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Abstract 

Background:  Plant traits related to nutrition have an influential role in tree growth, tree production and nutrient 
cycling. Therefore, the breeding program should consider the genetics of the traits. However, the measurement meth-
ods could seriously affect the progress of breeding selection program. In this study, we tested the ability of spectros-
copy to quantify the specific leaf nutrition traits including anthocyanins (ANTH), flavonoids (FLAV) and nitrogen bal-
ance index (NBI), and estimated the genetic variation of these leaf traits based on the spectroscopic predicted data. 
Fresh leaves of Sassafras tzumu were selected for spectral collection and ANTH, FLAV and NBI concentrations measure-
ment by standard analytical methods. Partial least squares regression (PLSR), five spectra pre-processing methods, and 
four variable selection algorisms were conducted for the optimal model selection. Each trait model was simulated 200 
times for error estimation.

Results:  The standard normal variate (SNV) to the ANTH model and 1st derivatives to the FLAV and NBI models, 
combined with significant Multivariate Correlation (sMC) algorithm variable selection are finally regarded as the best 
performance models. The ANTH model produced the highest accuracy of prediction with a mean R2 of 0.72 and 
mean RMSE of 0.10%, followed by FLAV and NBI model (mean R2 of 0.58, mean RMSE of 0.11% and mean R2 of 0.44, 
mean RMSE of 0.04%). High heritability was found for ANTH, FLAV and NBI with h2 of 0.78, 0.58 and 0.61 respectively. It 
shows that it is beneficial and possible for breeding selection to the improvement of leaf nutrition traits.

Conclusions:  Spectroscopy can successfully characterize the leaf nutrition traits in living tree leaves and the ability to 
simultaneous multiple plant traits provides a promising and high-throughput tool for the quick analysis of large size 
samples and serves for genetic breeding program.
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Background
Nitrogen (N) is one of the most essential nutrients in 
plant growth, which is needed for the improvement of 
grain yield and quality [10]. Excessive N fertilizer appli-
cation creates severe environmental problems, while 

inadequate N availability limits productivity. Hence, pre-
cise N application in plant is an important goal [74]. The 
N status of the plant should be precisely measured during 
growth to guide precise fertilization [63]. N is the most 
common limiting factor for the individual, natural and 
artificial ecosystems growth of the plant. Plants require 
N to maintain for growth mainly through external and 
internal sources, including soil organic matter, fertilizers, 
atmospheric deposition and stored N by plant themselves 
[52]. Plants, such as boreal species, store N seasonally 
through the process of internal cycling and it is a major 
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source of N supplement for tree growth especially when 
the external availability of N is limited [54, 59]. Trees 
store N as proteins mainly in their perennial wood and 
bark tissues in summer and winter. In addition, other 
parts of foliage trees, like roots and leaves, also store N 
which provides nutrition for young roots and needles 
development. Tree N remobilisation often occurs dur-
ing the growth season. The stored N mainly determines 
the amount of N remobilised and plays an important role 
for the tree seasonal growth [2, 11, 82]. The dynamics 
and mobilization of N stored in trees have been widely 
studied [15, 45]. The variation of plant species, genotype, 
soil and environment leads to the diversity of leaf nitro-
gen content [20, 73]. It is reported that the chlorophyll 
content has a strong positive correlation with N content 
which is an estimative index for N status in leaf [87]. 
Chlorophyll content is measured as a proxy for leaf N sta-
tus [19] and non-destructive, spectroscopic, chlorophyll 
meters have been available for decades [19, 31, 33, 48, 
56, 57]. In addition to chlorophyll, the content of flavo-
noids (FLAV), one of the main polyphenolic components 
in plant, is also correlated with the N status of the leaf 
[80]. Evidence shows that the rise of N fertilization will 
lead to flavonoid content decreasing and chlorophyll con-
tent increasing [60]. Another N status index, N balance 
index (NBI),which is the ratio of chlorophyll to flavonoid, 
is verified that has a better and more reliable correlation 
with leaf N concentration than chlorophyll content alone 
[80].

Anthocyanins (ANTH) are a group of water soluble 
flavonoid pigments that occur in all plant tissues. Antho-
cyanins are mostly related to a wide range of plant colour 
but often appear as red [13]. In addition, unfavourable 
conditions will transiently have an impact on anthocya-
nins accumulation in both juvenile and senescent observ-
able plant leaves [25, 58, 81]. Thus, Anthocyanins are 
taken as an indicator of plant leaf senescence and stresses 
[44, 62].

However, research on plant growth and the variation 
of N storage and remobilization have typically required 
labour intensive methods to measure the N concentra-
tion and index properties (NBI, ANTH, and FLAV), such 
as atomic absorption spectrometry [8, 32], chromatogra-
phy [68] and so on. These analytical methods will limit 
the breeding selection of tree growth with a large number 
of samples.

Alternatively, Near-infrared spectroscopy (NIRS) is 
a rapid, high-throughput technique that has been used 
for chemical components analysis in many fields. NIRS 
is a promising and reliable method that can be used for 
the assessment of a large number of samples [23, 27, 40, 
46, 67]. NIRS relies on the absorption of light at specific 
wavelengths due to the vibration, stretching and bending 

of molecular bonds, including C–H, N–H and O–H 
bonds [6, 72].

Multivariate methods such as partial least squares 
regression (PLSR) [86] has been used to create a pre-
diction model between NIR spectra and the independ-
ent chemical measurements. PLSR holds the advantages 
of producing reliable coefficients, reducing the bias and 
estimated error, and consuming fewer PLSR components, 
all of which make it one of the most popular methods 
for chemometric analyses [1, 7]. The model will then be 
applied to unknown samples by their spectra data for 
independent chemical prediction. Our recent research 
shows that leaf chlorophyll content and colour param-
eters are predictable on fresh leaf samples with field 
near infrared spectrophotometry [41]. The total FLAV 
and ANTH concentration also have been predicted by a 
general calibration model in Ginkgo biloba leaf and four 
Indonesian herbal plant species, including Syzygium 
oleana, Piper betle, Jasminum and Graptophyllum pic-
tum with NIR reflectance spectroscopy. NIR is a promis-
ing tool for tree breeding selection programs due to its 
robustness and capacity to screen large numbers of sam-
ples [26, 41].

The robustness and reliability of model accuracy are 
largely determined by the spectra quality and feature 
selection. The combinations vibrations information and 
noise of the raw NIR spectra [89] will result in overlap-
ping and difficulty to directly distinguish the target plant 
properties [34]. Spectra pre-processing methods, can 
efficiently reduce the overlapping and noise influence, 
such as SNV [3], 1st and 2nd derivatives and so on [36, 
61]. To yield a robust and reliable model and avoid the 
influence of irrelevant variables and noise, it is essential 
to carry out variable selection methods to pick the most 
relevant variables responding to the target properties 
instead of the full length of spectra [21, 43].

The joint analyses of chemometric statistics and vari-
able selection algorithms has recently been used to 
eliminate the irrelevant variables and improve the model 
accuracy [9, 47]. The most common methods of variable 
selection are Genetic algorithm (Ga) [91], Regularized 
elimination procedure (Rep) algorithm [49], Iterative pre-
dictor weighting (Ipw) [22] and significant Multivariate 
Correlation (sMC) algorithm [79]. However, the com-
parison of variable selection algorithms along with PLSR 
for the prediction of multiple leaf nutrition traits is less 
studied.

Sassafras tzumu is a deciduous tree species that has 
colourful leaves in autumn. Zhejiang province in China 
is vigorously promoting the cultivation of colourful spe-
cies making S. tzumu a famous tree species. It has been 
widely planted in Zhejiang province to develop the urban 
and mountain landscape [35].
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Therefore, the aims of this research are to (1) test the 
capacity of reflectance spectroscopy to characterize the 
NBI, ANTH and FLAV with PLSR model; (2) find out the 
most optimal pre-processing method for these three leaf 
traits. (3) Identify the most important wavelength that 
related to NBI, ANTH and FLAV by four variable selec-
tion methods, including significant multivariate correla-
tion (sMC), regularized variable elimination procedure 
(Rep), iterative predictor weighting (Ipw), and Genetic 
algorithm (Ga) variable selection; (4) estimate genetic 
parameters and correlations of NBI, ANTH and FLAV in 
S. tzumu.

Methods and materials
Materials
50 half-sib families of S. tzumu were selected for our 
study from 6 different regions. Trees were planted in 
2016 using a randomised complete block by a 2 m × 3 m 
spacing in Changle Forest Farm Nursery (30° 27′ N, 119° 
48′ E), Hangzhou, Zhejiang, China. Each family repli-
cated 30 times with 5 replications and 6 individual trees 
per replication. In total, 1500 trees were planted.

NIR spectra collection
Samples spectra data was collected through 5–6 leaves of 
each tree from the top to bottom with similar color on 
the same side in October 2018. The NIR spectra data was 
taken from the upside surface of the leaves three times 
with a handheld fibre optic contact probe from a field-
based spectrometer (LF-2500, Spectral evolution, USA). 
Each spectrum took on average 32 scans with a range of 
1100 to 2500 nm by a 6 nm resolution. All spectra were 
obtained from the leaves of 1500 trees, 500 trees leaves 
from these 1500 trees were sampled and placed in a 
marked paper bag and transferred to the refrigerator 
immediately for chemical measurement.

Leaf FLAV measurement
Each leaf was ground into powder and being mixed with 
methanol for 24 h. 0.5 ml (1 mg/ml) extract of each sam-
ple was taken to mixed with methanol (1.5 ml), 10% alu-
minium chloride (0.1 ml), 1 M potassium acetate (0.1 ml) 
and distilled water (2.8  ml). The mixture was being 
placed under room temperature for 30  min and then 
measured at 415  nm for the absorbance by UV–Visible 
spectrophotometer (UV-1280, Shimadzu, Japan). The fla-
vonoid content of the sample was accessed by the value 
of absorbance density [18].

Pigment extraction and NBI estimation
A weighed circular piece cutting from each leaf was place 
into a mortar by a pestle ground with 100% methanol until 
the colour changed into white. The extract was being cen-
trifuged for 6 min by 14,000 rpm at 4 °C and subsequently 
assayed by a UV–Visible spectrophotometer (UV-1280, 
Shimadzu, Japan). It conducted the equation and spe-
cific absorption in the wavelength which was reported by 
Wellburn [83]. The solution was mixed with 3 ml acidified 
methanol (1% HCl) at 4 °C with moderate shaking for 12 h 
and then being centrifuged for 10 min at 14,000 rpm. The 
extraction was then placed into the spectrophotometer, 
it took the absorption at 530 and 657 nm wavelengths to 
determine the ANTH concentration [76]. The NBI index 
was figured as the ratio of chlorophyll to flavonoid content.

Model calibration and validation
The original five different types of pre-processing spec-
tra (SNV, 1st, 2nd derivatives, SNV + 1st derivatives, 
SNV + 2nd derivatives) combined with PLSR [86] algo-
rithm were compared in our study. The Savitzky–Golay 
smoothing [64] with a window size of 15 data points was 
applied in both 1st and 2nd derivatives spectra. PLSR mod-
els were generated with leave-one-out cross-validation for 
the prediction of ANTH, NBI, and FLAV content. Data 
were randomly split 200 times into calibration (80%) for 
model building and validation (20%) for model test respec-
tively. Therefore, the PLSR model has been conducted 200 
times for the evaluation of model performance. Each model 
combined with four variable selections (sMC, Ipw, Rep and 
Ga) was conducted to find out the most important spectral 
variables. The coefficient of determination (R2) and root-
mean-square error (RMSE) in each model derived from 
both calibration (Cal) and validation (Val) were applied for 
the evaluation model performance.

Statistical analysis
The estimation of genetic parameters were measured by a 
multivariate restricted maximum likelihood (REML) linear 
mixed model, details can be found in Li et al. [40]. The nar-
row sense heritability (h2) of trait i and genetic correlations 
(rgij ) and phenotypic correlation (rpij ) between trait i and 
trait j were calculated as:

h2i =
2.5σ 2

fi

σ 2

fi
+ σ 2

ei

rgij=
σfifj

√

σ 2

fi
+ σ 2

fj



Page 4 of 10Liu et al. Plant Methods           (2021) 17:33 

where σ 2

fi
 is the estimated family variance for trait i , 

and σ 2

fj
 is the estimated family variance for trait j,σ 2

ei
 and 

σ 2
ej

 are the residual variances for trait i and j , and σfifj and 
σeiej are the family and residual covariances between 
traits i and trait j . The random effects of each family were 
set as breeding values. The realized genetic gain ( �GR ) 
was calculated by the difference between the mean 
breeding values of selected top ratio leaf traits and the 
total mean of the leaf traits.

R software (version 3.1.2) [66] was used for all of the 
data analysis. The pls package [50] in R was carried out 
for PLSR model building, and the plsVarSel [49] for vari-
ables selection, the prospectr package [75] for NIR spec-
tra manipulation, the lme4 package [4] for estimation 
of genetic parameters, and the ggplot2 package [84] for 
visualization plot.

Results
Model performance
Figure  1 displays the NIR spectral PLSR model for 
ANTH, FLAV and NBI traits. ANTH model has the 
highest accuracy, followed by FLAV and NBI model. The 
average of R2 and RMSE for these three models in cali-
bration (Cal) sets are 0.54 (range: 0.43–0.63), 0.47 (range: 
0.35–0.58) and 0.36 (range: 0.26–0.45), in validation (Val) 
sets are 0.54 (range: 0.28–0.75), 0.47 (range: 0.28–0.69) 

rpij=
σfifj + σeiej

√

(

σ 2

fi
+ σ 2

ei

)(

σ 2

fj
+ σ 2

ej

)

and 0.38 (range: 0.25–0.64) respectively. As for all spec-
tral pre-processing models, SNV + 2nd derivative predic-
tion model is found to be the highest well-performing 
for predicting ANTH concentration than the other pre-
processing methods, with a mean R2

Cal and RMSECal 
of 0.59 (range: 0.55–0.63), 0.11% (range: 0.11–0.12%), 
a mean R2

Val and RMSEVal of 0.57 (range: 0.38–0.72), 
0.11% (range: 0.09–0.13%), followed by 2nd, SNV + 1st, 
1st, original with the mean of R2 in Cal is 0.56 (range: 
0.42–0.75), 0.56 (range: 0.51–0.60), 0.53 (range: 0.48–
0.59), 0.52 (range: 0.47–0.56), and RMSE 0.11% (range: 
0.11–0.12%), 0.11% (range: 0.11–0.12%), 0.11% (range: 
0.11–0.12%), 0.12% (range: 0.11–0.12), and in Val is 0.57 
(range: 0.42–0.75), 0.54 (range: 0.30–0.70), 0.53 (range: 
0.36–0.67), 0.52 (range: 0.32–0.72), and RMSE 0.11% 
(range: 0.09–0.13%), 0.12% (range: 0.10–0.14%), 0.12% 
(range: 0.10–0.14%), 0.11% (range: 0.09–0.14%) respec-
tively. SNV shows the worst effect with the mean of R2 
and RMSE for Cal and Val 0.49 (range: 0.44–0.54), 0.49 
(range: 0.28–0.63), and 0.13% (range: 0.13–0.14%), 0.13% 
(range: 0.12–0.16%) respectively. However, 1st yields the 
best PLSR model in the prediction of FLAV and NBI than 
the other pre-processing model, with high mean R2

Cal 
R2

Val of 0.51 (range: 0.46–0.58), 0.52 (range: 0.29–0.68), 
and low mean of RMSECal, RMSEVal of 0.12% (range: 
0.11–0.13%), 0.12 (range: 0.10–0.12%) in FLAV model 
and high mean R2

Cal, R2
Val of 0.39 (range: 0.33–0.45), 0.41 

(range: 0.26–0.60), and low mean of RMSECal, RMSEVal 
of 0.05% (range: 0.05–0.05%), 0.05 (range: 0.04–0.06%) 
in NBI model respectively. The effect of SNV shows a 
poor prediction in the FLAV and NBI as well. The mean 
of R2

Val is 0.40 (range: 0.26–0.64) and 0.47 (range: 0.29–
0.64) respectively.

The relationship between the predicted and measured 
content of Cal and Val datasets by ANTH model with 
SNV + 2nd derivative spectra, FLAV and NBI model with 
1st derivative spectra were plotted in Fig. 2. The error bar 
represents the prediction error of 200 times per sample. 

Fig. 1  Distribution (95% confidence intervals) of calibration and 
validation statistics from 200 simulations of models predicting ANTH, 
FLAV and NBI with full length NIR spectra. Each model permutation 
included 80% of the data for internal calibration and the remaining 
20% for validation. R2: coefficient of determination of cross-validation; 
RMSE: root-mean-square error of cross-validation; The black vertical 
line in each box represents median value, the red colour box 
represents the SNV + 2nd model. The green colour box represents 
the 1st model

Fig. 2  Measured and predicted ANTH, FLAV and NBI contents with 
full length of NIR spectra. Error bars for predicted values represent the 
standard deviations obtained from the 200 simulated models



Page 5 of 10Liu et al. Plant Methods           (2021) 17:33 	

It shows that due to the high accuracy of the ANTH and 
FLAV models, the predicted values are more correlated 
with the measured values, while the relationship between 
predicted and measured values of NBI model is relatively 
poor. Although the prediction accuracy of each model is 
different, the prediction error of the Cal and Val data sets 
is still small.

The residual of the best processing spectra model for 
each leaf trait shows that all of these three models tend to 
be underpredicted when the measurement value is small. 
With the rise of the measurement value, the prediction 
value has the tendency of overprediction. The residual 
value of ANTH, FLAV and NBI model is between an 
acceptable range from − 0.3 to 0.3 (Fig. 3).

Variable selection and model optimization
Four types of variable selection methods were compared 
to test the performance of ANTH, FLAV, and NBI PLSR 
models (Fig. 4). The prediction accuracy of ANTH, FLAV, 
and NBI PLSR models was enhanced much better than 

the full-length spectra models by these four different 
variable selection methods. ANTH model still holds the 
highest R2 and RMSE value in both Cal and Val data, fol-
lowed by the FLAV and NBI model. The highest predic-
tion model for ANTH, FLAV and NBI was found through 
sMC-selected NIR spectra variables with the mean R2

Val 
of 0.72 (ranged: 0.69 to 0.75), 0.58 (ranged from: 0.54 
to 0.62), 0.44 (ranged from: 0.26 to 0.67), and the mean 
RMSEVal of 0.10% (range: 0.09–0.10%), 0.11% (range: 
0.10–0.12%), 0.04% (range: 0.04–0.05%) respectively. The 
sMC_PLSR models reached a more stable prediction 
with less than 16% of full length of spectra on each leaf 
trait (Fig.  5), and having a similar residual range to the 
model with full length of spectra (Figure 6).

Figure  7 displays the important variable informa-
tion area selected by sMC variable selection method in 
the ANTH, FLAV and NBI model which conducted 
200 times on each model. Even the predicted model of 
three leaf traits was being run 200 times, sMC variable 
selection brought out stability for the selected impor-
tant variable areas with a few relative spectral regions 
in prediction models. The variables at 2060, 2180, 2270, 
2330 and 2440 nm are considered as the vital roles in the 

Fig. 3  Residuals plotted against measured ANTH, FLAV and NBI with 
full length of spectra. Error bars for predicted values represent the 
standard deviations obtained from the 200 simulated models

Fig. 4  Distribution (95% confidence intervals) of calibration and 
validation statistics from 200 simulations for models predicting ANTH, 
FLAV and NBI contents using sMC, Rep, Ipw and Ga variable selection. 
Each model permutation included 80% of the data for calibration and 
the remaining 20% for validation. R2: coefficient of determination of 
cross-validation; RMSE: root-mean-square error of cross-validation; 
The black vertical line in each box represents median value, the red 
colour box represents the sMC model

Fig. 5  Measured and predicted ANTH, FLAV and NBI contents with 
sMC selected NIR spectra. Error bars for predicted values represent 
the standard deviations obtained from the 200 simulated models. 
sMC_V: the total selected number of variables

Fig. 6  Residuals plotted against measured ANTH, FLAV and NBI with 
sMC selected spectra. Error bars for predicted values represent the 
standard deviations obtained from the 200 simulated models
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construction of ANTH prediction model. As for FLAV, 
1070, 1235, 1950 and 2220  nm are the most important 
areas. Spectroscopic variables at 1100, 1220, 1465, 1950 
and 2220 nm make a critical difference in the NBI predic-
tive model.

Heritability, genetic and phenotypic correlation 
among traits
Table  1 shows the correlation (genetic and phenotypic) 
and heritability of three traits. Leaf ANTH produces the 
highest heritability of 0.78, followed by FLAV and NBI 
with h2 of 0.58 and 0.61 respectively. There has no signifi-
cant genetic and phenotypic correlation between ANTH, 
FLAV and NBI. FLAV was found to have the highest pos-
itive genetic correlation with ANTH with a value of 0.36.

Family selection
The best models of ANTH, FLAV and NBI were applied 
to predict the remaining 1000 trees spectra. In total, 1500 
trees of 50 families were selected for breeding analysis. 
Figure 8 shows the distribution of three leaf traits in the 
ranking of breeding value from 50 families. The ranking 
of three leaf traits in different families is inconsistent as 
well as a part of families consistently displaying in the 
breeding value, which explains that it is feasible to make 

a family selection of ANTH, FLAV and NBI at the same 
time through genetic selections.

Figure  9 demonstrates the breeding value distribu-
tion of 50 families of three leaf traits. The blue solid lines 
represent the average of ANTH and FLAV respectively. 
The families with a higher NBI breeding value than its 
mean are shown in red, and below the mean are in black. 
There are 16 families have high FLAV and ANTH breed-
ing value, 10 families with a high breeding value will be 
selected If NBI breeding values are required to be above 
mean. These families can be further taken as genetic fam-
ily materials for second-generation breeding.

Discussion
The health of tree growth is dictated by main factors, 
such as soil, nutrients, environment, genetic and so on. N 
is a key role of nutrient which highly influences the tree 
growth.

Fig. 7  Spectra influence in ANTH, FLAV and NBI models that 
randomly being conducted 200 times; each line means one time of 
modelling with sMC variable selection

Table 1  The heritability, genetic (above diagonal (italic)) and 
phenotypic correlation (below diagonal) between ANTH, FLAV 
and NBI traits with the standard error between parentheses

Traits ANTH FLAV NBI h2

ANTH 0.36 (0.01) 0.11 (0.02) 0.78 (0.10)

FLAV 0.16 (0.03) 0.09 (0.01) 0.58 (0.11)

NBI 0.09 (0.01) 0. 12 (0.01) 0.61 (0.08)

Fig. 8  Family ranking for ANTH, FLAV and NBI content in Sassafras 
tzumu at age 2. Family values are expressed as deviation from each 
trait mean. BV: Breeding values

Fig. 9  Relationship between ANTH, FLAV and NBI content breeding 
values of Sassafras tzumu families at age 2. BV-ANTH: breeding value 
of ANTH; BV-FLAV: breeding value of FLAV; the blue solid line: the 
mean value of each trait breeding value; red square: the region that 
most interesting. The number of each dot: family number
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The internal N cycling in trees [78] is a hot topic in 
numerous studies [24, 38, 53]. However, the measure-
ment of N concentration limits the access to the further 
study. In this study, the field-base reflectance spectros-
copy has been proved to be a useful method to char-
acterize the plant nutrition properties in fresh leaves. 
The SNV + 2nd derivative spectra for ANTH, and 1st 
derivative spectra for FLAV and NBI have been identi-
fied to increase the model accuracy when calibrating the 
PLSR prediction models. Incorporate with spectra vari-
able selection, the model accuracy has been significantly 
improved with less variables for the prediction of leaf 
nutrition traits. Our model offered a reliable result for 
predicting the FLAV content in fresh leaf (R2

Val = 0.58, 
ranged from: 0.54 to 0.62), which was lower than the 
result reported for fresh Ginkgo biloba leaf in different 
colors (R2

CAL = 0.82 and RMSE = 2.62%) [71]. The vari-
ability lessened by small range of NBI value lead to an 
inefficient prediction [5].

Conversely, our prediction of ANTH content result 
illustrates a suitable accuracy than the other two leaf 
traits, with a mean R2

Val of 0.72 (range: 0.69–0.75) and a 
mean of RMSEVal of 0.09% (range: 0.09–0.10%). Similar 
result was discovered in wine grapes by NIR hyperspec-
tral imaging and PLSR model, which gave R2 of 0.84 and 
RMSEP of 0.013% for estimating ANTH content.

A robust statistical methodology for model calibra-
tion, which was first conducted by Couture et al. [12] to 
predict plant leaf secondary metabolites with reflectance 
spectroscopy, was applied in our study. It has being run 
200 randomized simulations for calibrating the models 
to provide an estimation of the model uncertainty and 
overall stability (Figs. 1, 2, 3, 4, 5, 6, 7). It is similar to our 
previous study which takes use of filed spectroscopy to 
predict the leaf colour and chlorophyll content [41]. Ran-
dom sampling [65] and Kennard-Stone sampling algo-
rithm [42] in other studies, which sample only once for 
model calibration, may cause instability for model predic-
tion. Thus, we highly recommend using this methodology 
for model calibration and validation on NIR analysis.

The NIR spectra involves not only the favourable infor-
mation but noise and irrelevant information which will 
encumbrance the accuracy of prediction model. There-
fore, variable selection is regarded as an efficient way 
to find out the most important wavelengths which con-
tributes the minimum error for model calibration and 
helps to reduce the model processing time for spectral 
models. Variables in the spectrum play a key role in the 
predictive accuracy of the model. The spectral informa-
tion is extensive along with the relevant and irrelevant 
information, both of which will overlap to interfere the 
model construction of the useful information and the 
PLSR model with a specific trait [88]. Thus, it is vital to 

screen important variables for spectral information. In 
this study, four variable selection methods were com-
pared to pick the best variable selection method. It shows 
that the sMC-PLSR model efficiently identified the key 
wavelengths and enables us to select a small set of vari-
ables to yield a promising and robust calibrated model 
for the prediction of ANTH, FLAV and NBI. Our results 
support the research announced by Li and Altaner [39], 
who successfully took the sMC variable selection method 
to improve the accuracy of an NIR calibration model on 
the prediction of extractives contents in heartwood of 
Eucalyptus bosistoana trees, and Li et al. [41] who found 
that sMC selection algorithm held the advantage of find-
ing the most relevant variables for the prediction of leaf 
chlorophyll content and colour parameters. Some stud-
ies also states that significance multivariate correlation 
(sMC) [79] is a positive algorithm to remove confounding 
effects from NIR calibrations [85].

Several important variables which are related to the 
ANTH, FLAV, and NBI have been selected similarly 
in each model, including the range at 2060, 2180, 2270, 
2330 and 2440 nm for ANTH, 1070, 1235, 1950, 2220 nm 
for FLAV, and 1100, 1220, 1465, 1950, 2220 nm for NBI 
respectively. As reported by Ramirez et  al. [67], the 
regions around 2060, 2180, 2270, 2330 and 2440 nm are 
mostly associated with O–H and C–H stretching vibra-
tions as well as the starch and sugar [17]. However, in 
our study, these regions have been ignored. The regions 
around 1070, 1100, 1220, 1235 nm are mainly assigned to 
the 1st overtones of C–H combination bands and 1st and 
2nd overtones of O–H and N–H stretching vibrations, 
while the bands around 1465 nm are mostly related to the 
1st overtones of O–H stretching vibration, both of which 
are associated with starch and protein [14, 16, 37]. In 
NIR spectra, water has a wide absorbance region which 
is a major influence on the other chemical information 
because of spectra overlap. In our study, the band around 
1950 nm related to the water has less contribution to the 
FLAV and NBI model and no influence on the ANTH 
model. It probably influences the accuracy of model for 
the prediction of FLAV and NBI. Correlational study was 
found by Min et al. [55], who stressed that the regions of 
1910 and 1938 nm highly related to water might have a 
strong impact on the N concentration prediction.

Trees N internal cycling is considered as one of the 
major ecology factors for tree growth and is an aug-
ment for the tree uptake of soil N [51]. In addition, it also 
helps to understand numerous aspects of plant ecology, 
for instance, to evaluate the effect of the N storage and 
remobilization in different part tissues of trees in relation 
to current demands for growth [70], to find out the role 
of N on growth stress, the relationship with N deposi-
tion in forest [28, 29] and the relationship with dynamics 
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of carbon recourse in trees [30, 82]. Our fast and accu-
rate measurement of N index, including ANTH, FLAV 
and NBI traits of trees with NIR spectroscopy provides 
an advanced way for the study of N internal cycling and 
allows to quickly measure large number of samples.

In this study, we continue to use the coefficients of 
1/2.5 for the calculation of heritability of ANTH, FLAV 
and NBI traits based on our previous study to avoid the 
assembling of half-siblings and inbreeding effects [41]. 
The moderate heritability of ANTH, FLAV and NBI was 
found, with the value of h2 ranging from 0.61 to 0.78. The 
leaf ANTH heritability of 0.78 in our study is similar to 
the result found by Yihu et  al. [77] who figured out the 
anthocyanin content heritability ranging from 0.79 to 
0.91 in leaves of chili pepper higher than 0.29 reported 
in the leaf of Aspen (Populus tremula L.) [69]. For FLAV, 
a significant high rang of heritability from 0.94 to 0.99 
was reported in the leave of Ginkgo Trees [90] which 
was much higher than our study (h2 = 0.58). It indicates 
that genetic control capacity is different between spe-
cies even the same traits. Our study proved that there is 
also a potential for the selection of NBI traits in breeding 
programs even with less study on the estimation of NBI 
heritability.

The consistence of families ranking of ANTH, FLAV 
and NBI indicates that the selection for a good leaf nutri-
tion tree is workable, and the selection of qualified nutri-
tion plant is supposed to involve multiple traits, which 
will afford a stable inheritance.

Conclusion
In conclusion, NIR spectroscopy is potentially taken to 
estimate the nutrition related traits by fresh leaf. With 
the small prediction error, the tree breeding programs 
can be successfully achieved based on the relative pre-
diction value. Our study provides an alternative way for 
the N index traits and open a door to the efficient analy-
sis of the internal N cycling in trees. The pre-processing 
method and variable selection highly influence the per-
formance of model prediction. Our study found that by 
using of 1st and SNV + 2nd derivative spectra process-
ing method and sMC variable selection algorithm, the 
PLSR models have been highly improved. In addition, the 
repeated spectral statistical methodology that we applied 
provided an efficient way to deal with variation in cali-
bration data and generate information on the response of 
plant nutrition traits with NIR spectra. NIR model serves 
as an efficient tool for the estimation of genetic param-
eters and breeding selection in high throughput way to 
improve the leaf traits quality.
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