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Abstract 

Background:  Effective soybean seed phenotyping demands large-scale accurate quantities of morphological 
parameters. The traditional manual acquisition of soybean seed morphological phenotype information is error-prone, 
and time-consuming, which is not feasible for large-scale collection. The segmentation of individual soybean seed 
is the prerequisite step for obtaining phenotypic traits such as seed length and seed width. Nevertheless, tradi-
tional image-based methods for obtaining high-throughput soybean seed phenotype are not robust and practical. 
Although deep learning-based algorithms can achieve accurate training and strong generalization capabilities, it 
requires a large amount of ground truth data which is often the limitation step.

Results:  We showed a novel synthetic image generation and augmentation method based on domain randomiza-
tion. We synthesized a plenty of labeled image dataset automatedly by our method to train instance segmentation 
network for high throughput soybean seeds segmentation. It can pronouncedly decrease the cost of manual annota-
tion and facilitate the preparation of training dataset. And the convolutional neural network can be purely trained by 
our synthetic image dataset to achieve a good performance. In the process of training Mask R-CNN, we proposed a 
transfer learning method which can reduce the computing costs significantly by finetuning the pre-trained model 
weights. We demonstrated the robustness and generalization ability of our method by analyzing the result of syn-
thetic test datasets with different resolution and the real-world soybean seeds test dataset.

Conclusion:  The experimental results show that the proposed method realized the effective segmentation of indi-
vidual soybean seed and the efficient calculation of the morphological parameters of each seed and it is practical to 
use this approach for high-throughput objects instance segmentation and high-throughput seeds phenotyping.
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Background
The legume species soybean (Glycine max L.), ranking 
among the top five worldwide major crops [1], is one of 
the most important grain legumes. Also, it is an impor-
tant source of vegetable oil and protein for human con-
sumption [2]. Crop yield of soybean highly depends on 

three major aspects which are the number of pods per 
plant, the number of seeds per pod and the seed size [3]. 
The size of soybean seed, which is not only a very impor-
tant appearance quality but also strongly associated with 
the commercial value [4], is an important agronomic trait 
that affects the quality and yield of soybean [5]. The seed 
morphological phenotypes, which include seed shape, 
seed length, seed width, seed height, seed circumfer-
ence, seed surface area and seed volume and so on, are 
essential to reflect the growth and development, physi-
ology, biochemistry and genetics of soybean [6]. Paying 
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attention to the morphological traits of soybean seeds is 
a powerful indicator for improving crop yield. However, 
Effective soybean seed phenotyping requires large-scale 
accurate quantities of accurate morphological phenotype 
parameters. Thus, it is necessary to develop an automatic 
approach to acquire accurate soybean seeds morphologi-
cal parameters information.

The traditional acquisition method of soybean seed 
morphological phenotype relies on manual approaches 
by measuring and evaluating the shape of the seed 
with a vernier caliper. Since the size of soybean seeds is 
small generally, the operation of manual measurements 
is labor-intensive, time-consuming and error prone 
extremely. Moreover, the phenotypic information of 
manual measurement is limited to the seed length, seed 
width, and seed height, and no more information can be 
measured, it is not applicable for large-scale collection of 
soybean seeds morphological phenotype information [6].

With the rapid development of imaging technology, it is 
possible to measure the morphological phenotype infor-
mation of high throughput soybean seeds, however the 
seeds need to be sparsely placed without physical con-
tact [6]. Traditional image-based researches on soybean 
seed phenotyping mainly include seed quality evaluation 
[5, 7–9], seed counting [10–12], etc. Also, image-based 
quantification of seed morphological phenotype infor-
mation is widely used in rice grain [13], corn grain [14], 
etc. Widely used open-source image analysis software 
for seed morphological phenotype quantification include 
SmartGrain [15], ImageJ [16], CellProfiler [17], P-TRAP 
[18] and WinSeedle [19] and so on. These software are 
mainly based on classic but ordinary image processing 
techniques to separate individual seeds, such as mor-
phological open operation [15], watershed algorithm [16, 
17], and handcrafted feature based bespoke algorithm 
[19], etc. Some scholars also proposed a traditional image 
processing technology based method to extract high-
throughput soybean seeds phenotype information auto-
matically [6]. These software and methods mentioned 
above can realize the phenotype parameters measure-
ment of high throughput seeds which are sparsely placed 
without overlap under consistent light condition to 
achieve an effective segmentation. When soybean seeds 
are densely sampled and physically contacted with each 
other or when the illumination condition of seeds is 
inconsistent, these seeds cannot be effectively segmented 
into individual seed to calculate each individual seed 
phenotype parameters, and these tailored image seg-
mentation algorithms which are based on classic image 
processing technology are sensitive to the texture of 
object and illumination conditions [20]. Above all, tradi-
tional image processing methods show weak robustness 
and poor generalization ability. Instance segmentation 

network based on deep learning can achieves effective 
segmentation by learning the deep features of the images 
to solve above problems [21, 22].

Deep learning has gathered a wide attraction from sci-
entific as well as industrial communities [23]. In the field 
of computer vision. Convolutional Neural Networks 
(CNN) are widely applied in various tasks, such as clas-
sification [24, 25], object detection [26, 27], semantic 
segmentation and instance segmentation [28, 29], which 
greatly improves the results while traditional image 
processing methods can’t achieve [30]. With the rapid 
development of massively parallel Graphics Processing 
Unit (GPU) computing technology and big data process-
ing technology, the widespread success of deep leaning 
techniques has spawned a multitude of applications in 
computer vision-based plant phenotyping [22], includ-
ing weed detection [31], crop disease diagnosis [25], 
fruit detection [32] and many other applications listed in 
recent reviews [33, 34].

Deep learning applied in quantitative image analysis 
has grown exponentially in the past few years. However, 
training an accurate deep learning model with strong 
generalization ability requires a large amount of labeled 
data which is one of the disadvantages of deep learning. 
Compared with relatively common tasks (ImageNet clas-
sification [35] and COCO detection [36]), the need of 
annotated data for specialized tasks in agricultural appli-
cations is even more pronounced [21, 37, 38]. Although 
many techniques aiming to decrease the cost of expert 
labeling cost (such as domain adaptation [39] or active 
learning [21]) without compromising performance have 
been widely used in plant phenotyping fields, the anno-
tations of phenotyping dataset is still necessary for algo-
rithms evaluation, and the labelling process is tedium, 
painful, labor-intensive and time-consuming. Especially 
in the phenotyping of high-throughput crop seeds, the 
annotation of crop seed instance segmentation dataset 
will be a tremendous challenge.

An improvement to reduce the cost of manual anno-
tation is learning from synthetic images. Although the 
synthetic image dataset is not authentic compared with 
real-word dataset, the important advantages of syn-
thetic image dataset is that ground truth annotations 
can be automatically obtained without manual labor. 
Furthermore, the synthetic image approach equips 
with the ability of creating almost unlimited amount of 
labeled training dataset. Synthetic data can represent 
changes in a variety of conditions, which is usually diffi-
cult to achieve through image augmentation techniques 
on real sense images. Kuznichov et al. [40] proposed a 
method to segment and count the leaves of Arabidop-
sis, avocado and banana, by using synthetic leaf tex-
ture located with different sizes and angles to simulate 
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images obtained in real agricultural scenes. Toda et al. 
[41] proved that synthetic datasets, which rendered the 
combination and direction of seeds, was sufficient to 
train an instance segmentation network to segment the 
high throughput barley seeds from real-world images. 
Collectively, synthetic image datasets have a great 
potential in computer vision-based plant phenotyping 
research field.

Transfer learning, which exploits the related knowl-
edge in source domain to help the learning of the target 
domain [42], is one of the effective approaches which 
can reduce the costs of manual annotation and com-
puting cost on the target domain dataset. Bosilj et  al. 
[31] studied the role of deep learning-based knowledge 
transfer for different various of crop, with the purpose 
of reducing the training time and manual annotation 
work required in new task. The author proved that 
transfer learning could be used between different crops 
and could reduce training time by up to 80%. Coulibaly 
et al. [43] proposed a method of using transfer learning 
and feature extraction to realize the identification of 
pearl millet mildew, and achieved 95% accuracy, 94.5% 
recall and 91.75% F1-score. Sakurai et  al. [39] inves-
tigated the effectiveness of transfer learning in plant 
segmentation tasks. In summary, transfer learning has 
great potential in the field of plant phenotyping, which 
can not only reduce the cost of data annotation, but 
also reduce the training time on new tasks.

To efficiently tackle individual soybean seed quick 
segmentation for high-throughput soybean seeds phe-
notype data extraction at individual seed level, we 
propose a method based on Mask R-CNN and trans-
fer learning. Since the deep learning-based instance 
segmentation requires a large amount of labeled data, 
and the number of soybean seeds in each image is 
abundant, the labeling process is destined to be labor-
intensive and time-consuming. Hence, we instead train 
with synthetic soybean seeds images dataset which 
were prepared by our novel synthetic image genera-
tion and augmentation approach which can generate 
the origin image and labeled image pair synchronously. 
The approach presented herein is motivated by high 
throughput soybean seeds phenotyping task. This work 
built on pioneer research on Mask R-CNN network, 
retrained by our synthetic labeled image dataset.

The paper’s contributions:

1)	 A method was  proposed for rapidly and automati-
cally generating synthetic labeled high throughput 
soybean seeds image dataset.

2)	 A hybrid sim/real dataset was  designed for train-
ing and evaluating high throughput soybean seeds 
instance segmentation methods transferring from 
simulation to reality robustly.

3)	 A synthetic image dataset based Mask R-CNN 
with transfer learning was  adapted to perform high 
throughput soybean seeds instance segmentation.

4)	 Multi-group comparation experiments were designed 
to evaluate the sim-to-real generalization abilities of 
Mask R-CNN trained by our synthetic dataset.

Methods
Raw soybean seeds image acquisition
Soybean seeds used in this research were zhonghuang-30 
and zhonghuang-42 which were supplied by Ministry 
of Agriculture and Rural Affairs Key Laboratory of Soy-
bean Biology, the Institute of Crop Sciences, Chinese 
Academy of Agricultural Sciences. Zhonghuang-30 is an 
early-maturing variety of northern spring soybeans with 
a growth period of about 124  days. The plant height is 
about 64 cm. The number of main stem nodes is 15, and 
the effective branches are 1.1. Round leaves, purple flow-
ers, brown hair, determinant growth habit. The grains are 
round, the seed coat is yellow, with a weak luster, brown 
hilum, and the weight of one hundred seeds is 18.1  g. 
Resistance to mosaic virus disease and gray spot dis-
ease. The fat content is 21.44% and the protein content 
is 39.53%. Zhonghuang-42 has an average growth period 
of 116 days. The plant height is about 71.1 cm, the effec-
tive branches are 0.9. The number of seeds per plant is 
62.0. The grains are oval, the seed coat is yellow, with 
luster, light brown hilum and the weight of 100 seeds is 
27.2  g. Oval leaves, purple flowers, gray hair, determi-
nant growth habit. The average crude protein content is 
45.08%, and the crude fat content is 19.23%. All the soy-
bean seeds were threshed manually. The detail pheno-
typic descriptors of these varieties were summarized in 
Table 1. The single soybean seed upon the black-colored 
flannel was captured by the camera sensor of an iPhone 
6 s plus (Apple) erected on a tripod with the image size of 

Table 1  The detail phenotypic descriptors of zhonghuang-30 and zhonghuang-42 soybean seeds

Soybean varieties Seed shape Seed coat color Hilum color 100 grain weight

Zhonghuang-30 Round Yellow Brown  ~ 18.1 g

Zhonghuang-42 Oval Yellow Light brown  ~ 27.2 g
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3024 × 3024 at 72 dpi in three kind of illumination condi-
tions as shown in Fig. 1. The working distance of camera 
sensor was fixed about 15  cm above the black-colored 
flannel background. 

Software libraries and hardware
The processing unit was a Lenovo Y7000P laptop with 
an Intel Core i7-9750H@2.60 Hz CPU, 16 GB RAM, and 
single GPU (Geforce GTX1660 Ti, NVIDIA). The envi-
ronment of deep-learning-related procedure included 
Integration Develop Environment (IDE) integrating 
Python 3.6, Keras (ver. 2.1.5), Tensorflow_GPU (ver. 
1.13.1) OpenCV3 (ver. 3.4.2), which were operated in 
Windows 10 64bit. The synthetic image-related proce-
dure was operated on the same environment (GPU was 
not involved in computation). The manually annotation 
of real-world soybean seeds image was operated on the 
same environment using LabelMe (ver. 3.16.5).

Synthetic image generation and augmentation
We randomly chose 200 soybean seeds for each cultivar 
(total of 400; 200 seeds for 2 cultivars), and each single 
soybean seed were placed above the black flannel and 
saved as an individual image file (total 400 seed images). 
These 400 seed images were used to create synthetic 
image datasets. The procedure of synthetic image genera-
tion was illustrated as following.

First, prepare a “background image pool (BIP)” and 
a “soybean seed image pool (SSIP)”. The BIP was pre-
pared by capturing the actual black flannel background 
10 times. The 10 background images were cropped at 
the fixed size of 256 × 256, 512 × 512, 1024 × 1024 
randomly. The 10 different background images are dif-
ferent from each other as there are some dander of 

soybean seed on the black flannel. What needs to be 
pointed out is that the difference is not significant. And 
the SSIP was constituted by capturing a single soybean 
seed above the black flannel which made it convenient 
for the background subtraction.

Then, preprocess the image of the “soybean seed 
image pool”. Since the background was the black flan-
nel, the classic threshold segmentation algorithm was 
opted to subtract the background. And it was cropped 
to get region of interest (RoI) as the soybean seed occu-
pied a small area in the entire image, leaving a large 
blank space.

Last, synthesize high-throughput soybean seeds raw 
image and mask image pair. Firstly, select a background 
image from the BIP randomly and past it on the raw 
image canvas. Secondly, select a seed image randomly 
from the preprocessed SSIP and rotate and zoom the 
seed image randomly. Then, get the seed area and paste 
it on the coordinate 

(

x, y
)

 of the raw image canvas. 
The coordinate 

(

xi, yi
)

 was randomly determined but 
restricted by the canvas size and the minimum Euclid-
ean distance between the new coordination 

(

xi, yi
)

 and 
the coordinate 

(

xj , yj
)

 of the soybean seeds pasted on 
the canvas before to adjust the degree of overlap. The 
detailed restriction of the coordinate 

(

xi, yi
)

 was shown 
in the Formula 1. Thirdly, generating the correspond-
ing mask image canvas by filling the seed area with 
different color selected from “Jet” colormap randomly 
and pasting the colored seed on the coordinate 

(

xi, yi
)

 
of the mask image canvas with black background. After 
the above three steps, one soybean seed was labeled in 
one color automatedly. Lastly, repeat above three steps 
until the coordinate 

(

xi, yi
)

 can’t meet the minimum 
Eucliean distance requirments. Above all, a pair of syn-
thetic high throughput soybean seeds raw image and 

Fig. 1  The soybean seed images were captured in three kind of illumination conditions. a outdoor scene in the daytime; b indoor scene in the 
daytime with fluorescent light; c indoor scene at night with fluorescent light
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mask image was generated which each single soybean 
seed in raw synthetic image was pasted on the corre-
sponding position of mask image and was labeled in 
different color automatedly. Above all, the procedure of 
synthetic image datasets generation and augmentation 
method was shown in Fig. 2.

 
(

xi, yi
)

 was the coordinate of the ith soybean seed 
pasted on the canvas; 

(

xcenteri , ycenteri

)

 was the center 
point coordinate of the ith soybean seed pasted on the 
canvas; 

(

xcenterj , ycenterj

)

 was the center point coordinate 
of the 1st ~ (i-1)th soybean seed pasted on the canvas.

Length was the sum of diagonal distance of the 
bounding box of two soybean seeds, ratio is man-made 

(1)

�

xi, yi
�

=







random i = 1

min

�

�

xcenteri − xcenterj

�2

−

�

ycenteri − ycenterj

�2

≥ thershold i > 1

(0, 0) ≤
�

xi, yi
�

< (canvas.shape(0), canvas.shape(1))

1 ≤ j ≤ (i − 1)

(2)threshold = length× radio

parameter which used to control the overlapping of two 
soybean seeds.

As illustrated in Formula (2), the minimum threshold is 
related to the size of each soybean seed, which is a vari-
able. Thus, we can adjust the ratio parameter manually to 
control the overlapping to obtain our desired synthetic 

results. For example, if we want to generate heavily over-
lapped image, we can decrease the ratio, otherwise vice 
versa. In this paper, the ratio is set 0.3.

Real‑world soybean seeds test dataset preparation
While we generated the synthetic soybean seeds test data-
set by the method described in the previous section, a real-
world soybean seeds test dataset was prepared consisting of 
40 images by the following steps: (a) use a 100-seed board 
to select about 100 soybean seeds randomly one time; (b) 

Fig. 2  The procedure of one pair of synthetic images (raw image and mask image) generation and augmentation method
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tile these seeds upon the black-colored flannel randomly 
and make these seeds densely sampled (e.g., physically 
touching) to simulate the phenotypic investigation in the 
real scene; (c) capture 8 images (4 images for 2 cultivars) 
with the image size of 3024 × 3024 by the camera sensor of 
an iPhone 6 s plus (Apple) erected on a tripod with about 
0.3 m working distance and 32 images (16 images for 2 cul-
tivars) with the image size of 1920 × 1080 at 96 dpi by the 
RGB sensor of Kinect v2 (Microsoft, Redmond, WA, USA) 
erected on a tripod with about 0.75  m [20] working dis-
tance as shown in Fig. 3. The detail of real-world soybean 
seeds test dataset preparation was summarized in Table 2. 
Before manual annotation, the images were cropped 
according to the region of interest (RoI). The real-world 
soybean seeds images with the seeds heavily and physically 
touching, which were annotated by LabelMe [44] manually, 
were used as testing dataset for assessing the generalization 
ability of the model retrained by our synthetic datasets. 

The manual annotation results were explained in the later 
section. 

Model training
Mask R-CNN [45], consolidated by an object detection 
algorithm Faster R-CNN [46] and a semantic segmentation 
algorithm fully convolution network (FCN) [47] as shown 
in Fig.  4, is a sophisticated segmentation method, which 
can be trained by massive hand-labeled images datasets 
to segment specific categories of object. A Mask R-CNN 
implementation on the Keras/Tensroflow backend [48] 
was opt after experimenting with various implementation. 
Two feature extraction architectures (ResNet50/101-FPN 
[49] backbone) were evaluated. Left–right, up-down, rota-
tion, brightness and Gaussian blur image augmentations 
were used herein to increase the diversity of dataset. The 
batch size was 2 when the image size was 256 × 256 and 
512 × 512, and was 1 when the image size was 1024 × 1024. 
Since we focus on training the mask branch, the loss weight 
of the mask was set to 2.0, the other loss weights are set 1.0. 
A connection dropout probability of 0.5 was added to the 
fully connected layers to prevent from overfitting. Table 3 
was the network configuration which was selected empiri-
cally after training and analyzing the test results.

Before the model training, two pre-trained model 
weights based on MS-COCO dataset [36] and synthetic 
barley dataset [41], were introduced using transfer learn-
ing to solve the problem of high-throughput soybean 
seeds instance segmentation. Retraining on the basis of 
the pre-trained model was divided into two steps: (1) Only 
train the head layers which include the RPN, classifier and 
mask heads of the Mask R-CNN. And the weights of the 
heads are randomly initialized by default xavier initializer 
and zeros bias initializer. In order not to weaken the fea-
ture extraction ability of the backbone layer, we frozen all 
backbone layers and only trained the randomly initialized 
head layers for 20 epochs. (2) Fine-tune all layers. To bet-
ter adapt on our new dataset, we fine-tuned all layers for 
20 epochs after training the head layers. The reason why 
20 epochs are considered will be illustrated in experiments 
and results section.

Model evaluation metrics
To evaluate the accuracy of high-throughput soybean seed 
instance segmentation model, two indicators included Fig. 3  The acquisition scene setting of real-world high throughput 

soybean seeds

Table 2  The detail information of our real-world soybean seeds test dataset

Test image Number of images Image size Seed counts Sensor Imaging distance

Test dataset_1 8 3024 × 3024  ~ 100 iPhone 6 s plus  ~ 0.3 m

Test dataset_2 32 1920 × 1080  ~ 100 Kinect v2  ~ 0.75 m
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average precision (AP) and recall, used to evaluate in the 
original research [44], were also used herein.

The result of a model prediction is classified as true 
positive (TP), false positive (FP), true negative (TN), false 
negative (FN). The precision and recall are calculated by 
the following Formula 3:

(3)
Precision =

TP

TP + FP

Recall =
TP

TP + FN

Intersection over union (IoU) is a basic evaluation indi-
cator and it measures the overlap of two regions, which is 
the ratio of the overlap of the two regions to the total area 
of the two (the overlap is only calculated once) as shown 
below:

To calculate the values of Recall, we use bounding 
boxes IoU. For each ground-truth bounding box, when 
the detected bounding box overlaps the ground-truth 
over the IoU threshold, we considered it was the cor-
rect detection, which was counted as TP, otherwise we 
considered it was the wrong detection (FP). And when 
the predicted bounding box with no ground-truth, we 
determined it was FN.

AP is defined as the area under the curves (AUC) of 
precision and recall using different confidence of the 
detected soybean seed. And it is evaluated at 10 differ-
ent masks IoU threshold levels from 0.5 to 0.95 with the 
interval of 0.05. AP50 and AP75 are the prediction accu-
racy rates when the masks IoU threshold are 0.5 and 
0.75, respectively. As AP75 requires correct matching 
with more precise masks, AP75 is more stringent than 
AP50. AP@ [0.5:0.95] is the average value of APs with all 
the masks IoU thresholds.

(4)IoU =
area of overlap

area of union

Fig. 4  Mask R-CNN with the pretrained network for high-throughput soybean seeds instance segmentation

Table 3  Network parameters for high-throughput soybean 
seeds instance segmentation using Mask R-CNN

Parameters Values

Backbone layer ResNet 50/101

Head layer Faster R-CNN

Input size 256*256 / 512*512/1024*1024

Anchor ratio [0.5, 1, 2]

Learning rate 0.001

Epoch 40

RPN anchor scale (8, 6, 32, 64-128)

Pre-processing Mean-subtraction

Image resize mode None

Augmentation LR, UD, Rotation, Brightness, Gaussian Blur
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The definition and principles of the bounding boxes 
IoU and masks IoU were depicted in Fig.  5. And they 
were calculated by the following equation:

(5)
IoU =

Bg ∩ Bp

Bg ∪ Bp

MaskIoU =
Mg ∩Mp

Mg ∪Mp

Qualification of soybean seed morphology
After high-throughput soybean seeds were segmented 
into individual single seed, the seed morphology pheno-
type quantification was applied. We use the “measure.
regionprops” module of the scikit-image library to cal-
culate the morphological parameter of the seed, such as 
length and width.

The soybean seed shape traits are defined in the Fig. 6. 
In our study, as the high-throughput soybean seeds phe-
notype analysis was based on two-dimensional image, 
it was impossible to obtain the seed length, seed height 
and seed width of soybean seed from one image synchro-
nously. Hence, we considered a hypothesis that average 
value of the seed height and seed width measured by a 
digital vernier caliper is the reference of seed width in 
our study.

We select 100 soybean seeds for each cultivar with a 
100-seed board randomly, and use a digital vernier cali-
per to measure each seed length height and width three 
times, and then calculate the average value as the seed 
shape phenotype data of this soybean seed.

Experiments and results
Preparation of soybean seeds dataset
We generated images with size of 256*256, 512*512, 
1024*1024 respectively, and the soybean seeds were 
randomly located inside the canvas region by our pro-
cedure as shown in Fig. 7. We prepared a small training 
dataset and a large training dataset for each size of syn-
thetic image to fine-tune the pretrained Mask R-CNN. 
The small training dataset constituted by 220 set of image 
pairs of synthetic soybean seeds images and its mask 
images, 200 of those images for training, 20 for valida-
tion. And 1100 set of image pairs constituted the large 
training dataset, 1000 for training, 100 for validation. We 
also prepared another new 200 set of image pairs for each 
image size as synthetic test dataset, and these synthetic 

Fig. 5  The definition and principles of the bounding boxes IoU 
and masks IoU. Where Bg is ground truth bounding boxes, Mg is the 
ground truth masks, Bp is the predicted bounding boxes, Mp is the 
predicted masks

Fig. 6  seed length, width and height of soybean seed

Fig. 7  Some examples of labeled synthetic images. The first row shows the synthetic raw images, and the second row shows the corresponding 
labeled mask images
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images were not used in the model training or validation. 
The generation time was about 274, 487, 575 min respec-
tively for all the datasets of each image size. The prepa-
ration of synthetic image datasets of soybean seeds was 
shown in Table 4.

In the preparation of the real-world soybean seeds test 
dataset, a sample image of real-world soybean seeds test 
dataset as shown in Fig. 8, the time of manual annotation 
process with LabelMe was about 60 min per image. Com-
pared with the preparation of real-world soybean seeds 
test dataset, which had a plethora of soybean seeds per 
image and the labor-intensive annotation process of the 
test dataset  was destined to be extremely tedious, our 
synthetic image generation and augmentation method 
can prepare plenty of labeled image dataset according to 
our experiments and can decrease the labor cost signifi-
cantly. In addition, the real-world soybean seeds image 
dataset labeled by LabelMe with the contour of soybean 
seed was fitted by a polygon as shown in Fig. 8(b) which 
we tried our best to better fit the soybean seeds contours. 
From Fig.  8(c), we can obviously distinguish that the 
manually labeled real-world soybean seed image was not 
better than our synthetic labeled image, for the contours 
of soybean seeds fitted by polygons were not smooth 
resulting the instance masks of soybean seeds were not 
real.

Instance segmentation results of soybean seed
Before exhibiting the results of object detection and 
instance segmentation with Mask R-CNN, we used two 
unsupervised segmentation methods like contour detec-
tion methods and watershed algorithm on our real-world 
soybeans test dataset. However, both of them failed to 
segment the soybean seeds which were heavily over-
lapping. As illustrated in the second row of Fig.  9, we 
employed basic thresholding and contour extraction 
approach to identify the contour of soybean. The result 
showed that a group of soybean seeds are in one contour, 
and in fact those seeds are multiple, which was an inac-
curacy segmentation. Comparing to thresholding and 
contour extraction method, watershed algorithm per-
formed better as shown in the third row of Fig. 9, but it 
also failed to extract all objects when target objects over-
lap or touch densely with each other. Additionally, unsu-
pervised method depends on empirical parameter, which 
is fussy to tune the parameters to obtain satisfying result, 
furthermore the parameter varies with different target 
object layout.

The visual results and the quantitative of evaluation 
metrics of object detection and instance segmentation 
with Mask R-CNN were illustrated herein. The output 
of the trained Mask R-CNN model was a set of classes, 
bounding boxes coordinates and masks images of soy-
bean seed regions. One example of visualized results of 

Table 4  The detail of three different image size of 256*256, 512*512, 1024*1024 datasets for training, validation and testing generated 
by our image synthetic method

Image size Seed count Large dataset Small dataset Test dataset Generation 
time/minTrain./Val. Train./Val.

256*256 50–80 1000/100 200/20 200 274

512*512 80–100 1000/100 200/20 200 487

1024*1024 100–120 1000/100 200/20 200 575

Fig. 8  One labeled image data of real-world soybean seed test dataset. a raw image, b annotated by LabelMe, c Instance masks
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synthetic soybean seeds test image and real-world soy-
bean seeds test images in different illumination condi-
tions with different imaging sensors was shown in Fig. 10, 
which showed that the soybean seeds were accurately 
located and segmented by the trained model regardless 
of their shape, size, location, illumination condition and 
resolution.

Above, traditional unsupervised methods rely on tex-
ture features of object, and it is also sensitive to the lay-
out of target objects and illumination, which bring about 
instability. Whereas machine learning-base method 
training a model by quantity of data, it solves the short-
age of traditional methods in aspect of empirical based 
parameter tuning and instability.

The model was also evaluated by the test datasets 
which included synthetic image dataset with three kind 
of image size and real-world soybean seed image dataset. 
Tables  5 and 6 summarized the quantitation of evalua-
tion metrics of the model retrained by our large dataset 
and small dataset of 256 × 256 px with COCO weights 
respectively. We can conclude that the ResNet101-FPN 
backbone layer can learn more features than ResNet50-
FPN backbone layer particularly in small dataset. For 
a new instance segmentation task, comparing the real-
world soybean seeds segmentation results, we came to 
the conclusion that the network with ResNet101-FPN 
trained by the large training dataset with 1000 images 
brought the best expected gains, then the performance 

Fig. 9  An example of the visual results using unsupervised segmentation methods on our real-world soybean seed images. a real-world soybean 
seeds test image captured by Kinect v2 outdoor, b real-world soybean seeds test image captured by iPhone 6 s plus at indoor scene in the daytime 
with fluorescent light, c real-world soybean seeds test image captured by iPhone 6 s plus at indoor scene at night with fluorescent light. The first 
row was the input soybean seeds test image, the second row was the results of the thresholding and contour extraction method, and the third row 
was the results of watershed algorithm
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from high to low was the network with ResNet101-FPN 
trained by the small training dataset, the network with 
ResNet50-FPN trained by the large training dataset, the 
network with ResNet50-FPN trained by the small train-
ing dataset. 

Tables 7 and 8 summarized the quantitation of evalua-
tion metrics of the model retrained by our large dataset 
and small dataset of 256 × 256 px with synthetic bar-
ley weights respectively. Same as retrained by COCO 
weights, the ResNet101-FPN backbone layer can learn 

more features than ResNet50-FPN backbone layer par-
ticularly in small dataset. 

To compare the results of different pre-trained weights, 
we list a sample of comparative experiment retrained 
by our small training dataset of 256 × 256 image size by 
Mask R-CNN with ResNet101-FPN backbone as shown 
in Tables 6 and 8. The pre-trained weights included the 
COCO weights and the synthetic barley weights which 
was trained by a synthetic barley image dataset and 
similar to our high throughput soybean seeds instance 

Fig. 10  One example of visualized results of output of synthetic soybean seeds test image and real-world soybean seeds test image. a synthetic 
soybean seeds test image, b real-world soybean seeds test image captured by Kinect v2 outdoor, c real-world soybean seeds test image captured 
by iPhone 6 s plus at indoor scene in the daytime with fluorescent light, d real-world soybean seeds test image captured by iPhone 6 s plus at 
indoor scene at night with fluorescent light. The first row was the input soybean seeds test image, the second row was the results of our model 
output

Table 5  The quantitation of evaluation metrics of the model retrained by the large dataset of 256 × 256 px with COCO weights

Dataset Large dataset in the image size of 256 × 256

Pre-trained model Pre-trained COCO weights [35]

Backbone layer ResNet50-FPN ResNet101-FPN

Test dataset Synthetic Real-world Synthetic Real-world

256 512 1024 256 512 1024

Recall50 0.99 0.99 0.97 0.86 0.99 1.0 0.97 1.0

AP50 0.99 0.99 0.98 0.83 0.99 1.0 0.98 1.0

AP75 0.99 0.93 0.95 0.64 0.99 1.0 0.98 0.98

AP@[0.5:0.95] 0.78 0.68 0.65 0.50 0.90 0.85 0.82 0.72
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segmentation task. Nevertheless, the generation ability of 
the synthetic barley model on our dataset was poor, where 
Recall50 = 0.016, AP@[0.5:0.95] = 0.055 on our synthetic 
soybean test dataset, and Recall50 = 0, AP@[0.5:0.95] = 0 
on our real-world soybean test dataset. Comparing the 
results in Tables  5, 6 and 8, we found that finetune the 
synthetic barley weights with small training dataset can 

receive excellent results compared with COCO weights 
retrained by small training dataset and compared with 
COCO weights retrained by large training dataset. Thus, 
we can conclude that finetune a pre-trained model which 
was similar to our instance segmentation task with the 
small training dataset of 256 × 256 image size can achieve 
an excellent performance.

Table 6  The quantitative of evaluation metrics of the model retrained by small dataset of 256 × 256 image size with COCO weights

Dataset Small dataset in the image size of 256 × 256

Pre-trained model Pre-trained COCO weights [35]

Backbone layer ResNet50-FPN ResNet101-FPN

Test dataset Synthetic Real-world Synthetic Real-world

256 512 1024 256 512 1024

Recall50 0.75 0.84 0.79 0.45 0.88 0.65 0.57 0.91

AP50 0.76 0.85 0.82 0.54 0.92 0.65 0.62 0.91

AP75 0.76 0.58 0.40 0.11 0.92 0.64 0.62 0.89

AP@[0.5:0.95] 0.67 0.51 0.43 0.22 0.80 0.50 0.47 0.66

Table 7  The quantitation of evaluation metrics of the model retrained by the large dataset of 256 × 256 px with synthetic barley 
weights

Dataset Large dataset in the image size of 256 × 256

Pre-trained model Pre-trained barley weights [40]

Backbone layer ResNet50-FPN ResNet101-FPN

Test dataset Synthetic Real-world Synthetic Real-world

256 512 1024 256 512 1024

Recall50 0.99 0.98 0.93 0.98 0.99 1.0 0.97 1.0

AP50 0.99 0.98 0.94 0.89 0.99 1.0 0.97 1.0

AP75 0.97 0.97 0.82 0.56 0.99 1.0 0.97 0.97

AP@[0.5:0.95] 0.79 0.72 0.62 0.50 0.92 0.86 0.82 0.71

Table 8  The quantitation of evaluation metrics of the model retrained by the small dataset of 256 × 256 px with synthetic barley 
weights

Dataset Small dataset in the image size of 256 × 256

Pre-trained model Pre-trained barley weights [40]

Backbone layer ResNet50-FPN ResNet101-FPN

Test dataset Synthetic Real-world Synthetic Real-world

256 512 1024 256 512 1024

Recall50 0.30 0.05 0.10 0.02 0.99 1.0 0.88 1.0

AP50 0.33 0.05 0.12 0.01 0.99 1.0 0.93 1.0

AP75 0.32 0.04 0.06 0.00 0.99 1.0 0.93 0.99

AP@[0.5:0.95] 0.24 0.03 0.07 0.00 0.90 0.83 0.77 0.72
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The training loss and validation loss curves of the 
model with backbone layer ResNet101-FPN finetuned by 
two different training strategies were shown in Fig.  11. 
The two different training strategies, one was 20 epochs 
of head layers and 20 epochs of whole model and the 
other was 40 epochs of head layers and 40 epochs of 
whole model. The training datasets included our syn-
thetic lager training dataset and the synthetic small train-
ing dataset of 256 × 256 px and the pre-trained models 
included synthetic barley weights and COCO weights. By 
learning the validation loss curves for two stages of fine-
tuning, we found that about 20 epochs in the first stage 

is the inflection point. Hence, 20 epochs in the first stage 
were considered. Same as the second stage.

At last, we also compared the model retrained by differ-
ent image size of 256 × 256, 512 × 512, 1024 × 1024, and 
we found that the improved performance was not pro-
nounced with increasing the image size as the texture of 
soybean seeds was simple. In addition, the training time 
with large dataset and small dataset in different image size 
of 256 × 256, 512 × 512, 1024 × 1024 was summarized in 
Fig. 12. It showed that the training time increased as the 
image size increasing, and the training time of large data-
sets was significantly longer than that of small datasets. 

Fig. 11  Loss curves of several different instance segmentation model in training stage: a training loss curves, b validation loss curves, which the 
training datasets were our synthetic datasets of 256 × 256 px and the pre-trained models included synthetic barley weights and COCO weights

Fig. 12  The training time with large dataset and small dataset in the image size of 256 × 256, 512 × 512, 1024 × 1024
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Hence, we can conclude that it wasn’t indispensable to 
prepare a higher resolution training image dataset for 
instance segmentation with Mask R-CNN in our study and 
the Mask R-CNN network retrained by large dataset based 
on pre-trained COCO weights can be replaced by a small 
dataset based on the pre-trained synthetic barley weights, 
which similar to our high throughput soybean seeds 
instance segmentation task, but performed poor on our 

datasets, where Recall50 = 0.016, AP@[0.5:0.95] = 0.055 on 
our synthetic soybean test dataset, and Recall50 = 0, AP@
[0.5:0.95] = 0 on our real-world soybean test dataset.

Accuracy of length, width of each soybean seed
The results of soybean seed length and width meas-
urement for zhonghuang-30 and zhonghuang-42 sam-
ples were shown in Fig.  13. The results showed that 

Fig. 13  Data distribution and fitting results of (a) seed length (b) seed width of zhonghuang-30 and (c) seed length (d) seed width of 
zhonghuang-42
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the system measurements, seed length (R2 = 89.26%) 
and width (R2 = 84.69%) of zhonghuang-30 and seed 
length (R2 = 88.11%) and width (R2 = 83.91%) of zhon-
ghuang-42, had a fine linear relationship with the ref-
erence data. The average measurement error and the 
average relative error of the zhonghuang-30 and zhong-
huang-42 were shown in Table 9.

The reasons for the measurement errors were summa-
rized as follows: (1) Errors were  introduced by manual 
measurement. We need to manually take out one seed 
from the high-throughput soybean seeds in the cor-
responding position one by one and measure the seed 
length, width and height of the seed with a Vernier cali-
per, which was prone to error. (2) Errors were introduced 
by view angle of measurement. The view angle of manual 
measurement was not the view angle of camera, leading 
the manual measurement was inconsistent with the sys-
tem measurement. The standard view angle of measur-
ing seed length and seed width was shown in Fig. 14 (a). 
When the view angle looks like Fig. 14(b, c), the predicted 
seed width would greater than or less than the reference 
data which depended on the seed thickness. (3) Errors 
were  introduced by our measurement approach. The 
bounding box-based instance segmentation method led 
to incomplete edges of the segmented instances, which 
in turn led to low accuracy of the obtained soybean seed 
morphological parameters. Pixel-based segmentation can 
be alternative to improve the performance of morpho-
logical parameter study [50]. And the soybean seeds were 
randomly orientated above the black flannel, however the 
bounding box of Mask R-CNN output didn’t consider 
the orientation of the segmented instances, which would 
also cause errors in the system measurement as shown in 
Fig. 14(d).

Conclusion
The major contribution and advantages of our method 
are: (1) proposed a novel synthetic image genera-
tion and augmentation method working for preparing 
plenty of labeled image dataset for instance segmenta-
tion automatically which can pronouncedly decrease 
the labor cost of manual annotation. (2) The proposed 
transfer learning method by finetune the pre-trained 
model weights can reduce the computing costs sig-
nificantly. (3) The pipeline proposed in our research 
can be expanded to the other high-throughput objects 
instance segmentation and morphology measurement.

However, our approach has a few limitations. Firstly, 
the high-throughput soybean seeds phenotype anal-
ysis was based on two-dimensional image which 
lacked depth information, it was impossible to obtain 
the seed length, seed height and seed width of soy-
bean seed from one view-point image synchronously. Ta
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Secondly, the computing cost of training the instance 
segmentation model is relatively high which still need 
to be improved. Lastly, our synthetic image genera-
tion and augmentation method is limited to one class 
object which need to be extended to synthetize more 
than one class object for multi-class objects instance 
segmentation.

In the future research, we intend to further improve 
the segmentation precision by pixel-based segmenta-
tion method and decrease the computing cost for the 
instance  segmentation of  high-throughput soybean 
seeds which are physically touching densely. And other 
datasets types like RGB-D dataset which can acquire 
more phenotype information by just retraining the 
instance segmentation network is left to the future 
work.
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