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Abstract 

Background:  Wood basic density (WBD) is one of the most crucial wood property in tree and mainly determined 
the end use of wood for industry. However, the measurement WBD is time- and cost-consuming, which an alterna-
tively fast and no-destructive measurement is needed. In this study, capability of NIR spectroscopy combined with 
partial least squares regression (PLSR) to quantify the WBD were examined in multiple wood species. To obtain more 
accurate and robust prediction models, the grain angle (0° (transverse surface), 45°, 90° (radial surface)) influence on 
the collection of solid wood spectra and a comparison of found variable selection methods for NIR spectral variables 
optimization were conducted, including significant Multivariate Correlation (sMC), Regularized elimination procedure 
(Rep), Iterative predictor weighting (Ipw) and Genetic algorithm (Ga). Models made by random calibration data selec-
tion were conducted 200 times performance evaluation.

Results:  These results indicate that 90° angle models display relatively highest efficiency than other angle models, 
mixed angle model yield a satisfied WBD prediction results as well and could reduce the influence of grain angle. 
Rep method shows a higher efficiency than other methods which could eliminate the uninformative variables and 
enhance the predictive performance of 90° angle and mix angle models.

Conclusions:  This study is potentially shown that the WBD (g/cm3) on solid wood across grain angles and varies 
wood species could be measured in a rapid and efficient way using NIR technology. Combined with the PLSR model, 
our methodology could serve as a tool for wood properties breeding and silviculture study.
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Background
WBD (g/cm3), which is defined as the ratio of its oven-
dry mass (at 0% moisture) to green volume (water- sat-
urated wood volume), is a critical wood property that 
highly associate with other wood properties [1] for lots 
of industrial applications [2]. For instance, WBD could 
significantly influence the pulp yield, shrinkage and 
swelling behavior of wood [3]. In addition, WBD could 

efficiently reduce the mortalities caused by broken stems 
and uprooted trees in bad weather [4]. It also has been 
reported that WBD plays an important role in the esti-
mation of carbon stocks from tree stems and biomass [5]. 
WBD must be high and uniform for using in a wide range 
of industry. However, WBD usually shows a considerable 
variation with and within trees of the same species. The 
radially from pith to bark, vertically from bottom to top 
within the stem and different tree sections (roots, stem 
and branches) have large WBD variations [6, 7]. Genetic 
breeding program could be an efficiently tool to reduce 
these variations [8, 9].
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Standard methods to measure WBD have high levels of 
precision [10] but are time- and cost-consuming which 
could limit the estimation of WBD cycling when a large 
number of samples need to be measured. Therefore, it is 
required to find out a fast and low cost method to replace 
these methods for the WBD determination.

Near-infrared spectroscopy (NIRS) is an efficient and 
high-throughput technique that has been used in chemi-
cal component analysis in many fields. It is a promising 
and reliable method for the assessment of large sam-
ples [11–16]. It basically relies on the variation in the 
adsorption spectra, such as the vibration, stretching and 
bending of molecular bonds. Special bonds, including 
C–H, N–H and O–H bonds [17], will interact with the 
specific wavelengths in the NIR spectroscopy. A stable 
and uniform illumination source of NIR spectra com-
bined with consistently collected samples could provide 
a better platform for organic chemicals [18]. To obtain 
a better prediction result, multivariate methods such as 
partial least squares regression (PLSR) [19] will be used 
by pairing the NIR spectra and independent chemical 
measurements together to calibrate a high accuracy pre-
diction model. The satisfying model will then be applied 
to unknown samples and the spectra data will be used for 
independent chemical prediction. Recent researches have 
shown that WBD and other wood properties are predict-
able by using laboratory near infrared spectrophotom-
etry in different species [20–22]. However, little is known 
about the NIR spectroscopy utilization in analysing the 
variation of WBD in different tree species under different 
grain angle conditions [23, 24].

The way of NIR spectra collection on the wood samples 
could be a significant influence on the accuracy of model 
calibration, and the models that based on the NIR spec-
tra of wood powder have been reported that yield better 
accuracy than the models that based on spectra of solid 
wood samples [25]. However, it is also a laborious step to 
grain wood into powder which is not suitable for larger 
samples measurements. Alternatively, it will be more effi-
cient to predict WBD from solid wood samples.

The variation of grain angle in radial and vertical direc-
tion of solid wood could influence the spectra informa-
tion for model calibration [26]. It has been reported that 
the grain angle could influence the EC prediction of Euca-
lyptus bosistoana using NIR spectra and this influence 
could be reduced by using of EPO algorithm [22]. How-
ever, little is known about the grain angle influence on 
WBD across many tree species. In addition, the spectra 
bands, which contain massive overtones and combina-
tions of vibrations information from hydrogen-contain-
ing groups (C–H, O–H, and N–H) in wood samples [27], 
usually highly-overlapping and contain many collinearity 
and irrelevant information resulting in difficult to directly 

distinct the interested wood properties and highly influ-
ence the robustness and reliability of model calibration 
[28]. Despite the complicated band assignment for dif-
ferent chemical compositions, Several pre-processing 
methods, such as SNV and derivatives, could efficiently 
reduce these bands influence before model calibration 
[29, 30]. Additionally, it has been reported that the use of 
importance feature selection from the spectra instead of 
using the full length of spectra to calibrate model could 
yield a robust and highly accurate prediction result and 
efficiently reduce the redundant noise and band informa-
tion [31, 32]. There are many mathematic variable selec-
tion algorithms combine with chemometric statistics that 
have been used to improve the performance of the model 
by eliminating the irrelevant variables [33, 34], such as 
a significant Multivariate Correlation (sMC) algorithm 
[35], Regularized elimination procedure (Rep) algorithm 
[36], Iterative predictor weighting (Ipw) [37] and Genetic 
algorithm (Ga) [38]. However, the comparison of differ-
ent variable selection algorithms combines with PLSR 
method for quantitative prediction of multispecies wood, 
especially for WBD which has been less reached.

Therefore, (1) we tested the capacity of reflectance 
spectroscopy to characterize the WBD in various of 
hardwoods tree species using PLSR model, and (2) we 
focused on the comparison of different grain angle mod-
els for the better prediction of WBD, (3) we compared 
the performance of four variable selection methods, 
including sMC, Ipw, Rep and Ga, for improving the pre-
dictive performance of PLS calibrations and to identify 
the most important wavelength related to WBD. More 
importantly, (4) we tested the possibility of using a mixed 
angle (global) calibration models with relevant informa-
tive variables for a fast WBD prediction.

Results
Spectra information
The averaged three grain angles original (none pre-pro-
cessing) and 2nd derivate spectra were ploted in Fig. 1. It 
is clearly shown that the original spectra of three angles 
have similar signal curve and hard to identify with the 
naked eyes. However, spectra start to show differently in 
four different bands between three angles after pre-pro-
cessed by 2nd derivate. The 45° and 90° degree are shown 
similar curve to each other but both have slightly differ-
ence from 0° degree.

Prediction of WBD using full length NIR spectra
The WBD shown a wide variance from 0.39 to 0.93 
with a mean of 0.61 across different wood species and 
could be efficiently predicted with PLSR models using 
full length NIR spectra on three grain angles and mixed 
angle models. Despite to all of the six different NIR 
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spectra processing methods (including no process-
ing), 90° angle model produced the highest mean R2

Cal
 

(calibration) of 0.58 (ranged from 0.46 to 0.69) and 
R
2

Val
 (Validation) of 0.60 (ranged from 0.35 to 0.85) 

respectively, followed by mixed models (mean R2

Cal
 

and R2

Val
 were 0.57 (range: 0.51–0.63) and 0.58 (range: 

0.48–0.74) respectively), 0° angle models (mean R2

Cal
 

and R2

Val
 were 0.47 (range: 0.33–0.63) and 0.50 (range: 

0.05–0.76) respectively) and 45° angle models (mean 
R
2

Cal
 and R2

Val
 were 0.34 (range: 0.21–0.48) and 0.38 

(range: 0.05–0.69) respectively). Six different NIR 
spectra processing methods (including no process-
ing) shown different effects on the precision of WBD. 
PLSR models from 2nd normalised spectra showed the 
smallest errors in WBD prediction from 90° and mixed 
angle models with the mean R2

Val
 of 0.63 (ranged from 

0.35 to 0.84) and of 0.60 (ranged from 0.43 to 0.73), the 
mean RMSEVal of 0.08  g/cm3 (range: 0.05–0.09  g/cm3) 
and of 0.08 g/cm3 (range: 0.07–0.10 g/cm3) respectively 
(Fig. 2). Very small prediction error was obtained from 
the 100 simulated models for both the 90° angle model 
and the mixed angle model (Fig.  3 top two). Residual 
plots have shown that both the 90° angle model and 
the mixed angle model tend to underestimate in the 
low WBD values and overestimate when WBD is high 
(Fig. 3 bottom two).

Comparison of four variable selection methods
The performance of 90° angles and mixed angle PLSR 
models using four different variable selection methods 
were plotted in Fig.  4. The prediction accuracy of 90° 
angle model has been improved much better than the 
mixed angle model by these four different variable selec-
tion methods. The highest prediction model from 90° and 
mixed angle were found by using of Rep-selected NIR 
spectra variables with the mean R2

Val
 of 0.81 (ranged from 

0.77 to 0.84) and of 0.67 (ranged from 0.64 to 0.70), the 
mean RMSEVal of 0.07 g/cm3 (range: 0.071–0.074 g/cm3) 
and of 0.05 g/cm3 (range: 0.05–0.06 g/cm3) respectively, 
followed by Ga, sMC and Ipw algorithm which had a 
mean R2

Val
 of 0.76 (range: 0.70–0.80), 0.75 (range: 0.70–

0.80),0.75 (range: 0.66–0.80), mean RMSEVal of 0.058  g/
cm3 (range: 0.05–0.06 g/cm3), 0.06 g/cm3 (range: 0.055–
0.066 g/cm3), 0.06 g/cm3 (range: 0.05–0.07 g/cm3) in 90° 
angle model and the order has been changed into sMC, 
Ga and Ipw which had a mean R2

Val
 of 0.66 (range: 0.64–

0.69), 0.65 (range: 0.62–0.68),0.64 (range: 0.55–0.69), 
mean RMSEVal of 0.068  g/cm3 (range: 0.071–0.071  g/
cm3), 0.073  g/cm3 (range: 0.069–0.075  g/cm3), 0.075  g/
cm3 (range: 0.071–0.083  g/cm3) in mixed angle models 
respectively. Mixed tissue models showed a promising 
WBD (g/cm3) prediction result. Similar to the PLSR tis-
sue models that use a full length NIR spectra, models are 

Fig. 1  Orignal (Raw)-NIR (a) and 2nd derivate-NIR (b) spectra of three grain angle directions from wood cores of varies tree species. Dot line: the 
position same as in b 
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more variable on the validation set than the calibration 
set. 90° and mixed models showed similar error predic-
tions after 200 simulation by using less spectra variables 
(200 and 210 respectively) (Fig. 5 top two). The residuals 
of all models that based on Rep selected variables showed 
similar results to the full-length spectra models with 
underestimate in the low WBD values and overestimate 
when WBD is high (Fig. 5 bottom two).

Variable selection of the NIR spectra applied in WBD (g/
cm3) prediction
Both the 90° angles and mixed angle models were con-
ducted 200 times with Rep variable selection to find out 
the most important regions that highly related to WBD 
(g/cm3), the results have been showed in Fig.  6. Nine 
significantly important regions, i.e., 1280, 1490, 1650, 
1730, 2015, 2105, 2210, 2360 and 2400  nm were found 
that have a great influence on the performance of pre-
diction models even after conducing 200 times. In 90° 
angles model, the band at 2360 nm has been considered 
as the most import region than other bands, followed by 
the 2105, 1730, 1490 and others. The bands at 2015 nm 

is the lowest importance bands compared to the other 9 
bands. In contrast, the mixed model considered the band 
at 1490 nm is the most important than other bands, fol-
lowed by 1730 and 1650 nm, which mostly located in the 
region between 1400 and 1700  nm. The bands at 2360 
and 2105  nm in Mixed angle model do not present as 
important as in 90° angles model.

Discussion
In this research, the WBD (g/cm3) shows a high varia-
tion in different types of wood species. The variation of 
response characteristics highly affect the model accuracy. 
Less variation of the response characteristics will result 
in a relative lower quality of model prediction [19].

With the high range mean of R2

Val
 (0.77–0.84) and (0.64 

to 0.70) and the low range mean of RMSEVal (0.071–
0.074  g/cm3) and (0.05–0.06  g/cm3) that obtained from 
the 90° angles and mixed angle models respectively, our 
results clearly shows that the WBD in different types of 
wood species can be reasonably and accurately predicted 
using NIR reflectance spectroscopy. Furthermore, a 

Fig. 2  Distribution (95% confidence intervals) of calibration and validation statistics from 200 simulations of models predicting WBD from 0°, 45°, 
90° angles and the mixed angle of multiple tree species using full length NIR spectra. Each model permutation included 80% of the data for internal 
calibration and the remaining 20% for validation. The blue vertical line represents the highest R2 and lowest RMSE (g/cm3) value, The black vertical 
line in each box represents median value, the red colour box represents the 90° angles model
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mixed grain angle model can efficiently predict the WBD 
from different grain angle spectra.

The mean R2

Val
 of 90° angles model (0.81, range: 0.77–

0.84) in our results was mostly equivalent to the result 
reported in multiple wood chips (R2 = 0.89) [39] and 
Dahurian larch (R2 = 0.84), Japanese elm (R2 = 0.83) and 
Chinese white poplar (R2 = 0.84) [40] when using the 
VIS–NIR/NIR spectroscopy to predict WBD. The spec-
tra from 90° angles (transverse) shown the best results 
compared to other angles for the prediction of WBD, the 
45° and 0° angles showed similar lower prediction results 
than the 90° angle model. Supported et  al. [41] and 
Schimleck et al. [42] who found that the transverse face 
yields better WBD and other wood properties predic-
tion results than the radial face from many pine species. 
Suggested that use of the transverse surface for the better 
prediction of wood properties and avoid the grain angle 
influence, cause other angles like tangential face, which 
contains uncertain earlywood or latewood ring, could 
highly influence the spectrum collection [43]. In the con-
trary, we found that the mixed angle model could provide 
a reliable and promising result for the WBD prediction. A 
similar result has been found that the calibration models 

based on both radial and tangential surface spectra could 
yield a satisfy result and reduce the angle influences [44]. 
Mixed model methods also has been used in the predic-
tion of other plant chemical components like NSC con-
centration in different tree tissues (root, stem, branch and 
leaf ) of various tree species [15] and Total non-structural 
carbohydrate (TNC) concentration in both leaves and 
trunks [45]. Although the accuracy of mixed model in 
our study was slightly low compared to 90° angles model. 
However, it has given an additional unnecessary step of 
building a single tissue model. Our results strengthen 
that the NIR methods for the prediction of the WBD 
from different grain angle spectra is reliable and can be 
used as a surrogate for standard chemical analyses.

A robust methodology which was initially presented by 
Couture et al. [46] has been used in this study. Multiple 
permutations of the data allow estimating the data distri-
bution and model stability. Furthermore, it could provide 
the prediction error based on the 200 times calibrations 
(see Figs. 3 and 5 error bar) which could be used for the 
model uncertainty test. The obvious model prediction 
errors and the stability between models prove that this 
iterative methodology is a useful algorithm for future 

Fig. 3  Measured and predicted WBD (g/cm3) (top two) and Residuals plotted against measured Density (g/cm3) (bottom two) in the 90° angles and 
mixed angle model of multiple tree species using full length NIR spectra. Error bars for predicted values represent the standard deviations obtained 
from the 200 simulated models
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model calibrations. Thus, we highly recommend to use 
this methodology for model calibrations and validations 
on NIR analysis.

The NIR spectra of samples contains not only useful 
chemical information but also many noises and irrev-
erent information which may interfere with the model 
accuracy of the prediction. Therefore, a variable selection 
is very important to find out the most important wave-
length which could contribute to minimizing the error 
for model calibrations and helping reduce the model pro-
cessing time [47].

The comparisons of four variables selection methods 
shown that the Rep methods displayed the highest per-
formance in the prediction of WBD and could select 
important variables that correlated greatly with WBD 
in the NIR range. It is different to the results reported 
by [48] who found that the successive projections algo-
rithm combined with interval partial least squares which 
could efficiently yields a satisfy result for the prediction 
for WBD in Mimosa tenuiflora [Willd.] Poiret wood. The 
Rep_PLSR models yielded a better and promising result 

with only a small set of spectra variables (ranging from 
200 to 210 among two models) (Fig. 5) compared to the 
full length spectra variables. In addition, Rep identi-
fied that the key wavelengths regions that highly corre-
lated with the WBD located between 1200–1800 nm and 
2000–2400 nm. Ten most important peaks among these 
regions were found, i.e., 1280, 1490, 1650, 1730, 2015, 
2105, 2210, 2360 and 2400 nm. The bands around 1280, 
2105 and 1730 are primarily attributed to the first over-
tone absorptions of CH groups in cellulose and hemi-
cellulose. The band around 1726  nm is associated with 
the CH stretching of CH2-groups or lignin. The region 
around 1490 and 1650 nm was mainly related to the first 
overtone of O–H strength which may be dominated by 
the cellulose in woody samples [49]. Band appearing at 
2210 nm is assigned to the band of C–H stretching vibra-
tion from lignin. The C–H deformation and stretching 
vibration of cellulose are indicated by spectral regions of 
2360 and 2400 nm.

In NIR spectra, water has a wide absorbance region 
which could be a major influence on other chemical 

Fig. 4  Distribution (95% confidence intervals) of calibration and validation statistics from 100 simulations of models predicting WBD (g/cm3) in the 
90° angles and mixed angle model of multiple tree species using four different variable selection methods on NIR spectra. Each model permutation 
included 80% of the data for internal calibration and the remaining 20% for validation. The black vertical line represents median value; the orange 
colour box represents the Rep variable selection methods
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information causing spectra overlap. Min et  al. [50] 
found that the regions of 1910 and 1938  nm which are 
highly related to water which may have a strong influence 
on plant properties prediction. Thus, in this study, these 
regions have been avoided in the mixed angle models.

The cost and time of traditional methods for the assess-
ment of a large-scale wood property are consuming and 
will limit the process of reaching in forestry and wood 
product-related industries and also the understanding 
of variation wood properties in genetic level. Our fast 
and accurate measurement of WBD from different grain 
angels using NIR spectroscopy provide an advanced way 
for the study of wood quality and allow for large samples 
quick measurement.

Conclusions
Our study have shown that the utility of near infrared 
spectroscopy combined with PLSR and variable selection 
methods successfully use NIR spectroscopy to character-
ize the WBD using various hardwoods species. 90° angles 
(transverse) model were present the best prediction 
for WBD, but the mixed model also yields a promising 
and reliable results which could reduce the grain angle 

influence. For the acquisition of accurate and robust 
spectra prediction model, a appropriate variable optimi-
zation is crucial and needed. However, different variable 
selection yield varies from prediction accuracy in the 
NIR prediction model. Our study shown that Rep meth-
ods displayed a higher accuracy for WBD prediction rela-
tived to other methods. Methodologically, These results 
demonstrate the potential of variable-optimized NIR 
models for wood quality assessment in practical wood 
production.

Materials and methods
Sampling and WBD measurement
A considerable WBD variation among tree species is 
needed to get an accurate chemometric model [51]. As 
such, in the autumn of 2018, we collected 300 samples 
from thirty-three different tree species with varies ages 
in Miaoshangwu Mountains in Hangzhou, China (30° 
05′ N, 120° 01′ E) (Table 1). Wood cores were collected 
by drilling into the tree stem with a 12  mm diameter 
drill at breast height. Each core sample was placed into 
a Kraft paper bag and immediately shipped to the labo-
ratory for measurement of core fresh weight. Samples 

Fig. 5  Measured and predicted WBD (g/cm3) (top two) and Residuals plotted against measured Density (g/cm3) (bottom two) in the 90° angles 
and mixed angle model of multiple tree species using the Rep-selected NIR spectra. Rep_var: variables selected by Rep algorithm; Error bars for 
predicted values represent the standard deviations obtained from the 200 simulated models
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were dried to a constant weight in oven at 104  °C for 
measurement of core dry weight. The WBD of the 
wood was determined as the dry matter weight per 
unit volume of green wood. Three angles were marked 
on each core, including 0° (transverse surface), 45°, 
90°(radial surface), based on the stem axis, the surface 
of each degree was sanded with a P80 grid sandpaper, 
and details description can be found in Li and Altaner 
[22].

Spectral collection
All the NIR Reflectance spectra of dried wood cores in 
three-degree directions were collected every 10  mm 
along the core using a NIR spectrometer (LF-2500, 
Spectral evolution, USA) with a 5 mm diameter fiber-
optical probe. Spectra were obtained with a range of 
1100 to 2500  nm and a spectral resolution of 8  nm. 
Each spectrum point was scanned 32 times and aver-
aged as the absorbance spectra (log 1/R, where 
R = reflectance), for each core, the spectra was aver-
aged respectively in respect to each degree.

Model calibration and validation
PLSR [19] models with leave-one-out cross-validation 
were generated to predict the WBD of wood core from 
three different grain angle directions (0°, 45°, 90°). PLSR 
holds the advantages of producing reliable coefficients, 
reducing the bias and estimate errors and using fewer 
PLSR components, all of which make it one of the most 
commonly used methods for chemometric analyses [52, 
53]. Two types of pre-processing methods including 
stander normal variate (SNV), 1st and 2nd derivatives 
with a window size of 15 data points using Savitzky-
Golay smoothing [54] and their combinations were com-
pared in our study. SNV has been widely use for scatter 
correction of spectra data, while the derivatives can effi-
ciently remove both additive and multiplicative effects in 
the spectra [55].

80% of the data set was selected for calibrations and 
the remaining 20% was used for validations. For each 
angle and pre-processing calibration, the model was 
conducted 200 times for the evaluation of perfor-
mance [46]. The coefficient of determination (R2) and 

Fig. 6  Influence of WBD (g/cm3) on NIR spectra in the 90° angles and mixed angle model that randomly conduct 200 times of multiple tree species 
and the variables selected by the Rep algorithm. Each line mean one time of modelling with Rep variable selection
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root-mean-square error (RMSE) derived from both the 
calibration (Cal) and validation (Val) were used to track 
the model performance. Four types of variable selec-
tion (sMC, Ipw, Rep and Ga) were used to find out the 
best performance of the PLSR models with small subset 
of spectral variables. Data analysis was conducted in R 
software (version 3.1.2) [56]. Some setup packages in R 
were used for this study, including the pls package [57] 
for PLSR and sMC-PLSR model performing and plsVar-
Sel [36] for variables selection.

Acknowledgements
Not applicable.

Authors’ contributions
YL designed the study, conducted the experiment, analysis the data and 
wrote the manuscript. RC provided useful suggestions and modified the 
manuscript, WL, ZT conducted lab experiments, JL and JJ supervised the 
experiments at all stages and reviewed the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was funded by National Natural Science Foundation of China (No. 
31901323).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that there is no conflict of interest.

Author details
1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 
Hangzhou 311400, Zhejiang, People’s Republic of China. 2 Institute of Horti-
culture Science, Massey University, Private Bag 11222, Palmerston North 4442, 
New Zealand. 

Received: 5 February 2020   Accepted: 23 March 2021

References
	1.	 Panshin A, De Zeeuw C. Textbook of wood technology. Part 1. Formation, 

anatomy, and properties of wood. New York: McGraw-Hill; 1980.
	2.	 Hein PRG, et al. Near infrared spectroscopy for estimating wood basic 

density in Eucalyptus urophylla and E. grandis. Cerne. 2015;15(2):133–41.
	3.	 Bowyer JL, et al. Forest products and wood science. Iowa: Iowa State 

Press; 2003.
	4.	 Lachenbruch B, et al. Radial variation in wood structure and function in 

woody plants, and hypotheses for its occurrence. Size-and age-related 
changes in tree structure and function. Berlin: Springer; 2011. p. 121–64.

	5.	 Ketterings QM, et al. Reducing uncertainty in the use of allometric 
biomass equations for predicting above-ground tree biomass in mixed 
secondary forests. For Ecol Manage. 2001;146(1–3):199–209.

	6.	 Bastin J-F, et al. Wood specific gravity variations and biomass of central 
African tree species: the simple choice of the outer wood. PLoS ONE. 
2015;10(11):

	7.	 Ramananantoandro T, et al. Influence of tree species, tree diameter 
and soil types on wood density and its radial variation in a mid-altitude 
rainforest in Madagascar. Ann For Sci. 2016;73(4):1113–24.

	8.	 Nguyen T, et al. Genetic improvement for wood production in Melaleuca 
cajuputi. J Trop For Sci. 2019;31(2):230–9.

	9.	 Lachowicz H, et al. Variability in the basic density of silver birch wood in 
Poland. Silva Fennica. 2019;53(1):13.

	10.	 TAPPI (2002) Basic density and moisture content of pulpwood. TAPPI T 
258 om-02.Tappi Press, Atlanta, GA, 8.

	11.	 Guillemain A, et al. Performance of NIR handheld spectrometers for the 
detection of counterfeit tablets. Talanta. 2017;165:632–40.

	12.	 Malegori C, et al. Comparing the analytical performances of Micro-NIR 
and FT-NIR spectrometers in the evaluation of acerola fruit quality, using 
PLS and SVM regression algorithms. Talanta. 2017;165:112–6.

	13.	 Forina M, et al. Artificial nose, NIR and UV–visible spectroscopy for 
the characterisation of the PDO Chianti Classico olive oil. Talanta. 
2015;144:1070–8.

Table 1  Wood species that selected for wood cores

Names Number 
of cores

Cunninghamia lanceolata 6

Cyclocarya paliurus 8

Fokienia hodginsii (Dunn) Henry et Thomas 7

Camptotheca acuminata 5

Liquidambar formosana 5

Cinnamomum camphora (Linn) Presl 6

Sapium sebiferum (L.) Roxb 6

Michelia maudiae Dunn 6

Elaeocarpus sylvestris 6

Kalopanax septemlobus (Thunb.) Koidz 6

Magnolia denudata 6

Tapiscia sinensis Oliv. 7

Pinus elliottii 7

Choerospondias axillaris 7

Magnolia macclurei 7

Diospyros montana Roxb 8

Parakmeria lotungensis (Chun et C. Tsoong) Law 8

Michelia chapensis 8

Pistacia chinensis 8

Dalbergia balansae 9

Vernicia fordii 10

Manglietia fordiana Oliv. 10

Zelkova serrata 11

Pinus taeda 10

Pseudotsuga gaussenii 11

Michelia foveolata Merr. ex Dandy 12

Michelia odora (Chun)Noot. et B. L. Chen 12

Photinia davidsoniae Rehd. et Wils 13

Phoebe chekiangensis 15

Magnolia liliflora Desr 15

Nyssa sinensis Oliv 15

Phoebe bournei (Hemsl.) Yang 16

Keteleeria fortunei 14



Page 10 of 10Li et al. Plant Methods           (2021) 17:35 

	14.	 Li Y, et al. Genetic variation in heartwood properties and growth traits of 
Eucalyptus bosistoana. Eur J For Res. 2018;137(4):565–72.

	15.	 Ramirez JA, et al. Near-infrared spectroscopy (NIRS) predicts non-struc-
tural carbohydrate concentrations in different tissue types of a broad 
range of tree species. Methods Ecol Evol. 2015;6(9):1018–25.

	16.	 Rodrigues JC, et al. Prediction of wood density using near infrared-based 
partial least squares regression models calibrated with X-ray microden-
sity. NIR news. 2013;24(2):4–8.

	17.	 Bokobza L. Origin of near-infrared absorption bands. Hoboken: Wiley; 
2002.

	18.	 Siesler HW, et al. Near-infrared spectroscopy: principles, instruments, 
applications. Hoboken: Wiley; 2008.

	19.	 Wold S, et al. PLS-regression: a basic tool of chemometrics. Chemometr 
Intellig Lab Syst. 2001;58(2):109–30.

	20.	 Hodge GR, et al. Global near infrared spectroscopy models to predict 
wood chemical properties of Eucalyptus. J Near Infrared Spectrosc. 
2018;26(2):117–32.

	21.	 Nabavi M, et al. Regional calibration models for predicting loblolly pine 
tracheid properties using near-infrared spectroscopy. Wood Sci Technol. 
2018;52(2):445–63.

	22.	 Li Y, Altaner C. Predicting extractives content of Eucalyptus bosistoana 
F. Muell. Heartwood from stem cores by near infrared spectroscopy. Spec-
trochim Acta A Mol Biomol Spectrosc. 2018;198:78–87.

	23.	 Forsthuber B, et al. Rapid prediction of surface characteristics of 
European and Siberian larch wood by FT-NIRS. Eur J Wood Wood Prod. 
2017;75(4):569–80.

	24.	 Gindl W, Teischinger A. The potential of Vis-and NIR-spectroscopy for 
the nondestructive evaluation of grain-angle in wood. Wood Fiber Sci. 
2007;34(4):651–6.

	25.	 Gherardi Hein PR, et al. Effects of sample preparation on NIR spectro-
scopic estimation of chemical properties of Eucalyptus urophylla ST Blake 
wood. Holzforschung. 2010;64(1):45–54.

	26.	 Schimleck L, et al. Estimation of the physical wood properties of green 
Pinus taeda radial samples by near infrared spectroscopy. Can J For Res. 
2003;33(12):2297–305.

	27.	 Yang S, et al. Classification of the hot air heat treatment degree of larch 
wood using a multivariate analysis of near-infrared spectroscopy. J Wood 
Sci. 2018;64(3):220–5.

	28.	 Inagaki T, et al. Determination of physical and chemical proper-
ties and degradation of archeological Japanese cypress wood from 
the Tohyamago area using near-infrared spectroscopy. J Wood Sci. 
2018;64(4):347–55.

	29.	 Jin X, et al. Determination of hemicellulose, cellulose and lignin content 
using visible and near infrared spectroscopy in Miscanthus sinensis. Biores 
Technol. 2017;241:603–9.

	30.	 Park S, et al. Rapid prediction of the chemical information of wood 
powder from softwood species using near-infrared spectroscopy. BioRe-
sources. 2018;13(2):2440–51.

	31.	 Fernández JL, et al. Determination of the lignocellulosic components 
of olive tree pruning biomass by near infrared spectroscopy. Energies. 
2019;12(13):2497.

	32.	 Liang L, et al. Prediction of holocellulose and lignin content of pulp 
wood feedstock using near infrared spectroscopy and variable selection. 
Spectrochim Acta, Pt A: Mol Biomol Spectrosc. 2020;225:

	33.	 Mancini M, et al. Near infrared spectroscopy for the discrimination 
between different residues of the wood processing industry in the pellet 
sector. Fuel. 2018;217:650–5.

	34.	 Caliari ÍP, et al. Estimation of cellulose crystallinity of sugarcane biomass 
using near infrared spectroscopy and multivariate analysis methods. 
Carbohyd Polym. 2017;158:20–8.

	35.	 Tran TN, et al. Interpretation of variable importance in partial least squares 
with significance multivariate correlation (sMC). Chemometr Intell Lab 
Syst. 2014;138:153–60.

	36.	 Mehmood T, et al. A review of variable selection methods in partial least 
squares regression. Chemometr Intell Lab Syst. 2012;118:62–9.

	37.	 Forina M, et al. Iterative predictor weighting (IPW) PLS: a technique for 
the elimination of useless predictors in regression problems. J Chem-
ometr. 1999;13(2):165–84.

	38.	 Zhao P, Cao J. Wood species identification using spectral reflectance fea-
ture and optimal illumination radian design. J For Res. 2016;27(1):219–24.

	39.	 Stirling R, et al. Predicting wood decay and density using NIR spectros-
copy. Wood Fiber Sci. 2007;39(3):414–23.

	40.	 Li Y, et al. Visible-near infrared spectroscopy and chemometric methods 
for wood density prediction and origin/species identification. Forests. 
2019;10(12):1078.

	41.	 Schimleck L, et al. Comparison of methods for estimating mechanical 
properties of wood by NIR spectroscopy. J Spectrosc. 2018. https://​doi.​
org/​10.​1155/​2018/​48232​85.

	42.	 Schimleck LR, et al. Near infrared spectroscopy for the nondestructive 
estimation of clear wood properties of Pinus taeda L. from the southern 
United States. For Prod J. 2005;55(12):21–8.

	43.	 Dahlen J, et al. Near-infrared spectroscopy prediction of southern pine 
No. 2 lumber physical and mechanical properties. Wood Sci Technol. 
2017;51(2):309–22.

	44.	 Kothiyal V, Raturi A. Estimating mechanical properties and specific gravity 
for five-year-old Eucalyptus tereticornis having broad moisture content 
range by NIR spectroscopy. Holzforschung. 2011;65(5):757–62.

	45.	 De Bei R, et al. Rapid measurement of total non-structural carbohydrate 
concentration in grapevine trunk and leaf tissues using near infrared 
spectroscopy. Comput Electr Agric. 2017;136:176–83.

	46.	 Couture JJ, et al. Spectroscopic determination of ecologically relevant 
plant secondary metabolites. Methods Ecol Evol. 2016;7(11):1402–12.

	47.	 Workman J Jr, Weyer L. Practical guide and spectral atlas for interpretive 
near-infrared spectroscopy. Boca Raton: CRC Press; 2012.

	48.	 Diesel KMF, et al. Near-infrared spectroscopy and wavelength selection 
for estimating basic density in Mimosa tenuiflora [Willd.] Poiret wood. 
Wood Sci Technol. 2014;48(5):949–59.

	49.	 Schwanninger M, et al. A review of band assignments in near infra-
red spectra of wood and wood components. J Near Infrared Spec. 
2011;19(5):287–308.

	50.	 Min M, et al. Nondestructive detection of nitrogen in Chinese cabbage 
leaves using VIS–NIR spectroscopy. HortScience. 2006;41(1):162–6.

	51.	 Lindroth RL, Clair SBS. Adaptations of quaking aspen (Populus tremuloides 
Michx.) for defense against herbivores. For Ecol Manage. 2013;299:14–21.

	52.	 Bolster KL, et al. Determination of carbon fraction and nitrogen con-
centration in tree foliage by near infrared reflectances: a comparison of 
statistical methods. Can J For Res. 1996;26(4):590–600.

	53.	 Asner GP, et al. Spectroscopy of canopy chemicals in humid tropical 
forests. Remote Sens Environ. 2011;115(12):3587–98.

	54.	 Press WH, Teukolsky SA. Savitzky-Golay smoothing filters. Comput Phys. 
1990;4(6):669–72.

	55.	 Rinnan Å, et al. Review of the most common pre-processing techniques 
for near-infrared spectra. TrAC Trends Anal Chem. 2009;28(10):1201–22.

	56.	 R Core Team, R: A Language and Environment for Statistical Computing, R 
Foundation for Statistical Computing, Vienna, Austria, 2017.

	57.	 Mevik, B. et al., Partial Least Squares and Principal Component Regression. 
R package version 2.5-0, 2015.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1155/2018/4823285
https://doi.org/10.1155/2018/4823285

	Spectrometric prediction of wood basic density by comparison of different grain angles and variable selection methods
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Spectra information
	Prediction of WBD using full length NIR spectra
	Comparison of four variable selection methods
	Variable selection of the NIR spectra applied in WBD (gcm3) prediction

	Discussion
	Conclusions
	Materials and methods
	Sampling and WBD measurement
	Spectral collection
	Model calibration and validation

	Acknowledgements
	References




