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METHODOLOGY

A generalised approach for high‑throughput 
instance segmentation of stomata 
in microscope images
Hiranya Jayakody1*  , Paul Petrie1,2, Hugo Jan de Boer3 and Mark Whitty1

Abstract 

Background:  Stomata analysis using microscope imagery provides important insight into plant physiology, health 
and the surrounding environmental conditions. Plant scientists are now able to conduct automated high-throughput 
analysis of stomata in microscope data, however, existing detection methods are sensitive to the appearance of 
stomata in the training images, thereby limiting general applicability. In addition, existing methods only generate 
bounding-boxes around detected stomata, which require users to implement additional image processing steps to 
study stomata morphology. In this paper, we develop a fully automated, robust stomata detection algorithm which 
can also identify individual stomata boundaries regardless of the plant species, sample collection method, imaging 
technique and magnification level.

Results:  The proposed solution consists of three stages. First, the input image is pre-processed to remove any colour 
space biases occurring from different sample collection and imaging techniques. Then, a Mask R-CNN is applied to 
estimate individual stomata boundaries. The feature pyramid network embedded in the Mask R-CNN is utilised to 
identify stomata at different scales. Finally, a statistical filter is implemented at the Mask R-CNN output to reduce the 
number of false positive generated by the network. The algorithm was tested using 16 datasets from 12 sources, con-
taining over 60,000 stomata. For the first time in this domain, the proposed solution was tested against 7 microscope 
datasets never seen by the algorithm to show the generalisability of the solution. Results indicated that the proposed 
approach can detect stomata with a precision, recall, and F-score of 95.10%, 83.34%, and 88.61%, respectively. A sepa-
rate test conducted by comparing estimated stomata boundary values with manually measured data showed that 
the proposed method has an IoU score of 0.70; a 7% improvement over the bounding-box approach.

Conclusions:  The proposed method shows robust performance across multiple microscope image datasets of differ-
ent quality and scale. This generalised stomata detection algorithm allows plant scientists to conduct stomata analysis 
whilst eliminating the need to re-label and re-train for each new dataset. The open-source code shared with this 
project can be directly deployed in Google Colab or any other Tensorflow environment.

Keywords:  Automatic stomata detection, Microscope imagery, Mask R-CNN, Instance segmentation, High-
throughput analysis, Machine learning
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Background
Stomata are microscopic pores in the leaf surface that 
play a critical role in controlling photosynthesis and tran-
spiration [1–3]. The apertures of these microscopic pores 
are controlled by two guard cells that surround each 
pore. The opening and closing of stomatal pores directly 
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impact both CO2 intake and water transpiration rate of a 
plant [4–6]. Hence, plant scientists study stomata behav-
iour to learn more about plant water stress as well as sur-
rounding environmental changes [7–9]. In addition to 
studying living plants, scientists also use plant fossil cuti-
cles to uncover climate change patterns by analysing sto-
matal density, size and behaviour [10–12].

Stomatal traits can be measured using both direct and 
indirect methods. The direct method involves stomata 
phenotyping using microscope images, whereas the indi-
rect methods use porometers or infrared gas analysers to 
measure stomatal conductance and gas exchange to infer 
information on the aperture of the stomatal pores [8, 13, 
14]. Among the two methods, stomata analysis through 
microscope images provides additional information such 
as stomata size, shape, orientation, density and patchi-
ness [1, 6, 15–17]. However, microscope image analysis 
requires scientists to count and measure a large number 
of stomata in order to find statistically significant pat-
terns, and this proves to be time consuming and cum-
bersome work if done manually. Software solutions such 
as ImageJ® aim to automate this process to some extent, 
but such software require experts to either manually 
mark certain features of cells or tune a set of parameters 
before measurements can take place [18–20]. Such time-
consuming steps force scientists to conduct their stud-
ies with fewer data points; thus the true potential of the 
dataset is never achieved.

Automatic detection and measurement of stomata have 
the potential to solve this problem. Reliable automation 
leads to high-throughput analysis, which allows research-
ers to conduct their work using all available data. Recent 
advancements in computer vision and machine learning 
have provided some promising solutions to achieve high-
throughput stomata analysis.

Initial attempts to automatically detect stomata in 
microscope images involved classical image processing 
approaches. After Osama and Onoe’s initial attempt in 
1985, many researchers implemented different types of 
traditional image morphology operations to achieve this 
goal [21–24]. Sole reliance on image morphological oper-
ations performs well when the background is featureless, 
and stomata are clearly visible on the image. However, 
this is not the case for many microscope datasets. More 
recently, sophisticated methods such as template match-
ing, maximum stable external region extraction and 
wavelet spot detection were utilized to identify stomata 
[25–27]. These methods require images to be relatively 
in focus to operate reliably. However, image quality for 
microscope images can vary dramatically depending on 
data collection and imaging techniques.

Recent developments in machine learning and Convo-
lutional Neural Networks (CNN) have opened up new 

avenues for rapid detection and measurement of stomata 
in microscope images. Research by Vialet-Chabrand 
and Brendel, and Jayakody et al. utilised Cascade Object 
Detection (COD) algorithms with Histogram of Oriented 
Gradients (HOG) and Haar-like features to detect sto-
mata [17, 28, 29]. Simple machine learning techniques 
like COD require a large amount of training data and 
have proven to be less robust than the more sophisti-
cated CNN based machine learning algorithms devel-
oped recently. With the introduction of transfer learning, 
researchers were able to re-train existing general CNN 
models for specific applications using small amount of 
data [30]. In a research area where data collection and 
ground truth generation are time consuming exercises, 
researchers quickly proceeded to adopt these novel CNN 
models. Toda et al. [31] used HOG features to find areas 
which contain stomata, and used a CNN to classify the 
state (open, partially open, closed) of Dayflower (Com-
melina communis) stomata, using a sliding window 
technique. Using a sliding window makes the algorithm 
computationally more expensive and requires additional 
parameters, especially if stomata of different sizes need 
to be detected. Sakoda et  al. developed a framework to 
analyse the genetic diversity in stomatal density of Soy-
beans (Glycine max) using a Single Shot Multi-box 
Detector (SSD) [32]. The SSD approach eliminates the 
need for a sliding window, improving the speed of sto-
mata detection [33]. This popular approach was also 
adopted by Bhugra et al. to detect and measure pores of 
different rice cultivars [15]. However, in all these machine 
learning based approaches, the researchers have focused 
on implementing the algorithm targeting a specific plant 
species and a uniform sample preparation and imaging 
approach, where stomata have limited variation in size 
and appearance. This means, despite these CNN net-
works showing promising results, significant changes are 
required in order for them to be adopted for new data-
sets. Therefore, implementing a generalised methodology 
which can detect stomata across a variety of plant species 
is critical to facilitating wide-spread and rapid stomata 
analysis.

A couple of recent works focused on building gener-
alised stomata detection platforms. Casado and Heras 
introduced a stomata detection pipeline using a YOLO 
object detector [34, 35]. In addition to applying the 
YOLO detector to identify stomata on cotton, peanut 
and maize plants, they implemented a general machine 
learning pipeline using a Jupyter® notebook environment 
where researchers can prepare, train and apply the YOLO 
algorithm to their microscope data. The solution still 
requires new users to carry out some implementation 
work, but saves time by providing all the necessary tools 
and processes required for stomata identification. Fetter 
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et al. tackled the problem of generalising stomata detec-
tion by implementing the web tool “StomataCounter” 
[36]. Here, the authors use thousands of samples across 
multiple plant types imaged using different techniques 
and scale to implement a generalised stomata detector. A 
popular CNN classifier named AlexNet is combined with 
a sliding window to achieve the stomata detection goal. 
Although StomataCounter performs well across multi-
ple plant types, the algorithm is not robust against scale 
invariance as the scale of the stomata depends on the 
sliding window size. Thus, prior knowledge of stomatal 
size is required for robust operation.

All CNN methods discussed above generate rectan-
gular bounding-boxes around detected stomata. This is 
useful in counting the number of stomata, but if the user 
intends to investigate the morphological features of the 
stomata, additional image processing steps are required. 
These image processing steps cannot be easily adopted 
to new datasets without serious modifications and 
pre-processing.

Regardless of the image processing technique used 
for stomatal detection and measurement, all current 
approaches suffer from the following limitations: 

(1)	 None of the methods have the ability to directly 
measure the stomata boundary during the detec-
tion step. Instead, a bounding box surrounding the 
stomata is first detected. Additional morphological 
operations are required to determine the boundary 
of the stomata.

(2)	 None of the methods perform well across stomata 
at different scales.

(3)	 All methods, except for [36], focus on applying their 
method on a specific plant type using a specific data 
collection procedure. Thus, the performance of the 

algorithm is drastically reduced when applied to a 
new dataset.

In this paper, we propose a robust framework to auto-
matically detect stomata and directly measure stomatal 
area, which performs well across multiple plant species 
and is robust to different image magnification levels and 
image qualities. The proposed methodology utilizes the 
Mask R-CNN instance segmentation technique followed 
by a statistical filter to achieve this goal [37]. With this 
combination, our proposed method can: 

(1)	 directly determine the stomata boundary around 
the guard cell pair as shown in Fig. 1 instead of gen-
erating simple bounding boxes.

(2)	 detect stomata at different scales utilizing the Fea-
ture Pyramid Network (FPN) implemented within 
the Mask R-CNN algorithm [38].

(3)	 perform well across different plant species and sam-
ple preparation methods without any modification 
to the network.

Measuring the stomata boundary using instance segmen-
tation allows researchers to directly determine stomata 
area, orientation and axis lengths. We also introduce 
a statistical filter at the Mask R-CNN model output to 
increase the overall precision of the algorithm when pro-
cessing low quality images.

The proposed method was successfully tested using 
over 2800 microscope images containing more than 
60,000 stomata. The overall accuracy, precision and 
F-scores of the algorithm were measured to be 95.10%, 
83.34% and 88.61% respectively. For the first time in this 
domain, we successfully tested our algorithm against 
7 microscope image datasets fully unknown to the 

Fig. 1  a Current state-of-the-art. b Instance segmentation of proposed method. Proposed method provides further insight into the morphological 
properties of stomata.
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neural network. A detailed breakdown of the results can 
be found in section: Results.

In situations where researchers do require increased 
accuracy, especially when the data is of poor quality, we 
provide comprehensive instructions and code to re-train 
our algorithm using less than 15 training images.

Methods
The main aim of this research is to develop a generalised 
stomata detection and measurement platform which can 
robustly carry out instance segmentation across different 
microscope datasets. Input data can be collected from 
different plant species using a range of sample prepara-
tion and imaging techniques. The proposed methodol-
ogy provides the end-user with the number of stomata 
on a given image, along with the area and the boundary 
coordinates for each individual stoma in the image. In 
short, the stomatal detection pipeline presented in this 
paper consists of three main stages as shown in Fig.  2. 
The first stage processes the microscope images such that 
biases introduced by different data preparation and imag-
ing techniques are removed from the input dataset. The 
second and main stage of the pipeline, the Mask R-CNN 
algorithm, ensures stomata instances are detected across 
different scales. The final stage which consists of a statis-
tical filter, removes false positives from the Mask R-CNN 
output, increasing the precision of the proposed solution. 
The solution is developed using Python3 backed by the 
OpenCV, Tensorflow and Keras libraries [39–41].

Data preparation
Twelve microscope image datasets from 6 different 
sources were used for this research. The datasets cover 

a wide variety of plant types. A summary of the sample 
preparation methods, imaging methods and the image 
quality is provided in Table 1. The images quality catego-
ries, “high”, “medium” and “low”, were defined based on 
the following criteria.

•	 High: Image is sharp and detailed. Stomata are clearly 
visible.

•	 Medium: Image is somewhat blurred and has average 
colour contrast. However, stomata can be identified 
with respect to the background.

•	 Low: Image is mostly blurry. Artifacts such as 
dust, air bubbles and veins are present. Hard to dis-
cern stomata with respect to background elements.

Samples from 10 Gymnosperm species were collected at 
the Utrecht University botanical gardens. Samples were 
first macerated to the point that cuticle could be sepa-
rated, following Lammertsma et  al. [42]. After staining 
with Safranin, cuticles were mounted on glass slides in 
glycerol gelatine and imaged using a Leica® Quantimet 
500C optical microscope at 400× and 100× zoom lev-
els. Leaves of Betula nana specimen were obtained from 
three populations grown under sub-ambient, ambient 
and elevated CO2 levels in growth chambers of the Utre-
cht Fytotron [43]. The sample preparation mechanism is 
similar to Gymnosperm datasets. Samples were imaged 
using an Olympus® BH-2 optical microscope using 200× 
and 400× magnification levels.

The Ferns and Grass samples were collected at botani-
cal gardens of Utrecht University and Amsterdam, Neth-
erlands. Thirteen fern and 10 grass families are included 
in the dataset. Samples were collected by applying nail 

Fig. 2  Proposed stomata detection pipeline. Image pre-processing removes colour space biases. Mask R-CNN instance segmentation detects 
stomata boundaries at different scales. Statistical filtering reduces the number of false positives generated by Mask R-CNN
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polish on leaf epidermis and lifting the print using clear 
Scotch tape. The samples were put through a 5% chlo-
rine bleach before being mounted on microscope slides. 
The samples were imaged using a Leica® DM6000-B 
microscope.

The UNSW-2019 dataset consists of samples from Vitis 
vinifera, Prunus armeniaca, Citrus sinensis and Vinca 
major. The samples were collected by applying nail pol-
ish on the leaf surface and lifting the imprint using clear 
tape. The tape was then mounted on a glass slide and 
imaged using an Aperio® XT Brightfield Slide Scanner at 
40× zoom.

The Eucalyptus dataset containing 27 species was 
sourced from publications by Schulze et  al. and de 
Boer et  al. [44, 45]. The samples were imaged using an 
Olympus® BX51 optical microscope. The Poplar and 
USNM/USBG datasets were sourced from Fetter et  al.’s 
publication on stomata detection [36]. The Cuticle and 
Ginkgo datasets were sourced from cuticle work carried 
out by Barclay et al. [12, 46]. The Google Images dataset 
consists of image search results for search query “stomata 
microscope”.

Altogether 3065 microscope images containing over 
60,000 stomata was used for training and testing pur-
poses. During the algorithm testing phase, some of these 
datasets were sub-divided based on image quality, which 
resulted in 16 datasets (see Table 3).

Stage 1: Image pre‑processing
The quality and the colour of microscope images vary 
significantly depending on the sample collection and 
imaging techniques. The main aim of the image pre-
processing step is to remove any colour space biases in 
the input image. This ensures that the final Mask R-CNN 
model is robust to images having unbalanced colour 

spaces (for example, high red-shift or high yellow-shift 
as shown in Fig.  3b and g). Contrast Limited Adaptive 
Histogram Equalisation (CLAHE), a common histogram 
equalisation method, is applied to the input image before 
being handed over to the Mask R-CNN model [47]. The 
exact steps of the process are as follows. 

(1)	 Convert the 3-channel colour image from RGB 
space to YCbCr space.

(2)	 Apply Contrast Limited Adaptive Histogram Equal-
isation (CLAHE) on Y-channel.

(3)	 Convert the image from YCbCr to RGB space.
(4)	 Convert the image from RGB space to Grayscale 

and store it as a 3-channel .jpeg image.

The resulting image is fed into the Mask R-CNN which 
expects a 3-channel array as the input. The pre-process-
ing steps assist Mask R-CNN to train without any colour 
space biases. Fig.  2 shows how the pre-processing step 
affects the image colour space.

Stage 2: Mask R‑CNN Algorithm
The proposed solution utilizes the Mask R-CNN algo-
rithm to detect stomata. Compared to object detection 
algorithms such as SSD, YOLO, RCNN, Fast-RCNN and 
Faster-RCNN, which produce a single bounding box 
around the object of interest, Mask R-CNN focuses on 
instance segmentation, where the true boundary of the 
object is identified regardless of its shape [33, 35, 37, 
48–50]. Thus, Mask R-CNN allows us to directly meas-
ure stomata orientation, axes lengths and overall area 
without any additional image processing steps. Such 
additional information further simplifies the process 
of developing algorithms which aim to measure finer 
characteristics of stomata, such as the pore opening. In 

Table 1  Details of the datasets used for this research

DIC: Differential Interference Contrast; SEM: Scanning Electron Microscope

Dataset Quality Preparation method Imaging method Source

Gymnosperm 400× Med–High Macerate and stain Optical This paper

Gymnosperm 100× Low–High Macerate and stain Optical This paper

Poplar High Nail polish DIC Fetter et al. [36]

Cuticle Low–Med. Clear and stain Brightfield Barclay et al. [12]

Ginkgo High Lamina peel SEM Barclay and Wing[46]

USNM/USBG Low–Med. Nail polish DIC,SEM Fetter et al. [36]

Betula Nana Low–Med. Macerate and stain Fluorescence This paper

Eucalyptus Medium Macerate and stain Fluorescence This paper

Ferns Low–Med. Nail Polish, 5% Cl bleach Brightfield This paper

Grass Medium Nail Polish, 5% Cl bleach Brightfield This paper

UNSW-2019 Med.–High Nail polish Brightfield This paper

Google Images Medium Unknown Unknown Google
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addition to instance segmentation, Mask R-CNN lever-
ages the capabilities of the Feature Pyramid Network 
(FPN) concept which uses the pyramidal nature of CNNs 
to detect objects at different scales [38]. Hence, Mask 
R-CNN is able to detect stomata of different sizes with-
out having any prior knowledge on the magnification 
level of the input microscope image.

The Mask R-CNN implementation by Matterport 
is used as the base model for this work [51]. For this 
application, a Mask R-CNN model pre-trained on the 
MS-COCO dataset was employed to carry out transfer 

learning. 157 microscope images across 6 datasets were 
manually labelled to train the Mask R-CNN model. The 
manual stomata labelling process was carried out using 
the VGG Image Annotator (VIA) tool [52]. The aim was 
to train a general enough model using the minimum 
amount of training data by leveraging the capabilities of 
transfer learning. More information on the training data 
is provided in Table 2.

Several changes were made to the default Mask-RCNN 
training settings. An additional step of image augmenta-
tion was introduced to randomly rotate 2/3 of the input 

Fig. 3  Images representing each dataset. Dataset name and quality provided in each sub-figure



Page 7 of 13Jayakody et al. Plant Methods           (2021) 17:27 	

images, to ensure that the trained model is robust to 
stomata orientation. The anchor box scales for each fea-
ture pyramid level were set to [12, 24, 48, 96, 192] pix-
els in order to detect stomata of different sizes. The 
object detection confidence threshold was set to 50%. A 
batch size of 2 and a learning rate of 0.002 was adopted 
based on available computing resources. The model was 
trained for 85 epochs, where the input image was scaled 
such that the largest dimension is set to 1024 pixels. The 
model generated at epoch 51 was selected for testing pur-
poses, to avoid any overfitting to training data. Additional 
details regarding the training setup can be found at https​
://githu​b.com/Smart​-Robot​ic-Vitic​ultur​e/MaskS​tomat​a.

Stage 3: Statistical filter
The Mask R-CNN algorithm outputs stomata detections 
along with corresponding boundary masks. In leaf epi-
dermis microscopy, the stomata size does not vary much 
within an individual microscope image as the magnifica-
tion is fixed and actual stomatal sizes are relatively uni-
form within a single leaf. However, the magnification 
level (and the resulting stomata size) can vary across a 
single dataset. In addition, the natural size of stomata var-
ies between species. Nonetheless, the FPN embedded in 
Mask R-CNN, of which the main task is to detect objects 
at different scales, attempts to detect stomata at differ-
ent scales for any given input image. This could result in 
false positives, especially when the image quality is low 
and other stomata-like structures are present (air bub-
bles, leaf structure) in the image. Therefore, a statistical 

filter is introduced to determine the actual scale of the 
stomata in a given image. The filter utilizes the prediction 
confidence values and the corresponding object areas to 
determine the appropriate stomata size range for a given 
image. Once the suitable stomata area range is calculated, 
all predictions outside this range are rejected. The follow-
ing steps are implemented in the statistical filter: 

(1)	 Using Mask R-CNN output, select detections where 
the detection confidence is above the 90th percen-
tile. Let’s call this collection {A}.

(2)	 Calculate the average stomata area value for {A}.
(3)	 From {A}, select the items where the stomata area is 

smaller than the average stomata area. Call this col-
lection { As}.

(4)	 From {A}, select the items where the stomata area is 
larger than the average stomata area. Call this col-
lection { Al}.

(5)	 If there are more items in { Al } compared to { As }, 
this indicates that the image contains “large” sto-
mata. Now calculate the optimal stomata area 
(area_optimal) for that image by taking the average 
area value for { Al}.

(6)	 If there are more items in { As } compared to { Al }, 
this indicates that the image contains “small” sto-
mata. However, there could be a lot of “small” sto-
mata detected due to noise in the image. Hence 
compare the average detection confidence score of 
{ As } and { Al }. If the detection confidence score is 
still higher in { As }, we can safely conclude that the 
image contains “small” stomata. Now calculate the 
optimal stomata area (area_optimal) for that image 
by taking the average area value for { As}.

(7)	 From the original detections, select all stomata 
where the stomata area is, 0.65 × area_optimal < 
stomata area ≤ 1.5 × area_optimal, despite their 
detection confidence value. Call this stomata collec-
tion { Af }.

(8)	 {Af  } includes all detections selected by the statisti-
cal filter. { Af  } is the final output of the algorithm.

The pseudo-code for the statistical filter is presented in 
Algorithm 1.

 
 
 
 

Table 2  Image data used for Mask R-CNN training and validation

Dataset Training 
images

As a % of dataset Val. images Avg. 
stomata/
image

Gymnosperm 
40×

43 15.14% 14 6

Gymnosperm 
10×

25 4.99% 16 27

Cuticle 28 4.20% 19 32

Ginkgo 15 7.61% 10 10

USNM/USBG 31 4.44% 30 26

Poplar 15 8.50% 10 33

Total 157 − 99 -

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata
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across these four datasets are 98.42%, 93.80%, and 96.05% 
respectively, despite the variation in image quality. The 
next 5 datasets in Table 3 contain images partially known 
to the system. This means a small percentage of images 
from these datasets were used for training, but they do 
not represent all plant types contained in those datasets. 
Hence, for partially known datasets, the trained neural 
network contains information on the sample collection 
and imaging procedure, but lacks plant leaf epidermis 
information for each individual species within the data-
set. The average precision, recall and F-score for these 5 
datasets are 94.60%, 79.76% and 86.48% respectively. 

The last seven datasets in Table 3 include mostly low to 
medium quality data never seen by the neural network. 
Thus, the results provide important insight to the gen-
eralised nature of the proposed solution. This is the first 
time a stomata detection algorithm was tested against 
this many datasets unknown to the network. Apart from 
two low quality datasets, the proposed algorithm is able 
to produce 80+% F-scores for datasets unknown to the 
network, which shows the robustness of the proposed 
stomata detection pipeline. The precision values for the 
unknown datasets vary between 97.52% and 78.91% with 
the lowest precision value produced for the low qual-
ity ferns dataset (Ferns:  low). Compared to previous 
tests, the recall values on average were 70.09% for data 
unknown to the neural network. Datasets with low image 
quality exhibit lower recall values, suggesting that the 
algorithm may be rejecting some stomata detections due 
to low confidence in the prediction due to quality.

Results in Fig. 5a indicate that the algorithm maintains 
the precision of the detections despite the varying image 

 

The coefficient values of 0.65 and 1.5 were chosen empir-
ically to represent a 50% variation from the optimal_area 
value (i.e.: 0.65× 1.5 ≈ 1.0 and 1.0× 1.5 = 1.5 ). The 
same coefficients were used across every experiment pre-
sented in this paper.

Results
A series of experiments were conducted to evaluate the 
performance of the proposed Mask R-CNN based sto-
mata identification system. The inference tasks were 
carried out on an Ubuntu 16.04 operating system, with 
60 GB memory and an NVIDIA Tesla T4 GPU hosted 
on the Google Cloud Platform (GCP). On average, the 
algorithm takes 734ms to completely process an image. 
All input images were resized such that their width is set 
to 1024 pixels. The complete code for the project can be 
accessed at: https​://githu​b.com/Smart​-Robot​ic-Vitic​ultur​
e/MaskS​tomat​a.

Stomata detection performance
The stomata detection performance of the proposed 
methodology was evaluated against 12 different micro-
scope datasets. Some datasets were separated into new 
sub-groups based on image quality as discussed in the 
previous section, resulting in 16 evaluation datasets. Fig-
ure  4 provides some examples which show the robust-
ness of the proposed methodology against the image 
quality and stomata size. The final results are presented 
in Table 3. Out of the 16 datasets, the first 4 datasets are 
well known by the system, where data used for train-
ing sufficiently captures the stomata characteristics in 
these datasets. The average precision, recall, and F-score 

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata


Page 9 of 13Jayakody et al. Plant Methods           (2021) 17:27 	

quality. There is a performance drop in the recall value, as 
the algorithm has less confidence in its predictions (thus, 
rejecting them) as the image quality goes down. Figure 5b 
show how the detection performance varies based on 
how much a dataset is known to the model. Again, the 
conservative nature of the statistical filter ensures that 
the average precision variation is maintained within 10% 
across all datasets. However, the recall values show a 
higher variation with the average value dropping nearly 
22% when dealing with unknown datasets. 

The results presented in Table  3 also suggest that the 
proposed algorithm performance is more sensitive to 
image quality compared to other factors such as sample 
collection mechanism and stomata scale. The reduction 
of precision and recall is especially visible for low and 
medium quality datasets such as Ferns: low, Grass, Betula 
nana and Cuticle: low. 

Stomata instance segmentation performance
A key feature of the proposed algorithm is its ability to 
estimate the stomata boundary, thus providing an accu-
rate result for the stomata area. In order to test the per-
formance of this feature, the proposed algorithm was 
applied to 79 images where the stomata boundaries 
were manually marked to provide ground truths. These 
79 images were sourced from datasets partially and fully 
known to the model. The IoU between the ground-truths 
and the stomata estimations were measured. Results 
were compared with that of a bounding box approach 
utilizing the same neural network architecture. Table  4 
summarises the results. The proposed method easily out-
performs the bounding box approach by 7% for IoU. Note 

that the results include errors due to false positives and 
false negatives. Figure 6 provides a visual example of how 
instance segmentation is far closer to the ground truth 
compared to a bounding box approach.

Effect of the statistical filter
As discussed in "Methods" section, we introduced a sta-
tistical filter to the stomata detection pipeline to improve 
the final output. The results presented in Table 3 include 
the statistical filter. Nevertheless, it is important to ana-
lyse how the statistical filter affects the final output of the 
system; thus, tests were conducted repeating the stomata 
detection process without the aid of the statistical filter. 
The corresponding unfiltered results for two datasets are 
shown in Table  5. The results show that the statistical 
filter clearly improves the precision of the algorithm. In 
both cases, the precision increases by around 10 % with 
the filter. However, the recall value drops by a similar 
percentage during this process. This is expected, as the 
algorithm is now being “more careful” before confirm-
ing stomata detections. In a practical sense, higher preci-
sion outweighs recall when there is a lot of data available. 
With higher precision, users can arrive at more accu-
rate results relating to microscope images. Nonetheless, 
if needed, the user can sacrifice precision for recall by 
bypassing the statistical filter in the system.

Fine‑tuning the algorithm for a New Dataset
Results so far show that the proposed methodology per-
forms well with different types of microscope datasets, 
including datasets never before seen by the neural net-
work. However, there may be cases where the researchers 

Table 3  Performance of the proposed stomata detection algorithm

Dataset Quality Known to model Num. of stomata Precision (%) Recall (%) F-Score (%)

Gymnosperm 400× Med–High Yes 944 95.87 98.41 97.12

Gymnosperm 100×: low Low Yes 10597 98.89 91.92 95.28

Gymnosperm 100×: high High Yes 7713 98.15 94.30 96.18

Poplar High Yes 5042 98.34 96.11 97.22

Cuticle: low Low Partially 8181 93.46 73.51 82.29

Cuticle: med Medium Partially 2631 94.80 89.43 92.04

Ginkgo High Partially 2802 96.02 82.65 88.84

USNM/USBG: low Low Partially 2569 92.70 70.65 80.19

USNM/USBG: med Medium Partially 16083 95.20 82.31 88.30

Betula nana Low–Med No 683 85.62 75.25 80.06

Eucalyptus Medium No 1088 93.22 83.46 88.07

Ferns: low Low No 964 78.91 51.24 62.14

Ferns: med Medium No 713 90.15 74.47 81.56

Grass Low–Med No 3288 85.20 55.66 67.32

UNSW-2019 Med–High No 2242 91.53 85.77 88.56

Google Images Medium No 1496 97.52 76.34 85.64
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Fig. 4  Some results for the proposed methodology. The method works well with stomata of difference sizes and quality

Fig. 5  Stomata detection performance variance a based on image quality. b based on how well the dataset is known to the Mask R-CNN model. In 
both cases, recall drops while precision value is maintained
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would require higher accuracy and recall values than the 
ones produced by the proposed solution. For example, a 
researcher might have a limited number of low quality, 
microscope images where it is important to extract as 
much information as possible from available data. Results 
in Table  3 suggest that low quality images can have an 
impact on the performance, especially on recall. Hence, 
for such scenarios, we have provided a set of instructions 
on fine-tuning our stomata detector model with transfer 

learning. The relevant instructions can be found here: 
https​://githu​b.com/Smart​-Robot​ic-Vitic​ultur​e/MaskS​
tomat​a. Table  6 presents how the model performance 
improves with transfer learning. For the low-quality 
Ferns dataset, we marked the ground truth on 12 training 
images containing around 14 stomata per image, using 
the VGG Image Annotator tool [52]. The labelling pro-
cess took approximately 28 min. Then the Mask R-CNN 
was retrained for 40 epochs, with our existing stomata 
model providing the initial training weights. The fine-
tuned algorithm drastically improves both precision and 
recall. Similar improvements were also found for the low-
quality Grass dataset where 15 new training images (with 
labelling taking approximately 48 min) were introduced 
to the system.

Table 4  Instance segmentation performance of the proposed 
method

Results are compared with a similar network structure which generates 
bounding boxes instead of instance polygons

Num. of images Num. of stomata Proposed 
method

Bounding box

IoU IoU

79 2386 0.70 0.63

Fig. 6  a Mask R-CNN overlap with ground-truth. b Bounding-box overlap with ground-truth. Lighter areas show overlap between ground-truth 
and the estimated output. Note: darker areas in both images represent false positives and false negatives

Table 5  Effect of the statistical filter on stomata detection performance

The statistical filter improves the precision of the algorithm while sacrificing recall

Dataset Quality No filter (%) With Statistical filter (%)

Precision Recall F-Score Precision Recall F-Score

Ginkgo High 88.15 92.00 90.00 96.02 82.66 88.83

Eucalyptus Medium 83.17 90.24 86.56 93.23 83.46 88.07

Table 6  Performance improvement after fine tuning the stomata model to a specific dataset

Dataset Quality Train images New precision (%) New recall (%) New F-score (%)

Ferns: low Low 12 87.98 (+9.07) 81.13 (+29.89) 84.42 (+22.10)

Grass Low–Med 15 90.91 (+5.71) 82.68 (+27.02) 86.60 (+19.28)

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata
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Discussion
Results presented in the previous section indicate that 
the proposed Mask R-CNN based methodology performs 
well across different datasets containing stomata of vary-
ing size and quality. The test conducted using 7 micro-
scope datasets previously not seen by the CNN model 
further solidifies the generalisable nature of the approach.

The results also suggest that image quality is the main 
factor affecting the performance of the solution. In addi-
tion to the reduction in the recall value, boundary esti-
mation performance may also decrease in low quality 
images. However, more training images from low quality 
datasets could easily improve the performance of the sys-
tem. Table 6 provides a couple of good examples support-
ing this case.

All input images were resized such that the image 
width is set to 1024 pixels. The authors expect this meth-
odology to perform at its best when the original input 
image size is in this range.

Conclusions
This paper presented a fully automated, high-throughput 
stomata instance segmentation methodology for micro-
scope images. The proposed methodology combined a 
statistical filter with an FPN backed Mask R-CNN algo-
rithm to accurately estimate the stomata boundary of 
a wide-variety of plant types. The algorithm was thor-
oughly tested against different datasets collected using 
different sample collection and imaging techniques. For 
the first time in this domain, the algorithm also tested 
against 7 datasets containing features never experienced 
by the network. Results show that the proposed method 
has an overall stomata detection precision, recall and 
F-score of 95.01%, 83.34% and 88.61% respectively, in a 
test conducted using over 2800 images containing over 
60,000 stomata.

The next step would be to use these results to accu-
rately measure other morphological traits of the sto-
mata such as pore dimensions and guard cell widths. The 
authors also intend further improve the model presented 
in this paper by adding more training samples from addi-
tional plant types.
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