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METHODOLOGY

A random‑sampling approach to track cell 
divisions in time‑lapse fluorescence microscopy
Saoirse Amarteifio1, Todd Fallesen2,3, Gunnar Pruessner1 and Giovanni Sena2* 

Abstract 

Background:  Particle-tracking in 3D is an indispensable computational tool to extract critical information on 
dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imag-
ing in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common 
tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where 
background, recognisable keypoints and independently moving objects of interest are permanently visible. Under 
these conditions, simple registration and identity management algorithms can track the objects of interest over time. 
In contrast, here we consider the case of transient signals and objects whose movements are constrained within a 
tissue, where standard algorithms fail to provide robust tracking.

Results:  To optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into 
a registration algorithm that uses random sampling to solve the identity management problem. We describe the 
design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an 
open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-
sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method 
by comparing the algorithm performance against both surrogate data and manual tracking.

Conclusion:  This method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets 
using transient fluorescent markers in unregistered images.

Keywords:  Plant development, Plant root, Arabidopsis, Light-sheet microscopy, CYCB::GFP, Transient fluorescence, 3D 
Tracking, Point-set registration
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Background
It is generally understood that automated imaging and 
tracking methods can exceed manual tracking of objects 
in large data-sets. These solutions are of growing impor-
tance in life science applications, where time-lapse 
microscopy is a powerful and popular tool for capturing 
dynamics at cellular and sub-cellular scales [1]. Indeed, 
a wide range of microscopy [2] and computational 
approaches [3–6] have been developed and adapted to 
particle tracking in biology. Developmental biology has 

benefit enormously from automated in vivo tracking 
methods, ranging from cell lineage tracing in both ani-
mals [7–9] and plants [10–12], to cell shape tracking [13, 
14] and tracing of growing organs as in the case of plant 
roots [11, 15–18].

It should be noted that in all these cases the signal to 
track is approximately constant, which generally makes 
the task easier notwithstanding occlusions or other 
objects leaving and entering the field of view. Instead, it 
is significantly more challenging to track an intermittent 
or transient signal, as in the case of cell divisions or other 
short-lived events [19–21], or a signal distributed in 3D 
space like in confocal or light-sheet microscopy stacks.
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From a computational point of view, tracking in time-
lapse image data involves detection of objects in individ-
ual frames and solving their identification across frames 
(identity management). The goal of identity management 
is to link an object in one frame to what is found to be the 
same object in a later frame, so that linked objects share 
the same identity label, or identifier. The set of linked 
identifications of a given object through time is referred 
to as its lineage.

Tracking algorithms are greatly influenced by the 
structure of the data. Macroscopic objects may have 
complex morphologies that can be used to improve 
their identification [22]. Objects smaller than imaging 
resolution, on the other hand, will appear as featureless 
blobs; in these cases tracking relies more strongly on 
dynamical models alone [23]. For example, “multiple-
hypothesis tracking” [24, 25] takes an exhaustive and 
deterministic approach to consider all possible lineage 
trees. A similar approach has been previously applied 
to tracking plant root cell nuclei in 3D [11]. Stochastic 
algorithms have also been proposed [26], specifically to 
deal with particularly noisy data-sets. Whenever persis-
tent features, or reference points known as keypoints, 
can be easily identified in the background, a common 
strategy is to build a link of the same keypoint in two 
frames [27–30]. Keypoints appearing in more than one 
frame are defined as inliers, while those appearing in 

only one frame are treated as outliers. If inliers exist, a 
geometric transformation (including for example trans-
lation, rotation, reflection, scaling) linking them in the 
background can be determined and used as a first guess 
for tracking the objects of interest in the foreground.

Unfortunately, tracking transient events in 3D is 
still challenging and imprecise especially in plant biol-
ogy where soft tissue rarely offers usable reference 
points. Here, we offer a novel solution to this problem, 
by exchanging the common method of morphologi-
cal analysis [20] for a registration-tracking approach 
that uses random sampling of points. As a case-study, 
we collected and analysed a 4D data-set of cell division 
events in the Arabidopsis root meristem, throughout 
several consecutive days. This was achieved with time-
lapse 3D scanning of growing transgenic roots express-
ing the fluorescent reporter CYCB::GFP , through a 
previously described light-sheet microscope setup [16]. 
The mitotic events are here identified by the short-lived 
CYCB::GFP signal, sparsely distributed in a soft tis-
sue lacking fluorescent reference keypoints and gener-
ally difficult to identify due to low signal-to-noise ratio 
(Fig. 1). This represents a very common set of circum-
stances in time-lapse imaging of plant tissues. Due to 
its general strategy and features, we believe that the 
methodology proposed might be readily applied to sim-
ilar 4D data-sets collected from other tissues.

Fig. 1  Time-lapse sequence of images from Arabidopsis root tip expressing CYCB::GFP mitotic reporter. Each time-frame is a maximum intensity 
projection of the raw 3D scan obtained with light-sheet microscopy. A time-lapse movie of the same root is available at the link provided [31]
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Results
Tracking algorithm
General strategy
The identification of inliers is the key challenge in the 
kind of experimental data-set that we are discussing. 
When single-particle tracking methods require pre-
registration, they may not be robust against lack of 
guaranteed inliers. On the other hand, when single-
particle tracking does not need pre-registration, it is 
typically based on models of the objects’ motion, which 
are not optimal with transient objects and with low sig-
nal-to-noise ratio across extended image sequences.

We treated the position, appearance and disappear-
ance of transient objects as a random spatial process. 
The frame-to-frame displacement of objects embedded 
in a tissue can be described as the effect of two ran-
dom variables: (1) large-scale movements of the tissue 
within the field of view, due for example to its growth 
or to the inability of the microscope to focus on a fixed 
point of the field of view over time; (2) small-scale fluc-
tuations of the objects of interest within the tissue.

The main purpose of the algorithm is to find the best 
large-scale transformation that explains most of the object 
correspondence, despite the noisy small-scale dynam-
ics. The strategy adopted was to find correspondences 
between the random process at time t and the random 

process at time t − τ where τ is a lag variable. In this work, 
we only considered a τ = 1 step, which is equivalent to 
approximating the tissue as effectively rigid at the given 
temporal scale. As mentioned above, objects that appear in 
both frames are called inliers and those that do not appear 
in both frames are called outliers and cannot be linked by 
a global frame-frame transformation. For example, outli-
ers can be either debris, i.e. any object which is determined 
not to be an object of interest, or could be an object of 
interest that has just exited or entered the new frame.

There are two main steps in the execution of the algo-
rithm: (i) candidate transformations are generated from 
the data; (ii) among these candidates, the optimal transfor-
mation is chosen with respect to some previously defined 
objective. Inliers are then mapped onto each other by the 
chosen global transformation and labelled (with identifi-
ers). Finally, new identifiers are generated for the outliers 
within the region of interest. These new identifiers corre-
spond to proposed objects of interest that may be filtered 
at other stages of the process as discussed later.

Algorithm  1 provides a terse, high-level overview of 
the method. The key algorithm stages, which amount 
to finding the best global transformation from the data, 
are discussed below. 
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Proposing transformations
Consider the sets of objects U(t),V (t − τ ) at times 
offset by a lag τ . A subset of these corresponds to true 
objects of interest (i.e. not noise or debris) and a further 
subset of these exists in both frames. Given N objects at 
time t and M objects at time t − τ , a number of per-
mutations P(N , k) are sampled from U and a number of 
permutations P(M, k) are sampled from V. We limited 
our method to k ∈ {1, 3} , thus sampling either single 
objects ( k = 1 ) or triangular constellations ( k = 3 ) from 
each frame. Object identifiers take a natural ordering so 
that any set of the same k object identifiers are consid-
ered equivalent regardless of their ordering.

Let n be the number of k-constellations ci(t) sam-
pled from U(t) and m be the number of k-constella-
tions cj(t ′ = t − τ ) sampled from V (t − τ ) . In general, 
for two tensors M1 and M2 related by M1 = AM2 , the 
affine transformation A can be uniquely determined 
through a least squares method (this is, in general, 
over-determined). Here, the transformation γij is the 
affine transformation, taking the set ci(t) to the set 
cj(t

′) : cj(t ′) =
∑

γijci(t)

In lines 3–6 of the Algorithm 1, the constellation are 
sampled in frames U and V. Translations are then gen-
erated for each pair of objects v ∈ V  and u ∈ U  , and 
added to the list of candidate transformations.

Constellation sampling (line 9) is preferably seeded with 
linkages found by translations so that likely outliers are 
excluded from consideration. If a given translation maps 

n objects in U to n objects in V, then these object-object 
pairings can be considered candidate linkages. This not 
only reduces the candidate objects to those likely inliers, 
but constellation congruences can be identified as well, 
so the same set of objects in one frame can be paired to 
the same set of objects in the other frame when proposing 
transformations. Constellation pairs P(NL, 3),P(ML, 3) 
can then be sampled from the L inliers appearing in both 
frames. These will be used to generate proposal affine 
transformations, to provide a more optimal fit than trans-
lations alone.

Ranking transformations
Transformation ranking was carried out using a modi-
fied least-squares-loss function. The least-squares-loss 
method is generally described as the minimization of ∑

|y − ŷ|2 , where y is a proposal vector and ŷ is the tar-
get vector. In our case, the proposal vectors are objects 
in the frame U(t) transformed back to t − τ by one of 
the proposed transformations. The target vectors are 
actual objects sampled in V (t − τ ) . The least-squares-
loss objective was modified based on the following prior: 
(i) we expect a global rigid transformation to explain the 
movement of object centroids up to small fluctuations 
due to individual object movement which are deemed 
negligible. (ii) A distance > ε between objects’ centroids 
is assumed. The value of ε was determined from the 
data and is always slightly larger than the average object 
radius. When considering distances between proposal 

Fig. 2  Evaluating transformations: red crosses correspond to objects in V(t − τ) and blue dots correspond to objects in U(t). The blue circles with 
radius ε correspond to the transformation of the set U(t) under the proposal transformation
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objects and target objects, only distances to the first 
nearest neighbour within a radial distance ε were consid-
ered. Each candidate transformation γ was applied to all 
objects ui(t) ∈ U(t), i ∈ {1, 2, ...,N } . Let ũi = γ (ui) . We 
used a cost function

where nnV (Ũi) is the nearest neighbour position in 
V (t − τ ) to the projected object Ũi . If the projected 
object had no nearest neighbour within a sphere of radius 
ε , the capped distance ε + 1 was attributed. This is illus-
trated in Fig. 2.

The cost function will rank transformations by how well 
they explain the movement of the majority of objects. If 
there are small differences in scores, we may prefer trans-
formations that have the smallest displacement. For this 
reason, we can regularise this cost function to add a pen-
alty to larger displacements.

Output: life matrix
The main output of the algorithm is a binary matrix 
called the Life Matrix, where each column corresponds 
to a time-point (i.e. a single frame in the time-lapse), each 
row contains the lifetime of a single detected object, and 
each element is equal to 1 if the object is detected in that 

(1)Cγ =

N∑

i=1

min(ε, |ũi − nnV (ũi)|
2)

frame, and to 0 otherwise. Debris exhibit movements 
that are not correlated with that of the objects of interest 
and therefore would typically appear in the Life Matrix 
as events with a life-span of a single frame. We discarded 
such single-frame events.

The algorithm was applied on time-lapse images of cell 
division events in roots of transgenic Arabidopsis plants 
expressing the fluorescent reporter CYCB::GFP, collected 
over a few days through light-sheet microscopy, following 
established methods [16]. A representative Life Matrix is 
shown in Fig. 3.

The number of objects observed as a function of time 
(Fig.  4, top) and the average duration of events (“mean 
age”, in number of frames) as a function of time (Fig. 4, 
bottom) are alternative representations of the data shown 
in the Life Matrix.

Validation against surrogate data
We used computationally generated (surrogate) data to 
validate the tracking algorithm against a known spatial 
transformation. To be representative of the biological 
images intended to be tracked, the surrogate data were 
generated respecting a minimum object separation ε . 
A number of parameters were introduced (Table  1) to 
determine how data are generated and the tracker was 
tested for different points in the parameter space. The 
parameter n determined how many objects were ran-
domly and uniformly distributed and added to the set 

Fig. 3  Life matrix of one representative root: each row represents the history of a single individual, detected (dark blue) at the corresponding time 
on the x-axis. The life matrix shows a generally consistent trend in the appearance and persistence of objects. At the beginning of this time-lapse, 
objects persisted for an unusual long time



Page 6 of 12Amarteifio et al. Plant Methods           (2021) 17:25 

of points U. A random Euclidean transformation (roto-
translation) γ̂  was generated using the parameters r and 
s to control the magnitudes of rotation and translation, 
respectively. A set V was produced by applying γ̂  to U. 
The parameter u determined the strength of (small) ran-
dom fluctuations to individual object locations in V, and 
p determined how many “noise” points were added to 
both U and V to represent debris or particles that existed 
in one but not the other frame. These added points also 
respected the minimum object separation ε . In the bio-
logical context this corresponds to cells that are no longer 
fluorescing or just beginning to fluoresce at time t.

The tracking algorithm’s efficiency in finding the Euclid-
ean transformation γ̂  from U to V generally depends on the 
amount of noise and on the magnitude of the rotation and 
translation. To test our tracker’s performance, we established 
a classification task for the selected transformation: when 
an object in U was mapped onto a true object in V, it was 
considered an inlier and a value 0 was assigned, while a value 
– 1 was assigned to outliers. A transformation’s score (or 
loss) was calculated as the sum of all these values and aver-
aged over samples. The best transformation is the one with 
the lowest loss. This analysis showed that for small rotations 
(less than 5 degrees) or for small translations the tracker is 

Fig. 4  The population time series reflect the information shown in the life matrix described above. Top panel, number of events as a function of 
time; bottom panel, average event’s duration (in numbers of frames) as a function of time. The high spike in the mean age is a result of one object 
surviving for a long time while others disappear. After this point we observe more typical fluctuations in object activity

Table 1  Surrogate data parameters: a random Euclidean 
transformation determined by parameters (r, s, u) is applied to a 
set of n objects U to produce a new set of objects V. To simulate 
noise, p objects are added at random locations to both U and V 

Param Description

ε Minimum object separation

n Number of points to generate in the point-set U

p Number of “noise” points to add to the point-set U and the 
point-set V

r Generate random (global) rotations in the range [ −π/r , π/r]

s Generate random (global) translations in the range [0, s]

u Random uniform shift of points in V on each axis in the range 
[0, u]

Fig. 5  Surrogate data results: heat-map plot representing the scores 
of transformations with different parameters s and r 
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robust and slowly degrades for larger rotations (more than 10 
degrees), as shown in Fig. 5.

Validation against manual tracking
The performance of the algorithm was also verified by man-
ually marking the position of all GFP-expressing cells in a 
subset of 50 time-points by an experienced researcher with-
out prior knowledge of the results of the algorithm output. 
Using the built-in FIJI [32] plugin CellCounter the researcher 
manually identified 400 CYCB::GFP events which were pre-
sent in at least 2 consecutive time-points, that is, using the 
same bias against single time-point events as the algorithm. 
In the same subset, the algorithm automatically detected 
385 events. Given the 15-minute temporal resolution of 
our data-set and the longer persistence of the CYCB::GFP 
reporter, we reasoned that these should be considered either 
spurious events or plain artefacts. The rate of false negatives, 
i.e. events detected by the researcher but not by the algo-
rithm, was 16.5 %, while the rate of false positives i.e. events 
detected by the algorithm but not by the researcher was 12.8 
%. As a comparison, an analogous setup based on light-sheet 
microscopy had been previously used with Arabidopsis roots 
constitutively expressing the nuclear-localised, fluorescent 
fusion protein H2B::YFP [11]. In that study, the time-lapse 
imagine was performed with a temporal resolution compa-
rable to the data presented here, but cell division events were 
identified as branching points on nuclei trajectories through 
a completely independent and competing approach. When 
validated against manual tracking, that method resulted 
in 26 % false negatives and 13 % false positives [11]. Given 
the fact that the goal is to extract statistical information 
from a limited sample of true events, it is generally prefer-
able to minimize the false positives at the expense of the false 
negatives. In other words, it is acceptable to miss some true 
events because we are generally dealing with a sample, but it 
should be avoided as much as possible to add spurious events 
to the sample. Taking this in consideration, we conclude that 
the method presented here is preferable when detecting cell 
divisions at high temporal resolution.

Validation with lag test
A third independent validation of our method was per-
formed with a “lag test”. We counted the number of 
objects where identifiers were in agreement when per-
forming the tracking using different lags τ . For example, 
we may expect the following equivalence

(2)
(t − 3)

�1
←− (t − 2)

�1
←− (t − 1)

�1
←− t ≡ (t − 3)

�3
←− t

Fig. 6  Lag test: identifiers for objects of interest (excluding single-frame detections) assigned by �1 were compared with identifiers assigned by �2 
(orange line) and �3(green line) transformations

Fig. 7  Time-lapse plots colour-coded for time. The ellipse represents 
the ROI over many frames

Fig. 8  Time-lapse plots colour-coded for angle differences between 
the object displacement vector and the global transformation vector. 
The ellipse represents the ROI over many frames
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where, with an abuse of notation, �τ corresponds to the 
highest-scoring transformation with lag τ . As a repre-
sentative example of this test, we considered 734 objects 
in a sample sequence: 42 (or ≈ 6% ) showed disagree-
ments between �1 and �2 and, excluding these, 29 (or 
≈ 4% ) showed disagreements between �1 and �3 in spe-
cific frames (Fig. 6).

Filtering
After tracking, filtering can be applied in a post-process-
ing stage. A region of interest (ROI) was introduced to 
limit the analysis to the root meristem (ellipse in Figs. 7, 
8; see Methods). The colour code in Fig.  7 illustrates 
when and where events occur and indicates (roughly) if 
plotted points correspond to the same object. In Fig.  8, 
large angle differences between object displacement vec-
tors and a global transformation vector appear in lighter 
colours (e.g. red) and are indicative of possible inlier 
mis-classification. Objects outside of (or far from) the 
ellipse and objects that show large angle differences are 
candidates for removal. In the case of angle differences, 
actual displacements and ε values can be taken into 
account when filtering objects. For example, in the final 
result output from the tracker, we could filter objects out 
of our final analysis when they met one of the following 
conditions: (i) the local displacement of an object away 
from the location predicted by the global transformation 
is above a certain threshold; (ii) the object is moving in 
a direction that is sufficiently different to the rest of the 
object population.

Fluctuations of the ROI area across frames are an indi-
cator for how well the image processing step can identify 
the region of mitotic activity in the sample. When the 
signal-to-noise ratio is good, this region can be accurately 
detected and its relatively small area varies smoothly 
between frames. On the other hand, if there is too much 
noise or few true events, the identified ROI could become 
relatively large and vary non-smoothly from frame to 
frame. In the latter case, debris may lie within an exces-
sively large ROI and be picked up by the tracker. For 
example, in Additional file  1: Fig.  S1 debris appear in 
the top part of the images, particularly towards the later 
stages of the experiment due to drift in microscope cali-
bration or other factors. The root grows in the positive 
x direction (left to right) following the gravity vector, so 
precipitating debris appear moving in the same direction 
of root growth, while static marks or defects in the imag-
ing chamber appear as moving in the opposite direction.

Algorithm’s robustness and general performance
The described tracking algorithm generated compara-
ble results when applied to different roots grown under 
the same conditions, showing expected robustness with 

respect to biological root-to-root variation. We sam-
pled 200 frames each from 3 independent roots, and 
calculated a score for the displacement between pre-
dicted object locations and actual object locations: the 
three distributions showed no significant difference 
among them (Additional file 2: Fig. S3). To measure the 
algorithm performance in dealing with variable object 
density, we plotted average and standard deviation of 
detection rates calculated from 200 frames, for three 
biologically meaningful values of ǫ (minimum required 
distance between distinct objects; see Methods). In these 
cases, the average detection rate is minimised when the 
average number of objects per frame is between 5 and 
10 (Additional file  3: Fig.  S4), while it increases rapidly 
for fewer and more objects per frame. This is due to the 
method of statistical sampling where object sets are sam-
pled in consecutive frames. For very low counts ( < 5 ) 
the global transformation may be chosen unambiguously 
in some cases, while for larger object counts ( > 10 ) the 
algorithm becomes more statistically certain as it can 
choose from a number of good global transformations to 
explain the data. In an intermediate regime however, the 
algorithm may struggle to find a global transform that 
explains the data. Moreover, the variance in detection 
rate decreases dramatically when more than 15 objects 
per frame are present, as expected (Additional file  4: 
Fig. S5).

Methods
Data acquisition
To visualize mitotic events, we used the existing Arabi-
dopsis transgenic line expressing a fusion between the 
cyclin protein CYCB1;1 and the fluorescent protein 
GFP, driven by the endogenous CYCB1;1 promoter [33]. 
The resulting fluorescent reporter CYCB1::GFP accu-
mulates in cells transitioning between G2 and M phases 
of the cell cycle, and is quickly degraded after entering 
mitosis [33] and for this reasons it is widely adopted as 
a reliable live marker for mitotic events. Arabidopsis 
seeds were sterilised and stratified before sowing and 
germination on solid MS plates according to standard 
protocols [34]. Plants were imaged 5 days post-germi-
nation. For this study we imaged and analyzed N = 3 
roots. A single primary root was grown and imaged on 
a custom-made light-sheet microscope setup, as previ-
ously described [16]. In essence, the root was hydro-
ponically grown in a perfusion 5ml cuvette maintained 
under constant light and temperature, with its liquid 
medium fully exchanged every 2 minutes. A full 3D 
scan in fluorescence of the root tip generates a stack of 
60 optical sections 4 μm apart, captured every 15 min-
utes for up to 7 days. A video with the raw time-lapse 
data is available here [31].
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Pre‑processing
Noise analysis
Noise and histogram levels were used on normalised 
grey-scale images taking pixel values in [0, 1]. The noise 
shown in the top panel of Additional file  5: Fig.  S2 was 
estimated using a wavelet-based estimator of the Gauss-
ian noise standard deviation [35, 36]. The middle panel 
in Additional file  5: Fig.  S2 describes the signal. This is 
a simple quasi-signal metric defined as a ratio between 
the 99th and 95th histogram percentile boundary values, 
which are determined empirically for our data to separate 
background from signal. When this value approaches 0, 
the corresponding signal appears very low. For values 
above a calibrated threshold, the corresponding signal 
lies outside the 99th percentile of the data, which typi-
cally happens for isolated bright points in the image. A 
noise range was used to guide downstream strategies 
in the image processing pipeline. An empirically deter-
mined “normal” noise band [0.01,  0.045] was used in 
the sample parameters discussed here. When the noise 
was below 0.01 no denoising was necessary, otherwise 
wavelet denoising was applied. Noise exceeding 0.045, 
typically corresponded to light saturation and/or low 
signal-to-noise ratio, and was due to a low number of 
mitotic events. In such instances additional thresholding 
was applied to the data before wavelet denoising. When 
the noise exceeded 0.1, the signal-to-noise ratio was so 
low that the frame was marked as degenerate. Additional 
file  1: Fig.  S1 contrasts different noise levels in sample 
images and Additional file 5: Fig. S2 plots image proper-
ties over time for a given experiment.

Region of interest
A 2D projection of the data was obtained by summing 
the 3D tensor along the z-axis. An adaptive threshold 
based on image histogram percentile ranges was used 
to construct a narrow-band filter for the 2D data. This 
range can vary erratically between frames as shown in 
the bottom time series in Additional file 5: Fig. S2. A thin 
slice of the image data range (shaded band) was selected 
and an aggressive “Gaussian smoothing” (averaging 
neighbouring pixel values using a Gaussian kernel). An 
empirically-determined sigma value ( σ = 8 ) was used 
to find a mesh-like connected component correspond-
ing to the region of activity in the root tip. The 2D mask 
of this largest component was extended to a 3D mask by 
projecting the 2D region back into the z-plane. The larg-
est connected component in the thresholded image was 
identified as the root tip. These stages are illustrated in 
Additional file  6: Fig. S6. The image processing pipeline 
continues to process data only within the ROI.

For cases where the region of activity is well-isolated 
(smaller region of interest), the processing is more 

efficient as the amount of volumetric data is reduced and 
debris beyond the root are filtered from the downstream 
pipeline. For our sample data, an ROI with area ≈ 105 
pixels corresponded to a well-isolated root tip. Noise and 
light saturation can affect this part of the process making 
the ROI area a proxy for image quality. While the actual 
area will depend on the data, it should vary smoothly and 
be relatively small unless root activity genuinely extends 
to the entire field of view.

Object detection
We performed a “pre-segmentation” procedure to detect 
blob centroids. Segmentation plays a central role in 
many image processing pipelines and typically involves 
(i) thresholding and identifying background, (ii) using 
distance/gradient transformations with peak detection 
to identify markers and (iii) routines such as watershed 
[37] to segment blob labels. For our data, we have found 
it appropriate not to carry out the final segmentation. 
Instead, we carried out the pre-segmentation steps from 
thresholding to peak detection in detecting object cen-
troids. Given the variability in the data over a large frame 
sequence, we have found a simple “annealing threshold-
ing” to be effective. This simply increases a threshold 
iteratively so as to remove large connected components 
beyond a maximum perimeter length (empirically deter-
mined from data to be in the range 1000–2000 pixels) 
thus removing the background from the image. Being 
iterative, this is not as efficient as simpler linear filters but 
it is simple and robust to noise and variability. In extreme 
cases where it was not possible to find a threshold level 
in this manner, we treated the 99th percentile as image 
background and removed it.

Having applied the threshold filter, we identified cen-
troids by (i) performing a difference of Gaussians to 
emphasise blob-like objects, (ii) applying a maximum fil-
ter and (iii) returning the coordinates of the local maxima 
(peaks) in the image. To allow for a fully automated rou-
tine that can cope with arbitrary datasets (in the scope 
of our light-sheet microscopy datasets) the emphasis in 
the centroid detection stage has been to avoid spurious 
centroid detections at the risk of under-sampling, while 
optimising for objects to be identified for at least two 
frames somewhere during the peak of their light intensity 
arc over time. A video with the centroids identification 
(red = centroids identified in the previous frame; white = 
centroids identified in the current frame) in sync with the 
raw time-lapse data is available here [31].

Notes on algorithm assumptions
We consider the role of certain model assumptions in 
coping with variable and noisy data.
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Catchment region
Objects in the point cloud were expected to be sepa-
rated by a minimum distance ε such that under global 
transformation single objects are matched.The param-
eter ε is of central importance at all stages of the image 
processing and tracking pipeline and can be chosen 
based on the data. For sparse point-cloud data there will 
typically be only one match within the ball of radius ε . 
An ε value can be chosen such that it is possible to find 
multiple objects matched to one object. The interpreta-
tion in this case is that all matched points in the catch-
ment region correspond to the same object and that 
multiple points are the result of e.g. image processing 
anomalies. Merging lineages can be useful to avoid gen-
erating superfluous new identifiers. This adds robust-
ness in the event of noisy data or image processing 
anomalies. Alternatives to using a ball of radius ε might 
consider anisotropic catchment regions that factor in 
the direction of the global transformation. The param-
eter ε value may result in the tracker merging objects 
that the object detection stage discriminates between if 
those objects are not sufficiently separated. In the case 
of accurately counting mitotic events, this reduces the 
introduction of false-positives i.e. the erroneous genera-
tion of new identifiers

Consensus translation
Object position updates were treated as small Gaussian 
perturbations of a global transformation. If the position 
of an object is given as

where γ is the translation operator,  τ  is the lag and 
ξi ∼ N (0, σ0) is the random fluctuation for one object, 
taking the “consensus” effectively filters out the noise 
to reveal the global movement. For example, the top 
m translations could be averaged to produce a new 
translation.

Minimum allowed frame detections
Transient events were expected to persist for a minimum 
number of frames greater than or equal to 1. For our data 
the minimum number of frames is 2. Objects that have 
been identified for less than 2 frames, termed single-
frame detections, were excluded from the tracking result.

Gaussian distribution of ROI likelihood
In each frame, the objects of interest were expected to be 
found in the center of the field of view. Objects may be 
detected near the original frame boundaries depending 
on the size of the ROI. Objects can be treated as inliers/
outliers based on standard outlier detection methods 

pi(t) = γ
(
pi(t − τ )

)
+ ξi

under the assumption of normality (for example within 1 
or 2 standard deviations from the mean coordinate).

Further filtering of outliers
Object location and angle differences between object dis-
placements and the global transformation may be used in 
a post-processing stage to remove misclassified outliers. 
In the PRIORS routine in Algorithm listing 1 additional 
transformations beyond the transformations generated 
from the data can be chosen based on modelling assump-
tions. Additionally, the filter routines on lines 16–18 can 
filter data from the final result rather than during the 
tracking process based on modelling assumptions.

Software implementation
The fully automated Python software has been made 
available on GitHub at the link [38] and can be evaluated 
against test data available at the link [31]. The code is eas-
ily installed over a Python scientific library distribution 
such as Anaconda [39]. It includes interactive notebooks 
and can be run from a terminal window to process a 
folder containing 3D image sequence data in fully auto-
mated fashion.

CPU usage was dominated by the image processing 
stage. For the light-sheet microscopy experiments used in 
our evaluation, 3D images were approximately 90, 000KB 
on disk with dimensions (1392, 1040, 60), in (x, y, z) order. 
The software was developed and tested on a personal lap-
top computer with 16GB RAM and a 2.9-GHz Intel Core 
i7-3520M CPU. While times vary between different pipe-
line modes, on average individual frame processing took 
around 40 seconds. More than half of the time spent on 
image processing is spent on de-noising and smoothing 
images. A negligible fraction of CPU time corresponds to 
the tracking stage of the pipeline. The tracking stage alone 
processed 450 data frames in about 1.5 min. The cur-
rent implementation contains significant “meta analysis” 
overhead.

Discussion
In this work we address the problem of tracking transient 
events in structured 3D point clouds and in absence of 
background keypoints, a typical scenario experienced 
in extended in vivo time-lapse imaging of short-lived 
events in whole plant tissues. We present a new tracking 
method and validate it by tracking cell divisions in three 
independent Arabidopsis root meristems, over the course 
of several days. The novelty of the method proposed is in 
the way it deals at the same time with the transient nature 
of the events to be tracked, and the lack of background 
reference points, or keypoints. The validation presented 
against manual tracking of experimental data shows the 
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improved performance of this method compared to pre-
viously published approaches on similar datasets.

Due to the transient nature of mitotic events and to 
the variation in image quality in experiments lasting up 
to one week, we found a lack of guaranteed, permanent 
features in image sequences. To circumvent the lack 
of fiducial markers, we determined markers through 
sub-sampling the set of detected events. In essence, we 
exchanged a morphological analysis problem for a regis-
tration-tracking problem. The algorithm then generates 
and evaluates candidate affine transformations between 
these statistically-sampled markers. This approach is dis-
tinct from existing single-particle 3D tracking methods, 
which typically put greater emphasis on the existence of 
inlier objects. Furthermore, our method is characterised 
by a rigid-structure prior, since the algorithm models 
frame-frame object movement as a superposition of (a) 
long-range affine transformations due to global move-
ment of the tissue and (b) short-range transformations 
due to local fluctuations of the nuclei within the tissue. 
The validation presented against both manual tracking 
and surrogate data indicates the validity of the method in 
tracking transient events in a 3D space.

It should be noted that the described algorithm has not 
been optimised for large point clouds. The point clouds 
we worked with contain less than 100 objects in each 
frame and often less than 20. As the frames are large 3D 
volumetric images, image processing is the performance 
bottleneck. Consequently, we have focused on the analy-
sis and flexibility of the tracking algorithm instead of its 
computational optimisation. The transformation sam-
pling and evaluation stages have been implemented effi-
ciently within a vector-programming paradigm. Focus on 
performance improvements should emphasise efficiency 
of the transformation proposal sampling. This should, in 
general, be considered NP-hard as proposals are gener-
ated by finding congruences in large point cloud data. 
Also, for point clouds with high objects counts, proposal 
sampling could be applied on a suitable subregion of the 
data to avoid excessive evaluations.

Conclusion
In extended time-lapse microscopy, image processing and 
object detection relies heavily on checking and respond-
ing to variability in image properties. This goes beyond 
adaptive thresholding and may result in taking different 
routes through an image processing pipeline. Isolation of 
regions of interest within noisy point cloud data is also 
important.

Our approach was motivated by the case of transient 
florescent markers used in biology, where sub-cellular 
fluctuations are superposed with large-scale movements 
due to tissue growth. We present a clear case-study 

based on data on mitotic divisions in growing Arabi-
dopsis roots, which could be immediately applied to 
similar datasets from other tissues. Given the vast vari-
ability in image quality and morphological characteris-
tics (e.g. tissue types, density of objects to be tracked, 
landmark reference points, etc) in time-lapse micros-
copy datasets in life sciences and plant biology in par-
ticular, we believe that the novel approach proposed 
here will be a useful addition to the existing toolbox 
for single-particle tracking in 3D. Moreover, we expect 
that our approach will be applicable to any other situa-
tions where tracking transient events embedded in rigid 
structures is required.
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