI inver-
sion. The three LAI estimation models constructed based 

Fig. 8  Selection of variables by CARS. a Variation trend of variables; b 
Tenfold RMSEV values; c Variable regression coefficient

Fig. 9  Variable selection process by CARS_SPA. a Variation trend of 
variables; b Tenfold RMSEV values; c Variable regression coefficient
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on characteristic bands selected by CARS_SPA were 
superior to LAI models constructed based on the full 
spectrum. However, the accuracies of LAI models con-
structed based on selected characteristic band were dif-
ferent from those of the models constructed based on full 
spectrum information. These results demonstrated that 
characteristic bands extraction could greatly reduce the 
number of variables used for modeling, thus reduces the 

modeling complexity which improves the modeling effi-
ciency while ensures its accuracy. Comparing the three 
ML modeling methods, the Xgboost models performed 
the best, followed by PLSR and SVR. The calibration and 
validation results of the best-performed model are shown 
in Fig. 11. Figure 12 shows the predicted LAI at the joint-
ing, booting, and filling stages based on the 9 character-
istic bands selected via the CARS_SPA algorithm and the 

Fig. 10  Distribution of characteristic bands selected by using different variable extraction algorithms. SPA Successive projections algorithm, CARS 
Competitive adaptive reweighed sampling, CARS_SPA competitive adaptive reweighed sampling combined with successive projections algorithm, 
FD First derivative, Reflectance: The original reflectivity curve. B Blue, G Green, Y Yellow, O Orange, R Red, NIR Near-infrared

Table 2  Regression analysis of characteristic bands and winter wheat LAI

Modeling method Variable extraction Wavelengths 
numbers

Calibration Validation

R2 RMSE RPD R2 RMSE RPD

PLSR Full_spectrum 94 0.79 0.81 2.15 0.78 0.79 2.06

FD 4 0.81 0.77 2.26 0.81 0.75 2.15

SPA 28 0.79 0.81 2.14 0.78 0.81 2.01

CARS 13 0.80 0.79 2.22 0.81 0.78 2.08

CARS_SPA 9 0.83 0.73 2.39 0.83 0.74 2.19

SVR Full_spectrum 94 0.80 0.79 2.20 0.77 0.79 2.06

FD 4 0.80 0.78 2.22 0.80 0.72 2.24

SPA 28 0.81 0.75 2.31 0.79 0.76 2.14

CARS 13 0.79 0.79 2.20 0.77 0.79 2.04

CARS_SPA 9 0.82 0.75 2.31 0.84 0.65 2.75

Xgboost Full_spectrum 94 0.93 0.50 3.48 0.80 0.79 2.04

FD 4 0.88 0.65 2.69 0.81 0.75 2.17

SPA 28 0.84 0.73 2.37 0.76 0.82 1.96

CARS 13 0.82 0.82 2.12 0.82 0.84 1.93

CARS_SPA 9 0.89 0.63 2.51 0.89 0.55 2.92
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winter wheat LAI model constructed by XGBoost. The 
mapping was performed by combining UAV images, with 
which the spatial variation of LAI can be visualized.

Discussion
In combine with VI or other modeling methods, a large 
number of wheat LAI estimation models have been built 
based on selected characteristic bands related to wheat 
LAI. However, the characteristic bands used in differ-
ent studies were quite varied. For example, Cheng et al. 
[32] quantitatively analyzed UAV hyperspectral data, 
and found that 516, 636, 702, 760, and 867 nm were the 
most sensitive bands to LAI changes. Gao et  al. [33] 
constructed a ratio VI model for estimating wheat LAI 
using UAV hyperspectral data of 494 and 610 nm, result-
ing to a modeling R2 of 0.74 and a prediction R2 of 0.78. 
Xie et al. [12] used airborne hyperspectral data to study 
the normalized VI and found that models constructed 
at 660 and 785 nm show better estimation winter wheat 
LAI. By using the hyperspectral data of UAV, Tao et  al. 
[34] confirmed that the linear combination index (LCI) 
constructed at 670, 710, and 850 nm and the plant bio-
chemical index (PBI) constructed at 560 and 810  nm 
were coupled with red edge parameters respectively, 
which can be used to accurately estimate winter wheat 
LAI. Based on the UAV hyperspectral data and optimal 
index algorithm, Chen et  al. [35] determined 454, 754, 
and 834  nm were the optimal bands for winter wheat 
LAI estimation model during the flowering period. The 

red and near-infrared bands used in the above stud-
ies can better reflect the dynamic changes of LAI [36]. 
Bands of 518, 610, 658, 710, 810, and 830  nm selected 
in this study are similar to those in the aforementioned 
studies. In addition, the 9 characteristic bands selected by 
CARS_SPA algorithm in this study also include 466, 474, 
and 526 nm, which are the convoluted absorption bands 
of chlorophyll and carotenoids [37].These bands are in 
the blue-green light spectral range, which would perform 
better in LAI prediction if combined with red and near-
infrared bands [38, 39]. The three models built based on 
the 9 characteristic bands selected by CARS_SPA algo-
rithm all showed outstanding prediction results, indicat-
ing that the nine bands may contain effective information 
related to winter wheat LAI. These results may provide 
reference for other related studies.

The ML methodologies can be used to effectively 
analyze and utilize information-rich datasets as well 
as high-dimension observation data [40]. It has been 
used in the analysis and modeling of remote sensing 
data, but the accuracies of different ML methods are 
varied. Based on UAV hyperspectral data, Tao et  al. 
[34] combined the VI and red edge parameters, and 
constructed an estimation model of winter wheat LAI 
using PLSR method. This model yielded a modeling 
R2 of 0.80, and a prediction R2 of 0.75. Based on UAV 
hyperspectral data, Tao et al. [41] built a winter wheat 
LAI inversion model in combination with multiple lin-
ear regression of random forest in the flowering period, 

Fig. 11  Calibration and validation results of best-performed wheat LAI estimation model. a Scatter diagram of calibration results. b Scatter diagram 
of validation results
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which performed the best, resulting to a modeling R2 of 
0.68, and a prediction R2 of 0.85. In this study, three ML 
methods were employed to construct winter wheat LAI 
estimation model. In general, the Xgboost models per-
form the best. This may be due to the fact that Xgboost 
is fast, highly effective, suitable for large-scale data pro-
cessing, and has custom loss function [30], Xgboost can 
tackle majority of the flaws that emerged from the exist-
ing modeling methods [42]. In this study, the Xgboost 
model built based on the 9 characteristic bands 
selected by the CARS_SPA algorithm has been proved 
to be the best model for estimating winter wheat LAI, 
the accuracy of which (calibration R2 = 0.89; validation 
R2 = 0.89) is higher than those constructed by Tao et al. 

[34, 41]. Therefore, Xgboost may be a reliable modeling 
method, which can be used for UAV remote sensing 
in combine with wheat LAI modeling and prediction. 
The findings in this study provide technical support for 
rapid and nondestructive estimation of winter wheat 
LAI. However, this study only compared the potential 
of three machine learning methods for UAV estima-
tion of wheat LAI, while deep learning showed better 
application prospects in areas such as classification 
and monitoring of plant pest and disease [43, 44], and 
it is necessary to further explore the potential of deep 
learning and other methods for UAV spectral monitor-
ing of crop growth in the next step. In addition, more 
samples need to be obtained combine with multi-point 

Fig. 12  Spatial distribution diagram of LAI estimation based on wheat LAI estimation model
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and multi-year experiments, and a more universal and 
applicable model will be established on this basis.

Conclusion
Based on different nitrogen treatments and field experi-
ments, hyperspectral images, and LAI at key growth 
stages of winter wheat were obtained by the UAV plat-
form equipped with hyperspectral imaging sensor. Four 
algorithms were used to extract characteristic bands 
related to LAI, and three ML methods were used to con-
struct models for estimating winter wheat LAI. We com-
pared the reliability and accuracy of these models, and 
found out that the Xgboost model constructed based 
on 9 characteristic bands selected by CARS_SPA algo-
rithm exhibited the highest accuracy. In this model, the 
R2, RMSE, and RPD of the calibration set were 0.89, 0.63, 
and 2.51, respectively, and those of the validation set 
were 0.89, 0.55, and 2.92, respectively. The combination 
of CARS_SPA algorithm and Xgboost modeling method 
can reduce input variables, improve the operation effi-
ciency of the model, and ensure a higher accuracy. Our 
results provide a reference for the nondestructive and 
rapid acquisition of winter wheat LAI by UAV remote 
sensing.
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