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and its expansion and contribution potentials 
in wood science: A review
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Abstract 

The remarkable developments in computer vision and machine learning have changed the methodologies of many 
scientific disciplines. They have also created a new research field in wood science called computer vision-based wood 
identification, which is making steady progress towards the goal of building automated wood identification systems 
to meet the needs of the wood industry and market. Nevertheless, computer vision-based wood identification is still 
only a small area in wood science and is still unfamiliar to many wood anatomists. To familiarize wood scientists with 
the artificial intelligence-assisted wood anatomy and engineering methods, we have reviewed the published main‑
stream studies that used or developed machine learning procedures. This review could help researchers understand 
computer vision and machine learning techniques for wood identification and choose appropriate techniques or 
strategies for their study objectives in wood science.
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Background
Every tree has clues that can help with its identifica-
tion. Leaves, needles, barks, fruits, flowers, and twigs are 
important features for tree identification. However, most 
of these features are lost in harvested logs and processed 
lumber, so anatomical features are used as clues for wood 
identification. Fortunately, the International Associa-
tion of Wood Anatomists (IAWA) has published lists of 
microscopic features for wood identification [1, 2]. These 
lists are the fruits of the work of wood anatomists and are 
well established, so they can be used with confidence to 
identify wood.

Conventional wood identification is performed by 
visual inspection of physical and anatomical features. In 

the field, wood identification is performed by observing 
macroscopic characteristics such as physical features, 
including color, figure, and luster, as well as macroscopic 
anatomical structures in cross sections, including size 
and arrangement of vessels, axial parenchyma cells, and 
rays [3]. In the laboratory, wood identification is per-
formed by observing various anatomical features micro-
scopically from thin sections cut in three orthogonal 
directions, cross, radial, and tangential [4]. Wood iden-
tification is a demanding task that requires specialized 
anatomical knowledge because there are huge numbers 
of tree species, as well as various patterns of inter-species 
variations and intra-species similarities. Therefore, visual 
inspection-based identification can result in misidenti-
fication by the wrong judgment of a worker. Unsurpris-
ingly, this is a major problem at the forefront of industries 
where large quantities of wood must be identified within 
a limited time.
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The spread of personal computers has triggered a 
major turning point in wood identification. Wood anat-
omists have created a new system called computer-
assisted wood identification [5] by computerizing the 
existing card key system [6, 7]. Several computerized key 
databases and programs have been developed to take 
advantage of the new system [8–10]. Because of the vast 
biodiversity of wood, the deployed databases generally 
cover only those species that are native to a country or a 
specific climatic zone [8, 9, 11, 12]. Although this system 
has made the identification of uncommon woods easier, 
traditional visual inspection was preferred for efficiency 
reasons in the identification of commercial woods [3]. 
The computer-aided wood identification systems used 
explicit programming, which required the user to pro-
gram all the ways in which the software can work. That 
is, the user had to teach the software all the identification 
rules, which was never an efficient way because there are 
so many rules for wood identification. This programmatic 
nature made it difficult to spread the system globally.

Over time, computer-aided wood identification set-
tled with web-based references such as ‘Inside Wood’ at 
North Carolina State University [13] and ‘Microscopic 
identification of Japanese woods’ at Forestry and Forest 
Products Research Institute (FFPRI), Japan [14]. These 
are very useful open wood identification systems that 
cover a wide variety of woods, but require expert knowl-
edge of wood anatomy. As such, there are various obsta-
cles to the further development of computer-aided wood 
identification, so this is where machine learning (ML) 
comes in.

ML is a type of artificial intelligence (AI) where a sys-
tem can learn and decide exactly what to do from input 
data alone using predesigned algorithms that do not 
require explicit instructions from a human [15, 16]. In a 
well-designed ML model, users no longer have to teach 
the model the rules for identifying wood, and even wood 
anatomists are not required to find wood features that 
are important for identification. Computer vision (CV) is 
a computer-based system that detects information from 
images and extracts features that are considered impor-
tant [17–19]. Automated wood identification that com-
bines CV and ML is called computer vision-based wood 
identification [20, 21]. AI systems based on CV and ML 
are making great strides in general image classification 
[22–25]. The same is true for wood identification and 
related studies have been increasing [20, 26–29].

Wood identification is a major concern for tropical 
countries with abundant forest resources, so there is a 
high demand for novel wood identification systems to 
address the wide biodiversity. There are various on-site 
needs for wood identification, such as preserving endan-
gered species, regulating the trade of illegally harvested 

timbers, and screening for fraudulent species [30–33]. 
However, it is practically impossible to train a suffi-
cient number of field identification workers to meet the 
demands of the field. Wood identification requires expert 
knowledge of wood anatomy and long experience, so 
even if a lot of money and time is spent, there are practi-
cal limits to the training of skilled workers [34].

To answer the demands in the field, various approaches 
have been proposed, such as mass spectrometry [35–37], 
near-infrared spectroscopy [38, 39], stable isotopes [40, 
41], and DNA-based methods [42, 43]. However, these 
approaches have practical limitations as a tool to assist or 
replace the visual inspection due to their relatively high 
cost and procedural complexity. This is where CV-based 
identification techniques and ML models can be very 
important. Clearly, automated wood identification sys-
tems are urgently needed and CV-based wood identifica-
tion has emerged as a promising system.

In this review, we provide an overview of CV-based 
wood identification from studies reported to date. CV 
techniques used in other contexts, such as wood grading, 
quality evaluation, and defect detection, are outside the 
scope of this review. This review covers CV-based identi-
fication procedures, provides key findings from each pro-
cess, and introduces the emerging interests in CV-based 
wood anatomy.

Workflow of CV‑based wood identification systems
Image recognition or classification is a major domain 
in AI and is generally based on supervised learning. 
Supervised learning is a ML technique that uses a pair of 
images and its label as input data [44]. That is, the clas-
sification model learns labeled images to determine clas-
sification rules, and then classifies the query data based 
on the rules. Conversely, in unsupervised learning the 
model itself discovers unknown information by learning 
unlabeled data [45]. Classification is generally a task of 
supervised learning and clustering is generally a task of 
unsupervised learning.

CV-based wood identification systems follow the gen-
eral workflow presented in Fig. 1. Image classification is 
divided methodologically into conventional ML and deep 
learning (DL), both of which are forms of AI. In conven-
tional ML, feature extraction, the process of extracting 
important features from images (also called feature engi-
neering), and classification, the process of learning the 
extracted features and classifying query images, are per-
formed independently. First, all the images in a dataset 
are preprocessed using various image processing tech-
niques to convert them into a form that can be used by a 
particular algorithm to extract features. Then, the dataset 
is separated into training and test sets, and the features 
are extracted from the training set images using feature 
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extraction algorithms. A classifier establishes the classi-
fication model by learning the extracted features. Finally, 
the test set images are input and the classification model, 
which returns the predicted classes of each image, thus 
completing the identification.

In DL, feature extraction and classification are per-
formed in one integrated process [21, 29], which is end-
to-end learning using annotated images [46]. The feature 
learning process using feature engineering techniques in 
conventional ML usually allows manual intervention by 
the user but manual intervention is limited in DL. Subse-
quent sections describe the process from image acquisi-
tion to classification, following the workflow of CV-based 
wood identification.

Image databases
Image acquisition
CV-based wood identification starts with image acqui-
sition. It takes a considerable amount of time and effort 
to get enough wood samples to build a new dataset. For 
this reason, most studies have used Xylarium collections 
[26, 47–52]. Most studies only captured cross-sectional 
images of wood blocks except for a few studies using 
lumber surface [53] or three orthogonal sections [54, 55]. 
The surfaces of the blocks are cut with a knife or sanded 
with sandpapers to clearly reveal the anatomical char-
acteristics. Macroscale images can be captured directly 
from the wood blocks using a digital camera or stereo 
microscope. To capture microscale images, meanwhile, 
microscope slides of wood samples must be prepared 

through standard procedures leading to softening, cut-
ting, staining, dehydration, and mounting [56].

In image capturing, the quality of the obtained images 
can vary depending on lighting conditions. Imaging 
modules equipped with optical systems have been used 
to control the lighting uniformly [21, 51, 57], and image 
processing techniques such as filtering were applied to 
normalize the brightness of the captured images [58–
61]. Digital image processing is to be covered in section 
preprocessing.

Image type
All wood image types can be used as data for identi-
fication. The most commonly used image types are 
macroscopic images [50, 54, 62–65], X-ray computed 
tomographic (CT) images [66, 67], stereograms [20, 21, 
26, 68, 69], and micrographs [47, 70–72] (Fig. 2a). Mac-
roscopic images are images taken without magnification 
by a regular digital camera. Stereograms are generally 
images taken at the hand lens magnification (10×), but 
higher magnifications may be used depending on the 
purpose. Micrographs are optical microscopic images 
and they are commonly used in conventional wood iden-
tification. X-ray CT images are a slice of the original 
images generated by X-ray CT scans.

Macroscopic images and stereograms were preferred 
in studies aimed at developing field-deployable systems 
because they were easily obtained only by smoothing the 
wood surface [49, 51, 57, 70]. Microscopic level features 
extracted from micrographs allow for an anatomical 

Fig. 1  General workflow of conventional machine learning and deep learning models for image classification
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approach because the image scale is the same as that 
used in established wood anatomy [48, 73, 74]. X-ray CT 
images have been used to identify wooden objects with 
limited sampling, such as registered cultural properties, 
because of the non-destructive nature of the imaging [66, 
67]. In one study, the morphological features of wood 
cells were extracted from scanning electron microscope 
images [75].

The extractable or effective image features that are 
used for wood identification can differ depending on the 
image type (Fig. 2b), so the most suitable image type for 
the research purpose and for the wood should be consid-
ered carefully. As shown in Fig. 2a, in macroscale images, 
macroscopic images, and X-ray CT images, large wood 
cells and cell aggregates such as annual rings, rays, and 
vessels are observed from the cross-sectional image. Ste-
reograms provide more detailed anatomical characteris-
tics, such as the type of vessel and axial parenchyma cell. 
Anatomical characteristics observed from the macroscale 
images are treated as a matter of texture classification 
(Fig. 2b) because they are represented as the spatial dis-
tribution of intensity between adjacent pixels and repeti-
tive patterns [76]. Because macroscopic images and 
stereograms retain the unique color of wood, the color 
information was used for wood identification [58, 62, 63, 
77, 78]. In micrographs that provide microscopic infor-
mation such as wood fibers, local features for extract-
ing morphological characteristics of cells were preferred 
[48, 74, 79], and statistics related to the size, shape, and 

distribution of cells were also used for identification [27, 
59, 61, 80]. In contrast, convolutional neural networks 
(CNNs) were employed regardless of image type [29, 65, 
72, 81].

Databases
A good identification ML model can be built only from 
a good reference image collection. Wood image data 
should contain the specific features of each species and 
provide sufficient scale for the features to be observed. 
A quantitatively rich database is required so that the ML 
model can learn the various biological variations that 
occur within a species.

Published wood image databases constructed for CV-
based wood identification are listed in Table  1. CAIRO 
and FRIM, which contain stereogram images of com-
mercial hardwood species in Malaysia, were among the 
first to be constructed and are still regularly updated [27, 
82]. LignoIndo, which also contains stereogram images, 
was constructed for the development of a portable wood 
identification system [83]. It contains images of Indone-
sian commercial hardwood species.

UFPR, an open image database of Brazilian wood, con-
tains macroscopic images and micrograph datasets. It 
was established to serve as a benchmark for automated 
wood identification studies and is accessible from the 
Federal University of Paraná website [84, 85]. Other 
publicly available wood image databases are RMCA, 
which contains micrograph images of Central-African 

Fig. 2  Image types obtainable from wood and the corresponding extractable image features. a Macroscopic image, X-ray computed tomographic 
(CT) image, stereogram, and micrograph of cross sections of Cinnamomum camphora. b Preferred features by image type in publications. Scale 
bars = 1 mm
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commercial wood species [86], WOOD-AUTH, which 
contains macroscopic images of Greek wood [87], and 
the Xylarium Digital Database (XDD), which contains 
micrograph-based multiple datasets [88, 89] (Table 1). To 
measure or improve the performances of wood identifi-
cation models, benchmarks for performance evaluation 
are essential. These open databases have contributed to 
the development of CV-based wood identification.

All the databases contain only cross-sectional images, 
regardless of image type. Barmpoutis et al. [54] compared 
the discriminative power of three orthogonal sections of 
wood and reported that the model trained with the cross-
sectional image dataset had a higher classification perfor-
mance than the same model trained with other sections 
or combinations of them.

Xylarium digital database for wood information science 
and education
The biggest obstacle currently faced by CV-based wood 
identification is the absence of large databases. The 
development of the ImageNet dataset, which contains 
14.2  million images across more than 20,000 classes, 
ended the AI winter [90]. Similarly, large databases are 
essential for progressing CV-based wood identification. 
Historically, the construction of large image databases for 
wood science has always been a challenge [6, 81], mainly 
because wood images are cumbersome to make and only 
wood anatomists can annotate the images correctly. 
Hence, their construction requires extensive collabora-
tion across many organizations in wood science.

A first step in constructing a large database could be 
the digitization of Xylaria data that is distributed around 
the world, accompanied by the establishment of standard 
protocols for image data generation [91]. Once digitiza-
tion is complete, data sharing and/or integration systems 
would need to be discussed. Unlike the Xylaria data, a 

digital herbaria dataset that covers a wide range of bio-
logical diversity has already been established [92].

Under these circumstances, the recently released 
Xylarium Digital Database (XDD) for wood informa-
tion science and education is notable. XDD is a digitized 
database based on the wood collection of the Kyoto Uni-
versity Xylarium database. It contains 16 micrograph 
datasets, covering the widest biological diversity among 
open digital databases released to date (Table  2). The 
datasets in XDD have been used in multiple studies [48, 
73, 74, 93], and based on the findings of these studies, 
each wood family was divided into two datasets with two 
different pixel resolutions. A large digital database built 
by combining individual databases such as XDD will be 
an important contribution to the advancement of wood 
science with state-of-the-art DL techniques beyond CV-
based wood identification.

How computer vision processes images
To identify woods, wood anatomists observe the ana-
tomical characteristics of wood tissues such as wood fib-
ers, axial parenchyma cells, vessels, and rays, as well as 
their size and arrangement from wood sections (Fig. 3a), 
whereas CV is used to extract features such as points, 
blobs, corners, and edges, and their patterns from images 
(Fig. 3b).

For computers, an image is a combination of many pix-
els and is recognized as a matrix of numbers with each 
number representing a pixel intensity (Fig.  4). Wood 
images are made up of various cell types. Different wood 
species have different patterns of anatomical elements, 
and the composition of the elements causes distinctions 
in pixel intensity, arrangement, distribution, and aggre-
gation patterns. Such differences are detected by CV and 
learned by ML. This is the fundamental concept of CV-
based wood identification.

Table 1  Published wood image databases that have been used in CV-based wood identification studies

Stereo stereogram, Micro micrograph, Macro macroscopic image, #SP number of species, #IMG number of images, Ref. reference

Database Description Image type #SP/#IMG Accessibility Ref.

CAIRO Commercial hardwood species in Malaysia Stereo 37/3700 Inaccessible [82]

FRIM Commercial hardwood species in Malaysia Stereo 52/5200 Inaccessible [27]

LignoIndo Commercial hardwood species in Indonesia Stereo 809/4854 Inaccessible [83]

ZAFU WS 24 Wood species in Zhejiang A&F University Stereo 24/480 Inaccessible [68]

RMCA Commercial wood species in Central-Africa Micro 77/1221 Open [86]

XDD Major Fagaceae species in Japan Micro 18/2449 Open [88]

Lauraceae species in East Asia Micro 39/1658 Open [89]

WOOD-AUTH Wood species in Greece Macro 12/4272 Open [87]

UFPR Wood species in Brazil Macro 41/2942 Open [84]

Micro 112/2240 Open [85]
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Preprocessing
Image preprocessing is a preliminary step of feature 
extraction that facilitates extraction of predefined fea-
tures and reduces computational complexity [94]. Vari-
ous image preprocessing techniques have been used 
depending on the problem to be solved.

Simple tasks such as grayscale conversion and image 
cropping and scaling are preprocessing techniques com-
monly used in the conventional ML models [26–28, 52, 
62, 71, 95]. The color of wood generally is not regarded 
as important information in because it is easily changed 
by various factors. In conventional ML RGB color images 

Table 2  Datasets in the Xylarium Digital Database (XDD) for wood information science and education

The images that make up the datasets are optical micrographs that correspond to an actual area of 2.7 × 2.7 mm2. Image resolutions of 4.44 and 2.98 µm/pixel 
correspond to image sizes of 600 × 600 and 900 × 900 pixels, respectively
a Dataset with seven classes integrated per resolution

Dataset Family Number of Resolution 
(µm/pixel)

DOI

Genus Species Individual Image

XDD_001 Betulaceae 5 19 70 817 4.44 https://​doi.​org/​10.​14989/​XDD_​001

XDD_002 Betulaceae 5 19 70 817 2.96 https://​doi.​org/​10.​14989/​XDD_​002

XDD_003 Cannabaceae 3 3 23 317 4.44 https://​doi.​org/​10.​14989/​XDD_​003

XDD_004 Cannabaceae 3 3 23 317 2.96 https://​doi.​org/​10.​14989/​XDD_​004

XDD_005 Fagaceae 5 18 185 2446 4.44 https://​doi.​org/​10.​14989/​XDD_​005

XDD_006 Fagaceae 5 18 185 2446 2.96 https://​doi.​org/​10.​14989/​XDD_​006

XDD_007 Lauraceae 11 39 131 1658 4.44 https://​doi.​org/​10.​14989/​XDD_​007

XDD_008 Lauraceae 11 39 131 1658 2.96 https://​doi.​org/​10.​14989/​XDD_​008

XDD_009 Magnoliaceae 2 18 37 926 4.44 https://​doi.​org/​10.​14989/​XDD_​009

XDD_010 Magnoliaceae 2 18 37 926 2.96 https://​doi.​org/​10.​14989/​XDD_​010

XDD_011 Sapindaceae 5 18 56 444 4.44 https://​doi.​org/​10.​14989/​XDD_​011

XDD_012 Sapindaceae 5 18 56 444 2.96 https://​doi.​org/​10.​14989/​XDD_​012

XDD_013 Ulmaceae 2 4 38 443 4.44 https://​doi.​org/​10.​14989/​XDD_​013

XDD_014 Ulmaceae 2 4 38 443 2.96 https://​doi.​org/​10.​14989/​XDD_​014

XDD_015 Hardwooda 33 119 540 7051 4.44 https://​doi.​org/​10.​14989/​XDD_​015

XDD_016 Hardwooda 33 119 540 7051 2.96 https://​doi.​org/​10.​14989/​XDD_​016

Fig. 3  Features observed by human vision and extracted by computer vision for wood identification. a Cross-sectional optical microscopic 
image of Cinnamomum camphora. b Difference-of-Gaussian image, which presents the other half of the optical microscopic image in a. Scale 
bar = 100 µm

https://doi.org/10.14989/XDD_001
https://doi.org/10.14989/XDD_002
https://doi.org/10.14989/XDD_003
https://doi.org/10.14989/XDD_004
https://doi.org/10.14989/XDD_005
https://doi.org/10.14989/XDD_006
https://doi.org/10.14989/XDD_007
https://doi.org/10.14989/XDD_008
https://doi.org/10.14989/XDD_009
https://doi.org/10.14989/XDD_010
https://doi.org/10.14989/XDD_011
https://doi.org/10.14989/XDD_012
https://doi.org/10.14989/XDD_013
https://doi.org/10.14989/XDD_014
https://doi.org/10.14989/XDD_015
https://doi.org/10.14989/XDD_016


Page 7 of 21Hwang and Sugiyama ﻿Plant Methods           (2021) 17:47 	

are converted to grayscale images, which provide enough 
information to recognize species specificity and also 
significantly reduce computational costs. Whereas, DL 
models use RGB images without conversion [29, 65, 81, 
96].

Cropping is the process of extracting parts of the origi-
nal image to remove unnecessary areas or to focus on 
specific areas [29, 65, 96–99]. Scaling is the process of 
changing the image size in relation to pixel resolution. 
High-resolution images have excessive computational 
costs [100], so the image size needs to be adjusted but 
remain within the range in which the expected features 
can be extracted. Information loss should be considered 
when resizing wood images, and information distortions 
inevitably occur when changing aspect ratios.

Homomorphic filtering is a generalized technique for 
image processing and commonly used for correcting 
non-uniform illumination. This technique is preferred to 
normalize the brightness across an image and increase 
contrast in wood identification [58–61]. Homomorphic 
filtering also has the effect of sharpening the image [26, 
101] and Gabor filters have been used for sharpening 
[102]. Sharpening was used as a preprocessing to seg-
ment notable cells such as the vessel [59, 61, 103].

Denoising using a median or adaptive filter has been 
performed to remove noise or artifacts in images [75, 
99, 104], and equalization of the gray level histogram 
was shown to improve the contrast [26, 75, 101]. For 
motion blurred images, deconvolution using the Rich-
ardson–Lucy algorithm was effective for deblurring 
[105]. For X-ray CT images, pixel intensities are directly 
related to wood density, so gray level calibration based 
on wood density is an important process for predicting 
physical and mechanical properties as well as for wood 
identification [67]. By preprocessing images from various 
sources, image data can be cleaned up and standardized, 

which reduces data complexity and improves algorithm 
accuracy.

Data splitting
When a wood image dataset has been processed and is 
ready for use, the next step is to split it into subsets. One 
of the goals of ML is to build a model with high predic-
tion performance for unseen data [106]. Non-split, that 
is training data only, and two-split into training and test 
sets can result in poor prediction for unseen data because 
they build models that fit best only on anatomical fea-
tures of training and test data, respectively. Therefore, the 
most common splitting method is to split the data into 
training, validation, and test sets.

The training set is used to construct a classification 
model. The classifier learns the features extracted from 
the training set images and their labels to build a clas-
sification model. The validation set is used to optimize 
the training set by tuning the parameters during model 
building. The validation set can be specified as an inde-
pendent set or a part of the training set can be iteratively 
selected, such as k-fold cross-validation [107]. Although 
this method is standard in conventional ML, it is not 
often used when training a large model in DL because the 
training itself has a large computational scale. The test 
set is used to evaluate the performance of the final model 
built by learning the training set.

The split ratio for a dataset depends on the data. Split-
ting training and test data sets 8-to-2 was preferred and 
this can be a good start. Guyon [108] suggested that the 
validation set should be inversely proportional to the 
square root of the number of free adjustable parameters, 
but it should be noted that there is no ideal ratio for split-
ting a dataset. It is important to find a balance between 
training and test sets because a small training set can 
result in high variance of parameter estimates and a small 

Fig. 4  Grayscale image expressed in a matrix of numbers that computers can process. a 8-bit grayscale stereogram of a cross section of 
Cinnamomum camphora. b Enlarged image of the yellow box in a, which contains a vessel. c Gray values of each pixel in b. Scale bar = 1 mm
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test set can result in high deviations in performance 
statistics.

In general classification problems, random dataset 
splitting is considered a good approach [109], but for bio-
logical image data such as wood images, especially micro-
scopic scale images, it is not ideal. If multiple images 
obtained from an individual are divided into training and 
test sets, the classification model can correctly classify 
the test images because the model has already learned 
the characteristics of the individual from the training set, 
even if the images represent different areas of the sam-
ple. In such a case, the classification performance of the 
model will be high, but this result is caused by overfitting 
and does not guarantee the generalization performance 
of the model [44]. In CV-based wood identification, 
therefore, it is desirable to split a dataset by individual 
units, not by images, because the splitting process is 
important in determining the reliability of classification 
models. Many published studies used random splitting 
methods [29, 61, 66, 68, 79], but many studies did not 
provide details of the dataset splitting scheme.

Conventional machine learning
Feature extraction
Image features are the information that is required to 
perform specific tasks related to CV applications. In gen-
eral, the features refer to local structures such as points, 
corners, and edges, and global structures such as pat-
terns, objects, and colors in an image. CV uses a diverse 
collection of feature extraction algorithms. In wood iden-
tification based on conventional ML, different feature 
types are selected depending on the type of image and 
classification problem, most of them are for texture and 
local features.

Texture feature
Texture is the visual pattern of an image and it is 
expressed by the combination and arrangement of image 
elements. That is, texture is information about the spa-
tial arrangement of pixel intensities in an image, and this 
information is quantified to obtain the texture feature. 
Early studies generally approached wood identification 
as a matter of texture classification because cross sec-
tions of wood represent different anatomical arrange-
ments, namely different patterns, depending on the 
species [20, 26, 82, 101, 110]. Textures are the image fea-
tures that were most preferred in published studies, and 
this is closely related to the finding that stereograms and 
macroscopic images were preferred for developing field-
deployable systems [21, 49, 57, 69].

Gray level co-occurrence matrix (GLCM) is a statisti-
cal approach for determining the texture of an image by 
considering the spatial relationship of pixel pairs, and 

GLCM is the classic and most widely used texture fea-
ture in wood identification [20, 26, 28, 66, 69, 98]. The 
GLCM feature is quantified by statistical methods such 
as the Haralick texture feature [111–113] that takes into 
account the direction and distance of the co-occurrences 
of two adjacent pixels. In the early days of CV-based 
wood identification, Tou et  al. [20] reported 72% iden-
tification accuracy using five GLCM texture features 
extracted from 50 images of five tropical wood species. 
Subsequently, they scaled up their datasets (CAIRO) 
and studied various GLCM-based identification strate-
gies such as rotation invariant GLCM [110] and multiple 
feature combinations [62, 114–116]. GLCM is a feature 
that has high computational cost, so one-dimensional 
GLCM [117] and image blocking have been considered 
for computational efficiency [97, 98]. Kobayashi et al. [66, 
67, 99] constructed identification models trained with 
GLCM features extracted from X-ray CT images and ste-
reograms and demonstrated that GLCM-based methods 
were promising for the identification of wood cultural 
properties.

To reduce the computational cost and improve the 
classification performance, the basic gray level aura 
matrix (BGLAM) was proposed [118]. This is the basis 
of the gray level aura matrix (GLAM) [119] developed to 
overcome the limitation of GLCM that it cannot contain 
information about the interaction between gray level sets 
in textures with large scale structure [120]. BGLAM is 
characterized by the co-occurrence probability distribu-
tion of gray levels in all possible displacement configura-
tions and it has been actively used for wood identification 
[27, 28, 59, 61]. Zamri et al. [60] classified 52 species in 
the FRIM database using the improved-BGLAM algo-
rithm, which realizes feature dimension reduction and 
rotational invariance from BGLAM, and the classifica-
tion performance of their model using the improved-
BGLAM far exceeded that using GLCM.

Local binary pattern (LBP) is a simple but efficient 
visual descriptor for representing image texture. LBP 
calculates the local texture of an image by comparing 
the value of a center pixel with those of the surrounding 
pixels in the grayscale image [121]. Nasirzadeh et al. [82] 
compared the performance of models trained with LBP-
based features extracted from the CAIRO database and 
found that the LBP histogram Fourier features outper-
formed the conventional rotation-invariant LBP. Martins 
et al. [47] published their micrograph-based UFPR data-
base and reported a 79% recognition rate for a classifica-
tion model trained with LBP. In the same study, they also 
showed that when the original image was divided into 
sub-regions, the recognition rate of the model trained 
with LBP improved by 86%.
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In comparative studies of GLCM and LBP, classifi-
cation models trained with LBP always achieved bet-
ter performances than those trained with GLCM for all 
image types (Table 3). While GLCM quantifies an image 
with only one value per texture feature, LBP represents 
an image with a 256-bin histogram, although it contains 
many overlapping patterns. Corners and Harlow [112] 
demonstrated that among the 14 measures proposed by 
Haralick et  al. [111] for GLCM texture feature extrac-
tion, only five of them, energy, entropy, correlation, local 
homogeneity, and contrast, were sufficient for texture 
classification. That is, GLCM required a lower dimension 
of feature vectors for texture description than LBP. In 
addition, LBP histograms can identify local patterns such 
as edges, flats, and corners, which may explain why LBP 
outperformed GLCM in wood identification. It has been 
pointed out that it may be difficult to describe large wood 
cells, such as vessels and resin canals using LBP [95], but 
this problem can be solved by adjusting the radius of the 
LBP unit and combining units with different radii.

Local phase quantization (LPQ) is an algorithm for 
extracting blur insensitive textures using Fourier phase 
information. As shown in Table 3, LPQ was applied pri-
marily to micrographs, where it performed better than 
GLCM and LBP [71, 95, 115, 122]. One study has inves-
tigated LPQ on macroscopic scale image datasets, but 
the discriminative power of LPQ was lower than that of 
LBP in a comparative study using the UFPR macroscopic 
image dataset [62].

In addition to the textures described above, other tex-
ture features such as higher local order autocorrelation 
(HLAC) and Gabor filter-based features have been used 
for wood classification, and because of their high classifi-
cation accuracy they have proved to be promising feature 
extractors for wood identification [68, 101, 123–125]. 
Texture fusion strategies for different types of texture 

features have always been superior to a single feature set 
in terms of classification accuracy [28, 80, 115].

Local feature
Local features are distinct structural elements such as 
points, corners, and edges in an image, vs. textures. The 
biggest difference between local features and textures is 
that textures are descriptors that describe an image as 
a whole, whereas local features describe interesting or 
important local regions called keypoints. That is, the tex-
ture feature is an image descriptor and the local feature 
is a keypoint descriptor. Local feature extraction thus 
consists of two major processes, feature detection and 
feature description. In general, local features are better 
at handling image rotation, scale, and affine changes [18, 
19].

Scale-invariant feature transform (SIFT) developed by 
Lowe in 2004 [18], is a local feature extraction algorithm 
that has been the benchmark for local feature collection 
in CV since its introduction. SIFT detects blobs, corners, 
and edges as keypoints in an image and represents local 
regions of the image as 128-dimensional vectors cal-
culated based on the gradient orientations of the pixels 
around each keypoint.

Most of the local features used for wood identifica-
tion have been collected using SIFT [48, 54, 73, 79, 93]. 
Hwang et  al. [73] investigated the discriminative power 
of SIFT for image resolution using the XDD Lauraceae 
micrograph dataset. Taking into account the identifica-
tion accuracy and the computational cost, they reported 
that a pixel resolution of about 3 µm was appropriate for 
wood identification. If the image was shrunk beyond the 
3-µm pixel resolution, the accuracy was greatly reduced 
because information about the wood fibers was lost. 
However, from an identification study of Fagaceae spe-
cies, Kobayashi et  al. [48] reported that a satisfactory 
identification performance could be obtained at a pixel 

Table 3  Performances of GLCM, LBP, and LPQ texture features for wood identification

Stereo stereogram, Macro macroscopic image, Micro micrograph, XCT X-ray computed tomographic image, #SP number of species, #IMG number of images, ANN 
artificial neural network, SVM support vector machine, k-NN k-nearest neighbors

References Database Image type #SP/#IMG Classifier Classification rate (%)

GLCM LBP LPQ

Prasetiyo et al. [147] CAIRO Stereo 25/2390 ANN 89.6 93.6 –

Martins et al. [47] UFPR Micro 112/2240 SVM 55.3 79.3 –

Kobayashi et al. [66] – XCT 6/240 k-NN 98.3 99.5 –

Cavalin et al. [115] UFPR Micro 112/2240 SVM 80.7 88.5 91.5

Paula Filho et al. [62] UFPR Macro 41/2942 SVM 56.0 68.2 61.8

Martins et al. [95] UFPR Micro 112/2240 SVM 4.1 66.3 86.7

Yadav et al. [122] UFPR Micro 75/1500 SVM – 79.9 93.5

da Silva et al. [71] RMCA Micro 77/1221 k-NN (k = 1) – 85.0 87.4
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resolution of 4.4 µm, even though some of the wood fiber 
information was lost.

Hwang et  al. [74] compared the wood identification 
performance of each model trained with well-known 
local feature extraction algorithms: SIFT, speeded up 
robust features (SURF) [19], oriented features-from-
accelerated-segment-test (FAST), rotated binary-robust-
independent-elementary-feature (BRIEF) (ORB) [126], 
and accelerated-KAZE (AKAZE) [127]. Without consid-
ering the computational cost, SIFT had the highest dis-
criminative power among the algorithms tested (Table 4). 
Visualization of the features extracted by each algorithm 
confirmed that SIFT detected cell corners more effec-
tively than the other algorithms. Hwang et al. [74] noted 
that in cross-sectional images of wood, the cell corner is 
an important feature for identification because it con-
tains information about the mode of aggregation of dif-
ferent cell elements. The superiority of SIFT seems to be 
because it was designed to detect corners.

In comparative studies of local features and textures 
(Table  4), SIFT and SURF had higher discriminative 
power than GLCM and LBP, whereas LPQ had similar 
discriminative power for local features [47, 128]. Histo-
grams of oriented gradients (HOG) [129] are descriptors 
that represent a local region of an image, and they have 
been used to classify macroscopic image datasets [130].

Describing a whole image using only local features can 
limit the classification of images with complex struc-
tural elements. To solve this problem, a codebook-based 
framework has been used to quantify the extracted fea-
tures. The bag-of-features (BOF) model, which uses 
codewords generated by the clustering of extracted fea-
tures, is an effective method of quantifying features to 
represent an image [131]. The BOF model trained with 
codewords converted from SIFT descriptors produced 
higher classification performance than the model trained 
with SIFT features intact [93]. Even for a macro image 

dataset, the SIFT-based BOF model outperformed the 
models trained with texture features [128].

Other features
In addition to the features described above, other fea-
ture types such as color and anatomical statistic features 
have been used for hardwood identification. Such fea-
tures were used mainly in combination with other types 
of features because their discriminative power as a single 
feature set was relatively inadequate, and multiple feature 
set strategies that combined different types of features 
produced improved results for identification accuracy 
[58, 62, 77].

Color is the most intuitive feature for human vision, but 
it is unstable as a feature. Wood color is not only variable 
by environmental factors such as tree growth conditions 
and atmospheric exposure time, but also by variability in 
an individual tree such as heartwood and sapwood, and 
earlywood and latewood. Wood identification has been 
carried out based on color differences between species, 
but large intra-species color variations are a big obsta-
cle. Zhao et al. [63, 78] proposed novel color recognition 
systems that efficiently distinguished between intra- and 
inter-species color variations using an improved snake 
model [132] and an active shape model [133] with a 
two-dimensional image measurement machine. They 
also built a classification model that outperformed their 
previous models using a fusion scheme of color, texture, 
and spectral features [116]. Color features have primarily 
been used in combination with textures as part of macro 
level multi-feature sets to improve discrimination [58, 62, 
77, 134].

Using image segmentation techniques, anatomical sta-
tistical features such as the shape, size, number, and dis-
tribution of specific wood cells can be extracted from a 
cross-sectional image. The vessel is the most character-
istic anatomical element in macroscale images, so it was 
particularly preferred for statistical feature extraction. 

Table 4  Performances of major local features and textures for wood identification

Macro macroscopic image, Micro micrograph, #SP number of species, #IMG number of images, CLS classifier, ANN artificial neural network, SVM support vector 
machine
a F1 score was used as a performance metric
b Lauraceae wood dataset in the XDD database

References Database Image type #SP/#IMG CLS Classification rate (%)

Local features Textures

SIFT SURF ORB AKAZE GLCM LBP LPQ

Hu et al. [128] – Macro 28/2800 ANN 90.2 – – – 63.8 85.7 –

Martins et al. [47] UFPR Micro 112/2240 SVM 88.5 89.1 – – 4.1 66.3 86.7

Hwang et al. [74]a XDDb Micro 9/1019 SVM 79.2 42.2 63.6 61.6 – – –
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Yusof et al. [28, 59] extracted the statistical properties of 
pore distribution (SPPD) from the FRIM database and 
used them as features. Pre-classification of the SPPD fea-
tures based on fuzzy logic [135] improved the accuracy 
of the identification system and reduced the processing 
time. Other similar studies have successfully used statisti-
cal features to identify wood [61, 80, 103].

Dimensionality reduction and feature selection
Large numbers of extracted features reduce the com-
putational efficiency of classification models, therefore 
it is important to find a balance between classification 
accuracy and computational cost. Principal component 
analysis (PCA) [136] and linear discriminant analysis 
(LDA) [107] are representative methods for dimension-
ality reduction of data. da Silva et  al. [71] reduced the 
dimensionality of LPQ and LBP features extracted from 
the RMCA database using PCA and LDA. Their classi-
fication model produced promising results, even though 
the feature data were significantly reduced. Kobayashi 
et al. [48] reduced the 128-dimensional SIFT feature vec-
tors extracted from Fagaceae micrographs to 17 dimen-
sions using LDA, and the wood identification using the 
reduced feature set was quite accurate.

Whereas dimensionality reduction converts image fea-
tures into new numerical features, feature selection takes 
the essence of the features without converting them. The 
genetic algorithm (GA) is an engineering model that bor-
rows from the biological genetic and evolution mecha-
nisms. The GA finds a better solution by repeating the 
cycle of feature selection, crossover, mutation, evalua-
tion, and update [137]. Khairuddin et al. [138] applied the 
GA to texture features extracted from the FRIM database 
and used the selected features to train their model. They 
found that the model performance was 10% more accu-
rate than the same model in a previous study [26], even 
though the GA reduced the dimensionality of the train-
ing data by half. Yusof et  al. [28] further improved the 
feature selection by combining the GA with kernel dis-
criminant analysis. Another feature selection algorithm is 
the Boruta algorithm, which selects key variables based 
on Z-score using random forest [139].

Classification
Classifiers create classification models by learning the 
features extracted from a training set and establishing 
classification rules. The training phase ends with the 
implementation of the classification model. In the test 
phase, image features are extracted from the test set 
through the same processes as the training set. The fea-
tures are then entered into the classification model and 
the model classifies each image, which completes the 
classification of the test set.

The three most preferred classifiers in the wood iden-
tification studies were k-nearest neighbors (k-NN) [140], 
support vector machine (SVM) [141], and artificial neu-
ral network (ANN) [142, 143]. k-NN is the simplest ML 
algorithm, which simply stored the training data and 
focuses on classifying query data. To classify query data, 
the algorithm finds k data points closest to the target data 
point in the training dataset based on the Euclidean dis-
tance [140]. Minimum distance-based classifiers [140, 
144] such as k-NN work best on small datasets because 
the amount of required system space increases exponen-
tially as the number of input features increases [145].

SVM is an algorithm that clearly classifies data points 
in N-dimensional space by finding a hyperplane with the 
maximum margin between classes of data points [141]. 
Basically, SVM is a linear model, but combining it with 
kernel methods enables nonlinear classification by map-
ping data into higher dimensional feature spaces [146]. 
SVM requires less space than k-NN because it learns the 
training data and builds a classification model in advance. 
SVM has been shown to outperform k-NN for wood 
identification [68, 73, 128, 147, 148]. In most studies that 
compared the two classifiers in the same classification 
strategy, SVM outperformed k-NN (Table 5). Because the 
SVM algorithm, as well as other ML algorithms, is very 
sensitive to the parameters, gamma (or sigma), a Gauss-
ian kernel parameter for nonlinear classification, and cost 
(C), a parameter that controls the cost of misclassifica-
tion on the training data [149], parameter optimization 
using techniques such as grid search or GA is essential 
[150, 151].

The ANN algorithm mimics the learning process of 
the human brain and is the foundation of DL, which is 
the mainstream of modern computer science [152–155]. 
This algorithm has produced state-of-the-art perfor-
mance as a classifier in wood identification as well as in 
various other classification problems. Regardless of the 
type of image and feature, ANN performed better than 
k-NN and SVM (Table  5). Wood features are nonlinear 
relationships, and ANN is able to learn such complicated 
nonlinear relationships [156]. In addition, ANNs are 
resilient in the face of noise and unintentional features in 
the data [106]. The ANN algorithm is a backpropagation 
algorithm that refines the model by updating the weights 
through propagation of the prediction error to previ-
ous layers. [157]. These characteristics make it suitable 
for wood identification. ANN has been used with large 
datasets [72, 97, 128], which supports DL methods such 
as CNN that are able to build more sophisticated models 
with larger amounts of data [53, 55, 64, 96].

Although ANN is a good classifier, there is no one opti-
mal classifier for wood identification. For new datasets, 
it has been recommended that it is better to start with a 
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simple model such as k-NN to develop an understanding 
of the data characteristics before moving to a more com-
plex model such as SVM or ANN [158]. Depending on 
the purpose, ensembles of multiple classifiers also may be 
considered [53, 64, 93].

Deep learning
Convolutional neural networks
Convolutional neural networks (CNN) were first intro-
duced to process images more effectively by applying 
filtering techniques to artificial neural networks [159]. 
Afterward, a modern CNN framework for DL was pro-
posed by LeCun et al. [17]. Typical CNN architecture is 
shown in Fig. 5. There are many layers between input and 
output. Convolution and pooling layers extract features 
from images, and fully-connected layers are neural net-
works that learn features and classify images. In a con-
volution layer, a feature map is generated by applying a 
convolution filter to the input image. In a pooling layer, 

only the important information is extracted from the fea-
ture map and used as input to the next convolution unit. 
Convolution filters can start with very simple features, 
such as edges, and evolve into more specific features of 
objects, such as shapes [46]. Features extracted from the 
convolution and pooling layers are passed to the fully-
connected layers and then classification is performed by 
a deep neural network.

A deep neural network is composed of several lay-
ers stacked in a row. A layer has units and is connected 
by weights to the units of the previous layer. The neural 
network finds the combinations of weights for each layer 
needed to make an accurate prediction. The process of 
finding the weights is said to be training the network. 
During the training process, a batch of images (the entire 
dataset or a subset of the data set divided by equal size) 
is passed to the network and the output is compared to 
the answer. The prediction error propagates backward 
through the network and the weights are modified to 

Table 5  Performances of k-NN, SVM, and ANN classifiers reported in CV-based wood identification studies

#SP number of species, #IMG number of images, k-NN k-nearest neighbors, SVM support vector machine, ANN artificial neural network, Stereo stereogram, Micro 
micrograph, Macro macroscopic image, MMI mask matching image, 1st Stat first order statistic features, DWT discrete wavelet transform, CC connected component 
labelling
a Linear kernel SVM classifier

References Database Image type #SP/#IMG Feature Classification rate (%)

k-NN SVMa ANN

Hu et al. [128] – Macro 28/2800 SIFT 77.3 87.5 90.2

Tou et al. [117] CAIRO Stereo 5/500 GLCM 63.6 – 72.8

Prasetiyo et al. [147] FRIM Stereo 25/2390 LBP 80.0 85.6 93.6

Wang et al. [148] ZAFU WS 24 Stereo 24/480 GLCM 87.5 91.7 –

Wang et al. [68] ZAFU WS 24 Stereo 24/481 HLAC with MMI 76.3 87.7 –

Souza et al. [52] – Stereo 64/1901 LBP – 98.1 96.5

Yadav et al. [192] UFPR Micro 25/500 1st Stat. with Coiflet DWT – 65.2 92.2

Hwang et al. [73] XDD Micro 39/1557 SIFT 84.3 95.4 –

Kobayashi et al. [48] XDD Micro 18/2406 SIFT, CC 95.3 93.1 –

Fig. 5  Typical simple convolutional neural network architecture. Conv convolution unit, Pool pooling unit, FC fully-connected layer
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improve prediction [157]. Each unit gradually becomes 
equipped with the ability to distinguish certain features 
and ultimately helps to make better predictions [46].

CNN in wood identification
Table 6 lists wood identification studies using CNN mod-
els. All studies have been reported within the last decade 
and are accelerating over time. Hafemann et al. [29] used 
a CNN model combined with an image patch extrac-
tion strategy to classify macroscopic image and micro-
graph datasets in the UFPR database. The classification 
performance of the CNN model outperformed those of 
models trained with texture features. Notably, their CNN 
model was designed with only two convolution units. 
Kwon et al. [64, 96] successfully classified six Korean soft-
wood species using CNN-based models, LeNet [17], mini 
VGGNET [160], and their ensemble models, which have 
been successful in general image classification. Oliveira 
et  al. [161] developed a wood identification software 
based on CNN models trained with the UFPR database. 
The architecture of their CNN models was not disclosed, 
but the model that they chose as the basis for the soft-
ware performed best performance in studies of both 
macroscopic and micrograph datasets using the UFPR 
database as a benchmark.

CNNs generally require large databases. However, large 
wood image databases with the correct labels are quite 
difficult to obtain. To expect competitive performances 
from CNN-based models, they are known to require a 

database that is at least 10 times larger than that required 
for feature engineering-based methods [91]. Therefore, 
transfer learning was introduced as a network training 
method for small databases [162]. Transfer learning pro-
vides a path to building competitive models using a mod-
erate amount of data by leveraging pre-trained networks 
with the ImageNet dataset [163].

Ravindran et  al. [81] classified 10 neotropical species 
with high accuracy using the VGG16 [160] model with 
transfer learning. Tang et  al. [49] developed a smart-
phone-based portable macroscopic wood identification 
system based on the SqueezeNet [164] model. In a com-
parative study of DL and conventional ML models [55], 
CNN-based models, Inception-v3 [165], SqueezeNet 
[164], ResNet [25], and DenseNet [166], all models 
achieved better performance than k-NN models trained 
with LBP or LPQ features. Lens et al. [72] also reported 
that VGG16 and ResNet101 models had better clas-
sification performance for the UFPR dataset than those 
trained with texture features. The CNN with residual 
connections proposed by Fabijańska et  al. [65] identi-
fied 14 European trees better than other popular CNN 
architectures.

Field‑deployable wood identification systems
Many studies have aimed to develop CV-based auto-
mated wood identification systems, and some have been 
realized as field-deployable systems [21, 49, 51, 69]. Xylo-
Tron, developed by the Forest Products Laboratory, US 

Table 6  Performances of deep learning models reported in CV-based wood identification studies

#SP: number of species; #IMG: number of images; CLS %: classification accuracy; FWRC: Forest and Wildlife Research Center at Mississippi State University; –: no 
number specified
a 3 layers deep CNN
b F1 score
c Species identification
d Genus identification
e At least 5 images per specimen (total 193 wood specimens)

References Dataset Image type #SP/#IMG CNN model CLS %

Hafemann et al. [29] UFPR Macro 41/2942 3-ConvNeta 95.8

Micro 112/2240 3-ConvNeta 97.3

Kwon et al. [96] Softwoods Macro 5/16,865 LeNet 99.3

Kwon et al. [64] Softwoods Macro 5/33,815 Ensemble of LeNet2, LeNet3, and MiniVGG4 0.98b

Ravindran et al. [81] Meliaceae species Stereo 10/2303 VGG16 88.7c

97.5d

Tang et al. [49] FRIM collection Stereo 100/101,446 SqueezeNet 77.5

Lopes et al. [51] FWRC collection Stereo 10/1869 InceptionV4_ResNetV2 92.6

Lens et al. [72] UFPR Micro 112/2240 ResNet101 96.4

de Geus et al. [55] Brazilian species Stereo 281/– DenseNet 98.8

Ravindran [21] Melaceae species Stereo 10/–e ResNet34 81.9

96.1

Fabijanska et al. [65] European species Macro 14/312 Residual convolutional encoder network 98.7
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Department of Agriculture, is a CNN-based wood iden-
tification system using ResNet34 backbone [21]. This is 
the only system to report actual field use in real-time and 
showed higher species and genus identification perfor-
mance for the family Meliaceae than the mass spectrom-
etry-based model [21].

Recently, smartphone-based systems have been devel-
oped that require minimal components. MyWood-ID 
can identify 100 Malaysian woods [49], and another 
smartphone-based system, AIKO, can identify major 
Indonesian commercial woods [83]. XyloPhone, a smart-
phone-based imaging platform, has been introduced as 
a field-use identification tool that is more affordable and 
scalable than other commercial products [57]. All the 
field-deployable systems are based on stereogram data-
sets [21, 49, 51, 57, 69, 83].

New aspects in wood science: CV‑based wood 
anatomy
From the outset, CV-based wood identification was an 
informatics-driven research field, so most studies were 
focused only on improving the identification perfor-
mance, and not on the wood itself. With the recent inter-
est in AI, new aspects have emerged to understand CV 
based on the domain knowledge of wood science.

Feature‑based anatomical approaches
Kobayashi et al. [99] conducted PCA on GLCM features 
extracted from hardwood stereograms to investigate the 
relationship between anatomical structures and texture 

features. From principal component loadings and analy-
sis of macroscopic patterns of wood they found that each 
Haralick texture feature correlated with different ana-
tomical structures such as vessel population, ray-to-ray 
spacing, and tylosis abundance.

A k-means clustering [167] analysis of local features 
extracted from micrographs suggested the possibility of 
matching feature clusters with anatomical elements [73]. 
This idea was extended to quantify anatomical elements 
by encoding local features into codewords. The BOF 
framework effectively visualized and assigned local fea-
ture-based codewords to anatomical elements of wood, 
and codeword histograms provided an indirect means of 
quantitative wood anatomy [74]. The finding that local 
features are the vehicles for access to CV from an ana-
tomical point of view is the main reason that much atten-
tion is being paid to the applications of informatics in the 
wood science field.

Hierarchical clustering of a Fagaceae micrograph data-
set with SIFT features confirmed that the clustering 
basically coincided with wood porosity. Moreover, the 
relationship of species groups that contradicted wood 
porosity was consistent with evolution based on molec-
ular phylogeny [48]. An unexpected finding was that 
the subgenera Cerris (ring porous wood) and Ilex (dif-
fuse porous wood) had common characteristics in the 
arrangement of the latewood vessels as predicted by a 
CV-based analysis (Fig. 6).

Fig. 6  Taxon-specific features based on keypoint clustering of a Fagaceae micrograph dataset with SIFT features. Keypoints (red dots) commonly 
occurred in both Quercus acutissima (Cerris) (a) and Q. phillyraeoides (IIex) (b). Figure copyright (Kobayashi et al.), licensed under CC-BY 3.0
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Feature importance measures
For promising results produced by established wood 
identification models, the features that contributed to the 
identification need to be assessed. Random forest [168], 
an ensemble algorithm and classification model that 
combines multiple decision trees [169], may provide an 
effective means to do this. This algorithm has been pre-
ferred in bioinformatics and biological data-based stud-
ies because it provides variable importance, which is the 
feature importance that evaluates and ranks the vari-
ables for the predictive power of a model [170–172]. Fea-
ture importance measures can be used to interpret the 

identification results produced by a model into domain 
knowledge of wood anatomy.

Another feature importance measurement technique 
using codewords is the term frequency–inverse docu-
ment frequency (TFIDF) score [173]. TFIDF is derived 
from bag-of-words (BOW) [174], a model for document 
retrieval and the origin of BOF, and the TFIDF score 
provides keywords for document retrieval. Similarly, the 
BOF model uses image features and provides informative 
features for image classification. A codeword with a high 
TFIDF score indicates a rare feature present in a small 
number of species, whereas a low score denotes a feature 

Fig. 7  Visualization of informative features with the highest TFIDF scores from the Lauraceae micrograph dataset. a Wood fibers adjacent to rays in 
Machilus pingii. b Intervessel walls in Lindera communis. c Large vessels in Sassafras tzumu. d Wood fibers in earlywood in Phoebe macrocarpa. The 
frequency–inverse document frequency (TFIDF) scores run from high to low in the order red, yellow, green, blue, and purple. Scale bars = 200 µm
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shared by many species [74]. As shown in Fig. 7, the fea-
tures with high TFIDF scores for each species are differ-
ent, and can be used to infer species-specific features.

In CNN models, the class activation map (CAM) shows 
discriminative image regions that contribute to classify-
ing images into specific classes [175, 176]. To produce a 
CAM, the model classifies images by performing global 
average pooling on feature maps in the last convolution 
layer, and then regions of interest are detected from the 
weights and the feature maps. Nakajima et al. [177] used 
a CAM to analyze important image regions for the dating 
of each annual ring in tree ring analysis.

Cell segmentation using deep learning
The anatomical composition of wood cells reflects envi-
ronmental changes during the growth period of the 
tree [178, 179], therefore analysis of cell variability, that 
is, quantitative wood anatomy, helps answer questions 
related to tree functioning, growth, and environment 
[180]. The laborious and tedious task of identifying and 
measuring hundreds of thousands of wood cells is a major 
obstacle to do it. Several studies have been reported 
for automated segmentation of wood cells using classi-
cal image processing techniques [75, 179, 181], but the 
results were highly dependent on image quality and man-
ual editing by the operator.

With recent advances in CV and DL technologies, 
CNNs have shown remarkable achievements in seg-
menting cells from biomedical microscopic images [155, 
182, 183]. The state-of-the-art techniques are also been 
applied to the segmentation of plant cells, including 
wood [184, 185]. Garcia-Pedrero et  al. [185] segmented 
xylem vessels from cross-sectional micrographs using 
Unet [155], a multi-scale encoder-decoder model based 
on CNN. They reported that the vessel segmentation by 
Unet was closer to the results of the expert’s work using 
the image analysis tool ROXAS [186] than the classical 
techniques Otsu’s thresholding methods [187] and mor-
phological active contour method [188]. In a comparative 
study of three of the latest neural network models, Unet, 
Linknet [189], and Feature Pyramid Network (FPN) [190] 
for vessel segmentation, the models had a high pixel 
accuracy of about 90% as well as a shorter working time 
than the existing image analysis tool [186].

The segmentation results produced from CNN-based 
models demonstrate the potential of DL to perform 
quantitative wood anatomy more effectively, overcom-
ing obstacles such as the non-homogeneous illumina-
tion or staining of images, where conventional methods 
tend to yield unsatisfactory results [191]. DL is evolving 
rapidly and has provided excellent results in many fields 
of study. This can provide solutions to the questions of 

wood identification and anatomy and is an opportunity 
and challenge to bring new insights into wood science.

Conclusions
CV-based wood identification continues to evolve in 
the development of on-site wood identification systems 
that enable consistent judgment without human preju-
dice. Furthermore, by allowing an anatomical approach, 
CV-based wood identification may provide insights that 
have not yet been revealed by established wood anatomy 
methods. The first and most important task to progress 
CV-based wood identification is to build large digital 
databases where wood information can be accessed any-
time, anywhere, and by anyone, and to bridge the current 
gap between informatics and wood science.

DL in recent years has provided a technical foundation 
for more accurate wood identification and is expected to 
answer a variety of questions in wood anatomy shortly. 
Advances in communication technologies provide a 
broad space for the use of CV-based wood identification 
in the field. This could ultimately be a solution to the on-
site demands by allowing wood identification by workers 
who are not trained in traditional identification. From the 
macro perspective of modern science, it is clear that CV, 
ML, and DL technologies will contribute to the devel-
opment of the various subfields encompassed by wood 
science.
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