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Abstract 

Background: Physical dormancy (hard seed) occurs in most species of Leguminosae family and has great conse-
quences not only for ecological adaptation but also for agricultural practice of these species. A rapid, nondestructive 
and on-site screening method to detect hard seed within species is fundamental important for maintaining seed 
vigor and germplasm storage as well as understanding seed adaptation to various environment. In this study, the 
potential of multispectral imaging with object-wise multivariate image analysis was evaluated as a way to identify 
hard and soft seeds in Acacia seyal, Galega orientulis, Glycyrrhiza glabra, Medicago sativa, Melilotus officinalis, and 
Thermopsis lanceolata. Principal component analysis (PCA), linear discrimination analysis (LDA), and support vector 
machines (SVM) methods were applied to classify hard and soft seeds according to their morphological features and 
spectral traits.

Results: The performance of discrimination model via multispectral imaging analysis was varied with species. For M. 
officinalis, M. sativa, and G. orientulis, an excellent classification could be achieved in an independent validation data 
set. LDA model had the best calibration and validation abilities with the accuracy up to 90% for M. sativa. SVM got 
excellent seed discrimination results with classification accuracy of 91.67% and 87.5% for M. officinalis and G. orientulis, 
respectively. However, both LDA and SVM model failed to discriminate hard and soft seeds in A. seyal, G. glabra, and T. 
lanceolate.

Conclusions: Multispectral imaging together with multivariate analysis could be a promising technique to identify 
single hard seed in some legume species with high efficiency. More legume species with physical dormancy need to 
be studied in future research to extend the use of multispectral imaging techniques.
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Background
Physical dormancy (PY, referred as hard seed) occurs in 
at least 18 angiosperm plant families including Fabaceae 
[1, 2], and is caused by a water-impermeable seed or fruit 
coat [1, 3, 4]. This kind of dormancy prevents seeds from 

imbibing water even under favorable environmental con-
ditions, and it may play a role in determining the time 
and place of seed germination in the field. Also, physical 
dormancy may help to ensure long-term seed survival, 
especially for wild species growing in harsh environ-
ments [5]. For example, the storage life of physical dor-
mant soybean seeds is longer than those of nondormant 
seeds [6]. Furthermore, physical dormant seeds gener-
ally exhibit a greater vigor than those without physical 
dormancy in Codariocalyx motorius [7], Glycyrrhiza 
uralensis [8], and Lespedeza bicolor [9]. However, from 
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agronomic perspectives, physical dormancy is an unde-
sirable trait because it prevents rapid imbibition and syn-
chronous germination, leading to non-uniform seedling 
establishment [10]. Therefore, distinguishing seeds with 
and without physical dormancy has great practical sig-
nificance, as it is important to seed vigor and germplasm 
storage as well as understanding seed adaptation to vari-
ous environment.

Since hard seed is impermeable to water, distinguishing 
whether a seed imbibed or not when soaking in the water 
is the most common method to determine seed physi-
cal dormancy [1, 11]. However, this process destroys the 
seed coat structure of soft seeds and thus not suitable 
for online measurements and sorting. Moreover, this 
method is very time consuming as it often takes several 
days to a month to detect presence of physical dormancy 
depending on species [12]. Thus, a rapid, nondestruc-
tive and on-site screening method to detect hard seed is 
necessary not only for research purpose but also for seed 
grading and sorting in seed industry.

Morphological, structural and compositional proper-
ties of seed coat have been reported to affect seed dor-
mancy status [3, 4, 13–15]. The intraspecific or even 
intra-individual variation in seed size have been found 
to influence seed dormancy status [1, 16]. Also, seed coat 
compositional properties such as polyphenols content 
including flavonoids, lignin and lignans showed a posi-
tive relationship with dormancy in  faba bean [17] and 
pea [14]. These results imply discriminating soft and hard 
seeds through their morphological and compositional 
traits is possible. Indeed, previous studies [18] found 
that near infrared spectroscopy can provide a high accu-
racy in identifying hard seeds of three legume species. 
However, this method did not apply seed image analysis 
techniques, and seed spectral traits was measured indi-
vidually which was time consuming and impractical.

Multispectral imaging is an emerging technology that 
integrates conventional imaging and spectroscopy to 
simultaneously attain both spatial and spectral infor-
mation of an object [19]. The merits of nondestruc-
tive, straightforward measurement strategies that do 
not require pre-treatment make multispectral imag-
ing analysis ideally suited for online process monitoring 
and quality control. Recently, this technique has been 
increasingly used to assess food safety and quality, such 
as contaminant detection, defect identification, constitu-
ent analysis, and quality evaluation [20, 21]. In regard of 
seed identification, multispectral imaging was originally 
applied to discrimination of transgenic rice seeds from its 
non-transgenic counterparts [20], discrimination of rice 
seeds among different varieties [22], and classification of 
maize kernels [23]. Refer to the potential morphological 
and chemical difference among hard seed and soft seed, 

multispectral imaging may have a great potential in dis-
tinguishing seeds with or without physical dormancy.

Six common legume species including Acacia seyal, 
Galega orientulis, Glycyrrhiza glabra, Medicago sativa, 
Melilotus officinalis, and Thermopsis lanceolata were 
applied in this study. Among these species, G. orientulis, 
M. sativa, and M. officinalis [24, 25] are important for-
age species, which are widely cultivated in the world. G. 
glabra [26] and T. lanceolate [27] have been used as tra-
ditional Chinese medicine. A. seyal has medical and eco-
logical value [28]. According to previous studies [24–28], 
seeds of these six species exhibited physical dormancy 
which restrict their cultivation. Thus, discriminating 
hard and soft seeds for these species is extremely impor-
tant not only for research purpose but also for practical 
significance.

Herein, we described a new approach with merits of 
nondestructive, rapid and high throughput to discrimi-
nate hard and soft seeds of legume species, based on the 
VideometerLab 4 spectral imaging system in combina-
tion with multivariate analysis.

Results
Morphologic feathers of hard and soft seeds
The difference in morphological traits between hard and 
soft seeds of a species was varied with species (Table 1). 
For M. sativa and M. officinalis, a significant difference 
was observed between hard and soft seeds of each spe-
cies in terms of the mean value of seed area, length, 
Width/Length Ratio, compactness circle, BetaShape a, 
BetaShape b, CIELab L*, CIELab a*, CIELab b*, and satu-
ration, while no significant difference existed in terms of 
the mean value of compactness ellipse and vertical ori-
entation. However, for A.seyal, G. glabra and T. lanceo-
late, almost all morphological traits except for area of T. 
lanceolate and Width/Length Ratio, and CIELab L* of G. 
glabra, showed no significant difference between hard 
seed and soft seed within each species. For G. orientu-
lis, a significant difference was found between hard seed 
and soft seed in terms of the mean value of seed area, 
length, compactness ellipse, CIELab a* and hue, while no 
significant difference existed in terms of length, width, 
Width/Length Ratio, compactness circle, BetaShape a, 
BetaShape b, vertical skewness, CIELab L*, CIELab b*, 
and saturation.

Table 1 Morphological features of hard and soft seeds 
for six species.

Spectroscopic analysis of hard and soft seeds
Except for A.seyal, the spectroscopic analysis revealed a 
significant difference between hard and soft seeds of the 
other five species in the mean reflectance (Fig.  1). For 
M. sativa and M. officinalis, soft seeds have significant 
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higher reflectance than those of hard seeds in the whole 
wavelength region. Consistent with M. sativa and M. 
officinalis, soft seeds of G. glabra also showed a higher 

reflectance than hard seeds, while the statistical sig-
nificance was observed only in the spectral range from 
405 nm to 590 nm and from 850 nm to 970 nm. Contrast 
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with above, the soft seeds of G. orientulis showed a sig-
nificant lower reflectance than the hard seeds in the 
spectral range from 515 nm to 570 nm, while an opposite 
trend was observed in the spectral range from 660 nm to 
970  nm. For T. lanceolate, no significant difference was 
detected in the reflectance in the whole spectral range 
except for in 970 nm.

Principal component analysis (PCA)
There was no distinct difference in terms of PCA score 
between hard and soft seeds for all species regardless of 
dimensionality applied (Additional file 1: Figure S1, Addi-
tional file  2: Figure S2 and Additional file  3: Figure S3). 
Here, we took the first two principal components as an 
example.

The first two principle components extracted from 
the morphological and spectral traits explained 55.11%, 
55.52%, 61.18%, 57.42%, 55.40% and 56.80% of the origi-
nal variance for A. seyal, G. orientulis, G. glabra, M. offici-
nalis, M. sativa, and T. lanceolate, respectively (Fig.  2). 
However, the biplot of PCA for either of the species did 
not reveal a distinct separation between hard and soft 
seeds, suggesting that discrimination between these two 
kinds of seed within species through PCA is difficult.

Seed classification based on linear discrimination analysis 
(LDA) model
The performance of LDA model in classifying hard seeds 
and soft seeds was varied with species (Table 2). For M. 
officinalis, M. sativa, and G. orientulis, LDA model had 
a high average accuracy value of 90%, 90% and 85%, 
respectively in classifying hard and soft seeds in inde-
pendent validation data sets. Meanwhile, the sensitivity 
and specificity for hard seed classification in these three 
species were reasonably good with a range from 82.69% 
to 86.67%, and from 84.29% to 95.59%, respectively, for 
independent validation data sets. For G. glabra and T. 
lanceolate, a high classification accuracy and specific-
ity was observed in both species for independent vali-
dation data sets, while the classification specificity for 
hard seeds was quite low with value of 50% and 33.33%, 
respectively. Contrast with this, the average correct 
classification and specificity for A. seyal was 87.5% and 
98.11%, respectively. However, the classification specific-
ity for hard seeds of A. seyal was only 7.14%.

There was a large variation for the contribution of each 
trait on LDA model across species (Fig. 3). For M. sativa, 
the compactness circle explained 11.7% of the total vari-
ation, followed by vertical skewness (10.8%), hue (9.2%), 
490 nm (7.9%) and 515 nm (7.1%). For M. officinalis, the 
vertical skewness explained 29.7% of the total variation, 
followed by compactness ellipse (17.1%), BetaShape b 
(16.3%), BetaShape a (14.3%) and Width/Length Ratio, 

(4.4%) (Fig.  3). Similarly, for M. officinalis, the verti-
cal skewness explained 32.0% of the total variation of G. 
orientulis, followed by BetaShape b (21.2%), BetaShape 
a (19.9%), compactness ellipse (9.5%) and hue (2.8%) 
(Fig. 3).

Seed classification based on support vector machine (SVM) 
model
In agreement with the LDA model, the performance of 
SVM model in classifying hard and soft seeds differed 
among species (Table  3). SVM model had an average 
accuracy value as high as 91.67%, 89.17% and 87.5% in 
seed classification for independent validation data sets 
of M. officinalis, M. sativa, and G. orientulis, respectively. 
Meanwhile, the sensitivity and specificity for hard seed 
classification in these three species were reasonably good 
with a range from 76.67% to 88%, and from 87.14% to 
96.67%, respectively. For A. seyal, G. glabra, and T. lan-
ceolate, the average classification accuracy was 88.33%, 
80% and 77.5%, respectively. However, the classification 
sensitivity for hard seeds in G. glabra, and T. lanceolate 
was quite low with value of 46.88% and 7.41%, respec-
tively. Similarly, for classification sensitivity, the classifi-
cation specificity for A. seyal was 0.

For all species, the reflectance in the near infrared 
region (840–970 nm) contributed more than morpholog-
ical traits for SVM model. For example, the reflectance 
in 970 nm, 940 nm, 880 nm and 850 nm ranked the first 
five traits contribute to SVM model, and explained 35.2%, 
33.9% and 36.1% of the total variation for M. officinalis, 
M. sativa and G. orientulis, respectively (Fig. 4).

Discussion
Previous studies [1, 14, 17] have indicated that morpho-
logical and spectral traits of a species may differ between 
hard and soft seeds, and thus can be employed as a tool 
for seed classification. Consistent with this, our study 
clearly shows that there is a significant difference in at 
least one of morphological and spectral traits between 
hard and soft in six tested species. However, it is worth 
noting that an overlap exists between hard seed and soft 
seeds, though significant difference is observed in terms 
of the mean value, suggesting that it is not appropri-
ate to discriminate hard and soft seed of a species with 
any single trait. Moreover, the difference between hard 
and soft seed is varied a lot across different species. For 
example, hard and soft seeds of M. officinalis, M. sativa 
and G. orientulis have significant difference in most traits 
measured both in morphological and spectral. However, 
for the other three species, significant difference between 
hard and soft seeds is only detected in a very few traits.

Also, no consistent difference is observed between hard 
and soft seeds among species. For example, hard seeds of 
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M. officinalis, M. sativa and G. orientulis are smaller than 
soft seeds, while the opposite trend is observed in T. lan-
ceolate. Besides, soft seeds of M. officinalis, M. sativa and 
G. glabra have a higher reflectance in the whole wave-
length region than hard seeds, and an opposite trend is 
observed in the short wavelength region (365–590  nm) 
in G. orientulis. These variations among species may also 

explain the performance difference of discrimination 
model on different species.

It is clearly to see that from the PCA scatter plot the 
PCA method could not separate hard and soft seeds in all 
test species. A possible reason is that PCA method aims 
to maximize the variance of variables rather than to max-
imize the discriminability of hard and soft seeds. In this 
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case, if the variables between groups have very similar 
mean value with a large variation, the total variance will 
be mainly composed of variance within groups but not 
those between groups. Thus, PCA would not detect the 
difference among groups. Indeed, either for morphologi-
cal or spectral trait, they all have very close mean value 
with a large overlap distribution between hard and soft 
seeds in six species. Also, we notice that a part of infor-
mation has been lost after PCA analysis, since the first 
two principle components only explained the total vari-
ance ranged from 55.11% to 62.69%, the loss of informa-
tion may further lead to the failure to separate groups by 
PCA.

Unlike PCA, the supervised methods such as LDA and 
SVM, aim to minimize the distance within classes and to 
maximize the distance between groups, thus they showed 
good discriminability among groups [29–31]. Consist-
ent with this, our study shows that both LDA and SVM 
model provide a high classification accuracy for hard and 
soft seeds in M. officinalis, M. sativa and G. orientulis. 
It is interesting that, although both the LDA and SVM 
models have a high accuracy in seed discrimination, they 

seem to work in completely different ways. When we take 
a close look at the relative importance of each feature, 
the SVM model mainly relies on NIR region spectral trait 
in model building since spectral traits contribute more 
in the model, while LDA focus more on seed morphol-
ogy which contribute most in LDA discrimination model 
building. Hu et  al. [32] also had a remarkably similar 
finding in seed discrimination between alfalfa and sweet 
clover via multispectral imaging analysis. However, we 
failed to detect the reason in depth for this differentia-
tion between these two methods. Further study involving 
methods combining LDA and SVM may get higher accu-
racy results for multispectral analysis of hard seeds.

Contrast with this, although the classification accu-
racy is reasonably good in A. seyal, G. glabra, and T. 
lanceolate, the model is less specificity or sensitive 
since the classification specificity for hard seeds in A. 
seyal is only 7.14%, and the sensitivity for hard seeds 
in G. glabra, and T. lanceolate is only 50% and 33.33%, 
respectively. In the former case, most soft seeds are 
misclassified as hard seeds; while in the latter case, the 
model will classify hard seeds as soft seeds in a high 
probability. This inconsistence between classification 
accuracy and sensitivity or specificity are mainly attrib-
uted to the unbalanced data set. For instance, the num-
ber of hard and soft seeds of A. seyal were unbalanced 
with 30 and 250 in the calibration set, and 14 and 106 
in the independent validation data set. In this case, 
when the model classified most seeds as hard seed, the 
model will still have a high average classification accu-
racy and sensitivity, but with a very low specificity. 
However, it is worth noting that the unbalanced data 
is not the reason for poor performance of the model 
since there is no reliable empirical evidence to support 
the claim that unbalanced data set has a negative effect 
on the performance of LDA [29]. Indeed, when some 
hard seeds of A. seyal were randomly removed from the 
sample, the average classification accuracy and sensitiv-
ity is decreased and consequently increases the classifi-
cation specificity. These results suggest current model 
used in our study could not discriminate hard and soft 
seeds in A. seyal, G. glabra, and T. lanceolate. This is 
possibly due to the difference in morphological and 
spectral traits between hard and soft seeds is not big 
enough in our study. Sun et al. [33] reported that using 
near infrared spectroscopy can provide a high accu-
racy in identifying hard seeds in G. uralensis, and their 
results showed a significant difference in light absorb-
ance when the wavelength is higher than 1000  nm. 
Consistent with this, our study also showed that the 
difference in spectral trait between hard and soft seeds 
in G. glabra increased as the wavelength increasing. 
In addition, a significant difference between hard and 

Table 2 Performance of  linear discrimination analysis 
(LDA) model in identifying single hard seed in six species

CV cross validation

Species Accuracy (%) Sensitivity (%) Specificity (%)

Acacia seyal

 Calibration 91.79 99.60 26.67

 CV 86.79 96.80 3.33

 Validation 87.50 98.11 7.14

Galega orientulis

 Calibration 91.07 88.72 93.20

 CV 86.07 84.21 87.76

 Validation 85.00 86.00 84.29

Glycyrrhiza glabra

 Calibration 82.86 60.00 92.82

 CV 72.14 40.00 86.15

 Validation 77.50 50.00 87.50

Medicago sativa

 Calibration 92.86 89.58 96.32

 CV 88.93 86.81 91.18

 Validation 90.00 82.69 95.59

Melilotus officinalis

 Calibration 95.36 89.74 97.52

 CV 92.14 83.33 95.54

 Validation 90.00 86.67 91.11

Thermopsis lanceolata

 Calibration 86.07 55.38 95.35

 CV 80.00 38.46 92.56

 Validation 75.00 33.33 87.10
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soft seeds in A. seyal is detected only at 970 nm. Thus, a 
wide range wavelength such as near infrared spectros-
copy may help to improve the data quality and favor 
discrimination model building. Furthermore, other 
machine learning tools, such as random forest (RF) 
and back propagation neural network (BPNN), which 

have been proved to be effective in discrimination of 
soybean seeds [22] and high-quality watermelon seeds 
[21], can be applied in separating hard and soft seeds in 
future studies.
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Materials and methods
Seed sample
Seeds of Acacia seyal, Galega orientulis, Glycyrrhiza 
glabra, Medicago sativa, Melilotus officinalis, and Ther-
mopsis lanceolata (Fig.  5) were provided by the Official 
Herbage and Turfgrass Seeds Testing Center, Ministry of 
Agriculture and Rural Affairs, China. Seeds were kept in 
water-proof bags in laboratory conditions (20 °C, 35% rel-
ative humidity) till the time of image acquisition in April 
2019. The initial moisture content of A. seyal, G. orientu-
lis, G. glabra, M. sativa, M. officinalis, and T. lanceolate 
were 8.5%, 7.3%, 6.8%, 6.5%, 6.7% and 8.1%, respectively.

The amount of seeds used for the experiment of hard 
and soft seed classification was 400. For each species, 280 
seeds for each sample were randomly selected as calibra-
tion set and the remaining 120 seeds were used for inde-
pendent validation set.

Multispectral imaging system
Multispectral images were acquired with a Videometer-
Lab4 (Videometer, Hørsholm, Denmark) multispectral 

imaging system. The samples of 400 seeds for each species 
in each petri dish were placed beneath a hollow integrat-
ing sphere, with a camera located in the top of the sphere. 
During image capture, the sphere closes over the sample 
stage to create optically closed conditions, allowing even 
lighting with minimal shadows and specular reflection. 
Samples were illuminated by 19 high power light emit-
ting diodes (LEDs) at specific wavelengths: 365, 405, 430, 
450, 470, 490, 515, 540, 570, 590, 630, 645, 660, 690, 780, 
850, 880, 890, and 970 nm. The LEDs strobe successively 
in a scan time of approximately five seconds, resulting in 
a monochrome image at each wavelength at 19 different 
wavelengths. The images consisted of 2192 × 2192 pixels, 
with a high spatial resolution of approximately 40  μm/
pixel. Before acquiring multispectral images, the system 
was fully calibrated radiometrically and geometrically by 
using three successive plates: a white one for reflectance 
correction, a dark one for background correction and a 
doted one for geometric pixel position aligning calibra-
tion, followed by a light setup calibration.

Determination of hard seed
Following imaging acquisition, each seed was placed on 
two sheets of filter paper (Hangzhou Shuangquan, Hang-
zhou, Zhejiang, China) moistened with 10  ml distilled 
water in 12-cm-diameter petri dishes and incubated at 
20 °C for 14 days. The number of imbibed (soft seed) and 
unimbibed (hard seed) seeds in each dish was monitored 
daily. When a seed imbibed, there was a visible change in 
its size/volume, thus imbibed and unimbibed seeds could 
easily be distinguished from each other. The number of 
true hard and soft seeds for each data set was shown in 
Table 4.

Multispectral image analysis
The main objects appeared in the acquired multispectral 
image are the seeds in addition to some other objects, 
such as the Petri dish and its surrounding background 
that should be removed from the image before extract-
ing spectral information of the individual seeds. Image 
segmentation was performed using the VideometerLab 
software version 3.10. To remove the image background, 
all items, except the seeds, were removed by a normal-
ized canonical discriminant analysis (nCDA) [34] and 
segmented using a simple threshold. Then, the attributes 
of the seeds such as morphological traits and main spec-
tral features of all individual seeds were extracted from 
the image analysis and processing. The morphological 
traits included area, length, width, Width/Length Ratio, 
compactness circle, compactness ellipse, BetaShape a, 
BetaShape b, vertical skewness, CIELab L*, CIELab a*, 
CIELab b*, saturation, hue and vertical orientation [19, 
35]. Explanation of morphological traits were listed in 

Table 3 Performance of  support vector machine (SVM) 
model in identifying single hard seed in six species

CV  cross validation

Species Accuracy (%) Sensitivity (%) Specificity (%)

Acacia seyal

 Calibration 89.29 100.00 0.00

 CV 89.29 100.00 0.00

 Validation 88.33 100.00 0.00

Galega orientulis

 Calibration 91.79 90.98 92.52

 CV 89.29 87.22 91.16

 Validation 87.50 88.00 87.14

Glycyrrhiza glabra

 Calibration 82.14 57.65 92.82

 CV 67.50 4.71 94.87

 Validation 80.00 46.88 92.05

Medicago sativa

 Calibration 95.00 93.75 96.32

 CV 86.79 83.33 90.44

 Validation 89.17 84.62 92.65

Melilotus officinalis

 Calibration 90.36 73.08 97.03

 CV 88.57 71.79 95.05

 Validation 91.67 76.67 96.67

Thermopsis lanceolata

 Calibration 80.71 20.00 99.07

 CV 80.00 20.00 98.14

 Validation 77.50 7.41 97.85
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Additional file  4: Table  S1. The extracted spectral sig-
natures of the seeds represent the mean intensity of the 
reflected light at each single wavelength calculated from 
all seed pixels in the image.

Multivariate data analysis
Multivariate analysis including PCA, LDA and support 
vector machines (SVM) using FactoMineR, MASS, and 
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e1071 package in R respectively in the present study to 
classify and screen the seeds.

PCA
To identify the patterns hidden in the extracted morpho-
logical features and spectral data of all seeds, PCA was 
carried out as an explorative multivariate data analysis 
technique, which commonly used to get an overview of 
the systematic variation in the data and to explore the 
possibility of grouping the seeds of similar morphology 
and spectral profiles [36–38]. PCA score was calculated 
based on the first two, three and all PCs.

LDA
LDA is a well-known algorithm, which calculates a sur-
face separating the sample groups, by establishing a lin-
ear discriminant function that maximizes the ratio of 
the between class and the within-class variances [37]. In 
this study, the seeds were randomly sampled as calibra-
tion (70% of total sample) and validation sets (remained 
30%) as shown in Table  4, LDA classification models 
were developed using the calibration set, and the models 
obtained were validated using the independent valida-
tion set, which was not used during model building. To 
reduce the potential overfitting, the LDA models were 
developed under cross-validation using leave-one-out 

cross-validation method in which one seed was taken out 
at a time, and the LDA model was built for the remain-
ing seeds. The model was then used to classify the seed 
left out, and the same routine was repeated until all seeds 
were removed [39].

The classification method performance was evaluated 
by the ability to detect the presence of hard seeds in seed 
lots of each species through the sensitivity (eq. 1), speci-
ficity (eq. 2), and accuracy (eq. 3).

where, TH true hard seed, FS false soft seed, TS true soft 
seed and FH false hard seed.

SVM
Least squares-support vector machine (SVM) is a super-
vised learning algorithm used for classification and 
regression tasks proposed by Cortes and Vapnik [40]. 
Compared with other analysis methods, SVM can learn 
in high-dimensional characteristic space with fewer 
calibration variables or samples, and details of the SVM 
algorithm can be found in previous reported research 
[41, 42]. It has been effectively used to perform multi-
variate function estimation or non-linear classification. 
In this study, the linear kernel was used for classification. 
To reduce the potential overfitting, the LS-SVM mod-
els were developed under cross-validation using leave-
one-out cross-validation method as described above. 
The quality of classification was evaluated by calculation 
of sensitivity, specificity and classification accuracy as 
described above.

Conclusion
In brief, our study clearly shows that multispectral imag-
ing together with multivariate analysis could be a prom-
ising technique to identify hard seeds in some legume 

(1)Sensitivity (%) = 100 × TH / (TH + FS)

(2)Specificity(%) = 100 × TS / (TS + FH)

(3)Accuracy (%) = 100 × (TH + TS) / Total

Fig. 5 Images of hard and soft seeds of six species

Table 4 Number of hard and soft seeds for each data set of six species

Acacia seyal Galega orientulis Glycyrrhiza glabra Medicago sativa Melilotus officinalis Thermopsis 
lanceolata

Calibration (n = 280)

 Hard 250 133 85 144 78 65

 Soft 30 147 195 136 202 215

Validation (n = 120)

 Hard 106 50 32 52 30 27

 Soft 14 70 88 68 90 93
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species with high efficiency. For M. sativa, LDA model 
has the best calibration and validation abilities with accu-
racy up to 90%. For M. officinalis and G. orientulis, SVM 
give excellent seed discrimination results with classifica-
tion accuracy of 91.67% and 87.5%, respectively. However, 
both LDA and SVM model failed to discriminate hard 
and soft seeds in A. seyal, G. glabra, and T. lanceolate.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1300 7-020-00659 -5.

Additional file 1: Figure S1. First two principal components score for 
hard and soft seeds.
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