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Abstract 

Background:  Timely and accurate estimates of canopy chlorophyll (Chl) a and b content are crucial for crop growth 
monitoring and agricultural management. Crop canopy reflectance depends on many factors, which can be divided 
into the following categories: (i) leaf effects (e.g., leaf pigments), (ii) canopy effects (e.g., Leaf Area Index [LAI]), and (iii) 
soil background reflectance (e.g., soil reflectance). The estimation of leaf variables, such as Chl contents, from reflec-
tance at the canopy scale is usually less accurate than that at the leaf scale. In this study, we propose a Visible and 
Near-infrared (NIR) Angle Index (VNAI) to estimate the Chl content of soybean canopy, and soybean canopy Chl maps 
are produced using visible and NIR unmanned aerial vehicle (UAV) remote sensing images. The VNAI is insensitive to 
LAI and can be used for the multi-stage estimation of crop canopy Chl content.

Results:  Eleven previously used vegetation indices (VIs) (e.g., Pigment-specific Normalized Difference Index) were 
selected for performance comparison. The results showed that (i) most previously used Chl VIs were significantly cor-
related with LAI, and the proposed VNAI was more sensitive to Chl content than LAI; (ii) the VNAI-based estimates of 
Chl content were more accurate than those based on the other investigated VIs using (1) simulated, (2) real (field), and 
(3) real (UAV) datasets.

Conclusions:  Most previously used Chl VIs were significantly correlated with LAI whereas the proposed VNAI was 
more sensitive to Chl content than to LAI, indicating that the VNAI may be more strongly correlated with Chl content 
than these previously used VIs. Multi-stage estimations of the Chl content of cropland obtained using the VNAI and 
broadband remote sensing images may help to obtain Chl maps with high temporal and spatial resolution.
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Background
Chlorophyll (Chl) a and b are the most important pig-
ments for photosynthesis in green vegetation [1–4]. Leaf 
and canopy Chl content can directly reflect the nutrient 

status of plant stress and senescence status since (i) nitro-
gen is a component of Chl and (ii) nitrogen is related to 
many physiological stresses of crops [5–10]. Timely and 
accurate estimates of canopy Chl concentrations are cru-
cial in crop growth monitoring and agricultural man-
agement. Prior to the establishment of remote sensing 
techniques, the ability to perform large-scale crop Chl 
surveys was limited, since traditional manual methods 
for the measurement of crop Chl contents are inefficient, 
costly, and cannot provide crop Chl maps over large 
areas.
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Optical remote sensing can capture the surface 
radiation that is emitted from the Earth at visible to 
near-infrared (NIR) and short-wave infrared (SWIR) 
wavelengths. Visible and NIR bands are crucial for esti-
mating crop parameters [11]. The crop spectral reflec-
tance in the blue and red bands is lower than that in 
other optical bands as a result of Chl absorption [11]. 
Additionally, crop spectral reflectance in the NIR 
region is much higher than that in the visible band [12]. 
The features described above can be detected by using 
broadband satellite remote sensing, and accordingly 
many broadband satellite-based remote sensing vegeta-
tion indices (VIs) have been developed to monitor veg-
etation parameters.

Green vegetation leaf reflectance primarily depends on 
several leaf parameters, such as the internal structural 
parameters of the leaf mesophyll, pigment content (e.g., 
Chl, carotenoid, and anthocyanin), leaf water content, 
and leaf dry matter content [13–15]. The absorption fea-
tures of chlorophylls, carotenoids, and anthocyanins are 
located in the visible bands [16–18]. Water absorbs radia-
tion from the visible to the SWIR band; however, leaf 
water content is mostly affected by leaf reflectance in the 
NIR and SWIR bands [16–18]. Leaf dry matter content 
influences multiple intercellular scattering and affects the 
canopy reflectance in the NIR bands [16]. Additionally, 
the leaf reflectance properties in the visible bands have 
been found to be dependent on Chl content according to 
many global sensitivity analyses based on the Properties 
Optique Spectrales des Feuilles (PROSPECT) model [19].

Many field-, laboratory-, and PROSPECT-based esti-
mates of Chl content have been successfully carried out 
in recent years. These studies can be divided into the fol-
lowing categories: (i) radiative transfer models (RTMs), 
(ii) VIs, (iii) empirical regression, and (iv) synergistic 
methods. RTMs (e.g., PROSPECT, a combination of 
PROSPECT and the Scattering by Arbitrarily Inclined 
Leaves (SAIL) model [PROSAIL], Invertible Forest 
Reflectance Model [INFORM]) are founded on physi-
cal principles and can be used to simulate leaf optical 
reflectance [13, 14]. Spectral VIs have been widely used 
to estimate Chl, such as the Pigment-specific Normalized 
Difference Index [20], the Blue Red Pigment Index [21], 
and the Normalized Total Pigment to Chl Index [22]. 
Empirical regression methods (e.g., partial least squares 
regression [PLSR], artificial neural networks, and sup-
port vector machine regression [SVR]) can be used to 
determine direct relationships between spectral features 
(spectral reflectance or pigment VIs) and Chl content by 
using a large number of ground measurements [23, 24]. 
Synergistic methods estimate Chl content by combin-
ing multiple techniques (e.g., INFORM + lookup table 
(LUT) method [25], PROSAIL + LUT method [26, 27], 

VIs + SVR [28, 29], VIs + PLSR [30], PROSAIL + VIs 
[31]).

Crop canopy reflectance depends on many factors, 
which can be divided into the following categories: (i) 
leaf effects (e.g., leaf pigments and leaf water content), (ii) 
canopy biophysical effects (e.g., Leaf Area Index [LAI], 
leaf inclination angle), and (iii) soil background reflec-
tance (e.g., soil moisture and soil reflectance) [32–34]. 
The soil background and canopy effects cause a series of 
problems in the canopy-scale estimation of leaf param-
eters. At the local-scale, some factors can be assumed 
to be negligible due to their stable within-crop variation 
[16]. The PROSAIL model can be used to analyze the 
spectral reflectance of vegetation canopy at wavelengths 
of 400–2500  nm [34, 35]. A global sensitivity analysis 
using the PROSAIL model showed that LAI is a key vari-
able that governs the crop canopy reflectance properties 
over the entire spectrum [32]. The absorption features 
of pigments are located in the visible bands [36–39], and 
therefore, the estimation of leaf variables (e.g., Chl con-
tent) based on reflectance data is usually less accurate at 
the canopy-scale than at the leaf-scale as a result of can-
opy effects [40–44].

Previous studies have developed hyperspectral tech-
niques for the estimation of crop canopy Chl content, 
which are less sensitive to canopy effects. Four examples 
of such methods are: (i) Chl VIs based on optimum band 
combinations [45]; (ii) band-depth analysis techniques 
[46, 47]; (iii) continuous wavelet transform techniques 
[48, 49]; and (iv) red-edge-based techniques [50–54]. By 
testing all available band combinations, optimum band 
combination methods return VIs with the highest accu-
racy of all available band combinations [45]. Usually, 
optimum band combination methods achieve high accu-
racy when mapping crop Chl content at the local scale. 
Due to the deepening and widening of the red absorption 
region with increasing Chl content, band-depth analysis 
techniques can be used to quantify the canopy Chl con-
tent based on visible and NIR hyperspectral reflectance 
[46, 47]. Wavelet transform techniques are effective tools 
for signal analysis that return the wavelet coefficients 
of hyperspectral reflectance, which can be used as the 
modeling variables to estimate Chl content [48, 49]. The 
“red edge” refers to the rapid change in the hyperspectral 
reflectance of vegetation that occurs in the NIR bands as 
vegetation grows [50–54]. The red edge arises due to (a) 
the Chl absorption in the visible bands and (b) the high 
hyperspectral reflectivity of vegetation in the NIR region. 
In recent years, several promising red-edge-based Chl VIs 
have been developed for the estimation of the Chl con-
tent of field canopies [50, 55, 56]. For instance, Daughtry 
et  al. [55] showed that the ratio of the Red-edge-based 
Transformed Chlorophyll Absorption Reflectance Index 
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(TCARI) and the Optimized Soil-adjusted VI (OSAVI) 
was linearly related to leaf Chl content in a variety of veg-
etation cover and soil background types. Additionally, 
Barnes et  al. [57] used the Normalized Difference Red-
edge Index (NDRE: (R790−R720)/(R790 + R720)) to quan-
tify canopy Chl content. Their results suggested that the 
index can be used to estimate Chl content. Moreover, the 
results of Gitelson et al. [50] also indicated that the ratio 
of two red-edge bands (705 nm and 783 nm) (Red-edge 
Chlorophyll Index [CI(red edge)]: (R783/R705) − 1) can be 
used to estimate the Chl content of vegetation.

However, unlike Chl estimation methods based on 
widely used cost-free satellite broadband remote sens-
ing data (e.g., Landsat Thematic Mapper [TM]/Enhanced 
Thematic Mapper Plus [ETM +]/Operational Land 
Imager [OLI]), Chl estimation methods based on narrow-
band hyperspectral and red-edge remote sensing data are 
limited due to the scarcity of sensors [58, 59]. As men-
tioned before, most high-performance hyperspectral-
based and red-edge-based remote sensing techniques 
cannot be applied to broadband remote sensing. Thus, it 
is important to establish a broadband remote sensing Chl 
VI which is less sensitive to canopy effects.

This work aimed to develop a broadband remote sens-
ing Chl VI for the multi-stage estimation of crop canopy 
Chl content that is insensitive to LAI. We propose a 

Visible and Near-infrared Angle Index (VNAI) to obtain 
estimates of soybean canopy Chl content and produce 
soybean canopy Chl maps by using broadband visible 
and NIR unmanned aerial vehicle (UAV) remote sens-
ing images. The effects of LAI on canopy spectral were 
mitigated by using the VNAI. Our study evaluated (i) 
the response of the proposed VNAI and several existing 
Chl VIs to Chl content and LAI, and (ii) the performance 
of the estimation of Chl content using soybean canopy 
spectral data and soybean canopy Chl mapping using 
UAV-based remote sensing images.

Material
Study area and field experimental design
The study area was located in Jiaxiang County (Fig.  1a 
and b, 35.4324° N, 116.3675° E), Jining City, Shandong 
Province, China. Jiaxiang County has an average alti-
tude, temperature, and rainfall of 35 m a.s.l., 13.9 °C, and 
701 mm, respectively. Winter wheat (September to June) 
and soybean and maize (June to September) are the main 
crops that are planted in this county. Two fields were 
selected for the field experiment (Fig. 1). The field experi-
mental design is shown in Fig.  1. A total of 127 plots 
(Field A: 51; Field B: 76) were selected for field measure-
ment. The soybean sowing date was 13 June 2015, the 
planting density was approximately 190,000 plants/ha, 

Fig. 1  The location of the study area and field experimental design: a location of Jining City in China, b location of Jiaxiang County in Jining City, c 
experimental field, d experimental design of Field A, and e experimental design of Field B
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the row spacing was 50 cm, and the plot size was approxi-
mately 5 m × 2.5 m. Soybean canopy spectral reflectance, 
leaf Chl content, and UAV-based spectral measurements 
were conducted at five growth stages, namely flowering 
(S1), early podding (S2), later podding (S3), grain fill-
ing (S4), and harvest (S5). Field- and UAV-based canopy 
spectral reflectance was measured using a spectrometer 
(FieldSpec 3; Analytical Spectral Devices, Boulder, CO, 
USA) and a snapshot spectrometer (UHD 185; Cubert 
GmbH, Ulm, Baden-Württemberg, Germany). Leaf Chl 
content was measured using a Dualex scientific portable 
sensor (Dualex 4; Force-A, Orsay, France [60]).

UAV‑based acquisition of canopy spectral data
In this work, UAV-based canopy spectral measurements 
were made in Field A before the collection of field Chl 
and spectral data. The spectral measurements were made 
between 11:00 A.M. and 2:00 P.M. The UAV flying height 
was set to approximately 50 m and all UAV flights were 
conducted under cloud-free conditions. The field spec-
tral images were collected using a snapshot hyperspectral 
sensor (UHD 185, see Table  1) mounted on an eight-
armed DJI S-1000 UAV (Dajiang Innovation, Sham Chun, 
China). The operating range of the UHD 185 spans the 
visible to the NIR (wavelengths of 450–950 nm; Table 1). 
The parameters of the UAV and the UHD 185 sensor are 
detailed in Table 1.

For the collection of UAV-based hyperspectral images, 
four steps were taken:

	(i)	 First, before each flight, the UHD 185 spectrometer 
was initialized in factory settings using the Cubert-
Pilot software (Cubert GmbH), and then a white 
reference was taken from a reflector which can be 
considered as a Lambert reflector (spectral reflec-
tance = 1);

	(ii)	 Then, an opaque lens cap was used to block the 
light from entering the spectrometer, which can 
be considered as non-reflecting (spectral reflec-
tance = 0). Subsequently, the UHD 185 spectrome-
ter was calibrated and the exposure time was deter-
mined using the Cubert-Pilot software;

	(iii)	 The forward and side overlaps of the hyperspectral 
images were set to 70%. The hyperspectral images 
were collected using Cubert-Pilot software onboard 
the UAV; besides, the position and orientation sys-
tem (POS) data was also recorded by using an iner-
tial measurement unit. The field soybean canopy 
reflectance data were recorded in 125-band hyper-
spectral images (data spectral resolution: 4 nm);

	(iv)	 Finally, the hyperspectral images were stitched 
together using the Agisoft PhotoScan software 
(Agisoft LLC, St. Petersburg, Russia) to produce 
hyperspectral digital orthophoto maps (DOMs) of 
the experimental field.

Remote sensing images acquired from high-altitude 
platforms typically require atmospheric correction. 
However, in this study, the hyperspectral images were 
obtained under stable light conditions at an altitude of 
50  m, and therefore atmospheric correction was not 
required. The accuracy of hyperspectral DOMs produced 
using data acquired at low altitude using a UHD-185 
was verified in our previous study [61]. The ground spa-
tial resolution of the hyperspectral DOMs is about 3 cm. 
After image collection and the stitching process, a total 
of four DOMs were produced for the experimental field. 
For the extraction of field canopy spectra, two steps were 
taken:

	(i)	 Hyperspectral DOMs were imported into the 
ENVI software (Harris Geospatial Solutions, Boul-
der, CO, USA) and then the regions of interest 

Table 1  The parameters of the unmanned aerial vehicle (UAV), UHD 185 hyperspectral imaging sensor, and FieldSpec 3 
field spectrometer that were used in this study

a  The UHD 185 was mounted on the UAV
b  The FieldSpec 3 was used for field canopy spectral measurements

UAV Sensors and parameters

Types UHD185a FieldSpec 3b

Name DJI S-1000 Field of view 19° 25°

Flying height 50 m Working height 50 m above ground 0.5 m above
canopy

Flying speed About 8 m/s Spectral information 450–950 nm 350–2500 nm

Takeoff weight 6–11 kg Original spectral resolution 8 nm @ 532 nm 3 nm @ 700 nm;
8.5 nm @ 1400 nm;
6.5 nm @ 2100 nm

Working time About 30 min Data spectral resolution 4 nm 1 nm
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(ROIs) in all soybean plots were manually deline-
ated;

	(ii)	 The field canopy spectra of each plot were 
extracted from the DOMs using the ROI tools in 
the ENVI software.

Field‑based canopy spectra
After the UAV flight, field soybean canopy spectral reflec-
tance measurements were conducted under cloud-free 
conditions. Chl and soybean canopy spectral data were 
collected at the same sampling position in each soybean 
plot. We used a spectrometer (FieldSpec 3, see Table  1 
for spectral parameters) to collect the soybean canopy 
hyperspectral reflectance at the center of each soybean 
plot. For the field canopy hyperspectral measurements, 
four steps were taken:

	(i)	 First, to avoid shadow effects, the optical fiber of 
the FieldSpec 3 was located 0.2 m above the white 
reference panel and along rays of sunlight;

	(ii)	 Subsequently, the instrument was optimized to 
eliminate the dark current effect and then the white 
reference was taken;

	(iii)	 The optical fiber was located 0.5 m above the crop 
canopy and along rays of sunlight and then the can-
opy hyperspectral measurement was made;

	(iv)	 The white reference panel was remeasured, and 
step (ii) was repeated if the spectral reflectance 
value was higher than 1.05 or lower than 0.95.

Since the FieldSpec 3 has a 25° field of view, the hyper-
spectral reflectance can be collected from a circular area 
of canopy with a diameter of 22.5  cm. For each plot, 
hyperspectral reflectance measurements were repeated 
10 times and the average value was taken as the canopy 
spectrum of the plot.

Field measurement of leaf and canopy Chl
After the measurement of soybean canopy reflectance, 
measurements of soybean canopy leaf Chl content were 
conducted. The soybean canopy leaves were selected 
from the spectral collection area (i.e., a circle of canopy 
with a diameter of 22.5 cm). The soybean leaf Chl content 
was measured using a Dualex 4 scientific portable sensor 
and the collected dataset was named as the Chl-D data-
set. The Chl content measured with the Dualex 4 was in 
the range of 5–80  µg/cm2. The Dualex instrument ena-
bles the rapid measurement of leaf Chl content under 
field conditions. The measurements were performed at 
the first and second uppermost leaves. Five measure-
ments of each leaf were performed at the center of each 
soybean plot. In this work, we focused on the leaves at 
the top of the canopy since these contribute the most to 
the canopy reflectance. After the collection of leaf Chl 
data, the average values were recorded as the canopy 
Chl content of each soybean plot. The results are given 
in Table 2. As shown in the table, from 29 July 2015 to 28 
September 2015, the leaf Chl content of fields A and B 
first increases (S1–S3) and then decreases (S4–S5).

Table 2  The measured values of chlorophyll (Chl) content (Dualex units) in the study area

DOM: digital orthophoto map. SD: standard deviation. COV: coefficient of variation. The soybean leaf Chl content was measured using a Dualex 4 scientific portable 
sensor. The Chl content measured by the Dualex 4 is given in µg/cm2 in the range of 5–80 µg/cm2 (see https​://www.force​-a.com/produ​cts/duale​x). However, in many 
studies, the unit of Chl measured by the Dualex 4 is marked as “Dualex units” (see [62–64]); thus, we also used “Dualex units” instead of µg/cm2 for the soybean leaf 
Chl content dataset. Min, Max, and Mean represent the minimum, maximum, and average Chl contents, respectively. The number of sampling plots is different since 
some plots containing early-maturing varieties were harvested during stages S4 and S5. “√” indicates that UAV-based canopy spectral images were collected and “-” 
indicates that UAV-based canopy spectral images were not collected. Most of the plant plots in Field A were harvested during stages S4 and S5. This is due to the fact 
that early- and late-maturing varieties were planted in Field A and Field B, respectively

Field Stage UAV DOMs Date Number 
of plots

Measured Chl content

Min Max Mean SD COV

Field A S1 √ 29 July 2015 51 25.41 34.32 30.24 1.88 6.2%

S2 √ 13 August 2015 51 28.07 38.43 32.86 2.45 7.4%

S3 √ 31 August 2015 51 31.18 46.18 39.79 3.03 7.6%

S4 √ 17 September 2015 42 7.78 33.34 20.07 5.28 26.3%

S5 – 28 September 2015 11 10.59 27.89 19.77 5.42 27.4%

Field B S1 – 29 July 2015 76 23.49 40.80 30.57 2.91 9.5%

S2 – 13 August 2015 76 23.05 38.10 31.25 3.48 11.2%

S3 – 31 August 2015 76 30.65 48.64 39.94 4.59 11.5%

S4 – 17 September 2015 76 17.09 45.93 31.7 6.62 20.9%

S5 – 28 September 2015 66 9.57 50.57 27.44 8.76 31.9%

https://www.force-a.com/products/dualex
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PROSAIL‑based canopy spectral
A PROSAIL RTM was used to analyze the spectral reflec-
tance of the vegetation canopy at wavelengths of 400 to 
2500 nm [34, 35]. The PROSAIL model is a combination 
of the PROSPECT [14] and SAIL [65] models, and its 
inputs include several leaf (see PROSPECT parameters in 
Table  3), canopy, and soil parameters (see SAIL param-
eters in Table  3), which have been previously described 
in [32, 35]. The PROSAIL RTM has been widely used to 
analyze the effects of leaf, canopy, and soil parameters on 
canopy reflectance.

The global sensitivity analysis of the PROSAIL model 
showed that LAI and Chl content are the two most 
important factors which control the crop canopy reflec-
tance in the visible and NIR bands [32]. More specifically, 
LAI is a key variable that governs the crop canopy reflec-
tance properties over the entire spectrum [32], while Chl 
has a large effect on crop canopy reflectance in the vis-
ible bands [36–39]. In this work, the LAI and Chl content 
parameters of PROSAIL were special settings to repre-
sent the reality of cropland.

We measured the soybean LAI (see Additional file  1: 
Fig. S2) and Chl content from stages S1 to S5. Then, the 
field-measured soybean LAI and Chl content were used 
as the LAI and Chl content parameters of PROSAIL 
(see Additional file  1: Fig. S2, (a) Chl-Cab (parameter 
Cab in PROSAIL) = 10:1:39  μg/cm2, LAI = 2:0.5:4  m2/

m2, n = 30 × 5=150; (b) Chl-Cab = 21:1:45  μg/
cm2, LAI = 4.5:0.5:6  m2/m2, n = 25 × 4=100; (c) 
Chl-Cab = 26:1:50  μg/cm2, LAI = 6.5:0.5:8  m2/m2, 
n = 25 × 4=100; total = 350). The other parameters (fixed 
parameters in Table 3) were determined from a previous 
study [32]; this was done for ease of implementation in 
analyzing the responses of VNAI and other Chl VIs to 
Chl content.

Generating broadband canopy spectral data 
from hyperspectral measurements

•	 Traditional satellite-based multispectral sensors can 
only provide broadband remote sensing spectral 
data. Thus, using broadband remote sensing spectral 
data from cost-free satellite-based remote sensing 
sensors to estimate Chl content has attracted signifi-
cant attention. The spectral response function (SRF) 
describes the sensitivity of the photosensor to opti-
cal radiation of different wavelengths [66–68]. Usu-
ally, the SRF is a.txt file which records the spectral 
response of the remote sensing sensors to different 
wavelengths (see Additional file 1: Fig. S1). The data 
recorded by the multispectral remote sensing sensors 
is the sum of the products of SRF and surface radia-
tion [67]. Since most available satellite-based remote 
sensing sensors are multispectral, the hyperspectral 
reflectance should be converted to multispectral 
reflectance data to meet the requirements of practi-
cal application [66]. Normally, SRF is determined by 
the optical properties of the multispectral remote 
sensing sensors. In this work, we used a Sentinel-2 
multispectral instrument (MSI) SRF (for the spectral 
bands for the Sentinel-2 MSI sensors, see Additional 
file 1: Table S1) to transform the field- and PROSAIL-
based hyperspectral data to corresponding broad-
band remote sensing spectral data. The field soybean 
canopy MSI multispectral data of each band is the 
(a) the sum of the products of SRF and hyperspectral 
reflectance divided by (b) the sum of SRF. Figure  2 
shows (i) the field- and UAV-based soybean canopy 
hyperspectral measurements and (ii) corresponding 
broadband spectral data calculated from hyperspec-
tral measurements.

Methods
Estimation of Chl content based on traditional spectral VIs
Many spectral VIs have been widely used for estimating 
Chl content. These VIs can be divided into two catego-
ries: (i) multiple-bioparameter VIs (e.g., the Normalized 
Difference Vegetation Index [NDVI], OSAVI, Enhanced 
Vegetation Index [EVI], Two-band EVI [EVI2]; for 

Table 3  The parameter settings of  the  PROSAIL model 
(a combination of  the  Properties Optique Spectrales 
des Feuilles [PROSPECT] model and  the  Scattering 
by Arbitrarily Inclined Leaves [SAIL] model)

The chlorophyll content dataset is labeled as “Chl-Cab” to correspond with the 
labeling of the field-based measurements of Chl content (Chl-D)

Type Parameter Values/ranges

Leaf parameters Leaf structure index (N) 1.5

Chlorophyll content (Cab) (a) 10:1:40 μg/cm2

(b) 20:1:45 μg/cm2

(c) 25:1:50 μg/cm2

Carotenoid content (Car) 0 μg/cm2

Brown pigments (Cbrown) 0 μg/cm2

Dry matter content (Cm) 0.01 g/cm2

Equivalent water thickness (Cw) 0.02 cm

Canopy structure 
and observa-
tion

Hot spot (hspot) 0.5

Solar zenith angle (tts) 20°

Observer zenith angle (tto) 0°

Azimuth (psi) 90°

Average leaf inclination angle 
(ALA)

60°

Leaf area index (LAI) (a) 2:0.5:4 m2/m2

(b) 4.5:0.5:6 m2/m2

(c) 6.5:0.5:8 m2/m2

Soil moisture factor (psoil) 0
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references and equations, see Table  4, Type 1) and (ii) 
pigment VIs (e.g., Pigment-specific Normalized Dif-
ference [PSND], Transformed Chlorophyll Absorption 

Reflectance Index [TCARI]/OSAVI; for references and 
equations, see Table  4, types 2 and 3). Multiple-biopa-
rameter VIs can be used to extract multiple vegetation 

Fig. 2  Soybean canopy hyperspectral measurements and corresponding broadband spectral. a Field-based soybean canopy hyperspectral 
measurements and b corresponding broadband spectral. c Unmanned aerial vehicle (UAV)-based soybean canopy hyperspectral measurements 
and d corresponding broadband spectral

Table 4  A summary of  some chlorophyll (Chl) vegetation indices (VIs) which were used to  estimate the  Chl content 
of vegetation in previous studies

B, G, R, RE1, RE2, RE3, and NIR refer to (i) the blue, green, red, first red-edge, second red-edge, third red-edge, and NIR bands, respectively, of Sentinel-2 MSI (see 
Additional file 1: Table S1), and (ii) wavelengths of 494, 558, 662, 706, 742, 782, and 830 nm, respectively, in UAV-based UHD 185 images. Types 1, 2, and 3 refer to 
multiple-bioparameter VIs, broadband pigment VIs, and red-edge-based pigment VIs, respectively

Type VI Equation References

(1) Normalized Difference VI (NDVI) NIR−R

NIR+R
[69]

Optimized Soil-adjusted VI (OSAVI) 1.16(NIR−R)
NIR+R+0.16

, [70]

Enhanced VI (EVI) 2.5(NIR−R)
NIR+6×R−7.5×B+1

[71]

Two-band Enhanced VI (EVI2) 2.5(NIR−R)
R+2.4×R+1

[72]

(2) Renormalized Difference VI (RDVI) NIR−R

(NIR+R)1/2
[73]

Pigment-specific Normalized Difference Index (PSND) NIR−B

NIR+B
[20]

Transformed Chlorophyll Absorption Reflectance Index (TCARI)/OSAVI 3((NIR−R)−0.2(NIR - G)(NIR/R))
(1+0.16)(NIR−R)/(NIR + R + 0.16)

[55]

(3) Red-edge Chlorophyll Index (CI(red edge)) RE3
RE1

− 1 [50]

Normalized Difference Red-edge Version 1 (NDRE1) RE2−RE1
RE2+RE1

[54]

Normalized Difference Red-edge Version 2 (NDRE2) RE3−RE1
RE3+RE1

[57]

Red-edge-based Transformed
Chlorophyll Absorption Reflectance Index/OSAVI (TCARI/OSAVI_RE)

3((RE1−R)−0.2(RE1−G)(RE1/R))

(1+0.16)(NIR−R)/(NIR + R + 0.16)
[55]



Page 8 of 18Yue et al. Plant Methods          (2020) 16:104 

parameters, such as LAI, canopy coverage, and pigment 
content (e.g., Chl). Pigment VIs are suitable for extracting 
the concentrations of pigments in green vegetation leaves 
from leaf spectral reflectance, however they are easily 
affected by canopy and soil background effects. Pigment 
VIs can be divided into two categories: (i) broadband pig-
ment VIs, which can be calculated using several types of 
broadband remote sensing data (see Table 4, Type 2); (ii) 
red-edge-based pigment VIs, which can be calculated 
using red-edge-band and broadband remote sensing 
data (see Table 4, Type 3). Table lists several Chl VIs that 
were used in previous studies. These traditional spectral 
VIs were established based on the band mathematics. In 
practice, LAI has the greatest effect on the reflectance in 
the visible and NIR bands, which reduces the ability of 
the indices shown in Table 4 to estimate Chl content.

Proposed Chl index based on the angles between visible 
and NIR band reflectance
In this study, we proposed and evaluated a VNAI to 
obtain estimates of soybean canopy Chl content using 
broadband visible and NIR remote sensing. The VNAI 
can be explained as the sum of two angles (VNAI = α + β; 
see Fig.  3). The angle α (Fig.  3a) is the included angle 
between (i) the line from the reflectance in the blue band 
to the reflectance in the green band and (ii) the line from 
the reflectance in the red band to the reflectance in the 
green band. The angle β (Fig.  3a) is the included angle 
between (i) the line from the reflectance in the blue band 
to the reflectance in the green band and (ii) the line from 
the reflectance in the NIR band to the reflectance in the 
green band.

Taking the angle β as an example, Fig. 3b shows the cal-
culation method of the three bands-based angle (B, G, 
and NIR); mathematically, the angle can be calculated as 
follows:

where RefB, RefG, and RefNIR are the spectral reflectance 
at the central wavelengths of B, G, and NIR, respectively; 
and wav (G-B) and wav (NIR-G) represent the normal-
ized distance of the central wavelengths of (i) bands B 
and G and (ii) bands G and NIR obtained using; 

where Bcw, Gcw, Rcw, and NIRcw represent the cen-
tral wavelengths of bands B, G, R, and NIR, which are 
492.4, 559.8, 664.6, and 832.8  nm, respectively (see 
Additional file  1: Table  S1); 2500  nm is the maximum 
wavelength of the optical remote sensing hyperspectral 
bands. wav (G–B) = (559.8–492.4)/2500 = 0.027, wav(R–
G)/2500 = (664.6–559.8)/2500 = 0.0419, and wav(NIR–
G)/2500 = (832.8–559.8)/2500 = 0.1092. The angles α and 
β and the VNAI can be calculated as follows:

(1)
Angle = 180− atan

(

y1

x1

)

+ atan

(

y2

x2

)

,

x1 = wav(G − B), y1 = RefG − RefB,

x2 = wav(NIR− G), y1 = RefNIR − RefG

(2)
wav(G − B) = (Gcw − Bcw)/2500

wav(NIR− G) = (NIRcw − Gcw)/2500

wav(R− G) = (Rcw − Gcw)/2500

(3)

Angleα = 180− atan
(

RefG−RefB
wav(G−B)

)

+ atan
(

RefR−RefG
wav(R−G)

)

,

Angleβ = 180− atan
(

RefG−RefB
wav(G−B)

)

+ atan
(

RefNIR−RefG
wav(NIR−G)

)

,

Fig. 3  Depictions of the angles α and β which were used to calculate the Visible and NIR Angle Index (VNAI) and their calculation methods. The 
spectral data in this figure were simulated by using the PROSAIL (a combination of the Properties Optique Spectrales des Feuilles [PROSPECT] 
model and the Scattering by Arbitrarily Inclined Leaves [SAIL] model) radiative transfer model (RTM) (Leaf Area Index [LAI]: 2 m2/m2; Chl-Cab 
(parameter Cab in PROSAIL): 10, 20, 30, 40, 50 μg/cm2; see Table for other fixed parameters). The central wavelengths of bands B, G, R, and NIR are 
492.4, 559.8, 664.6, and 832.8 nm, respectively
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where RefB, RefG, RefR, and RefNIR are the spectral reflec-
tances at the central wavelengths of bands B, G, R, and 
NIR of the spectral reflectance.

Datasets, experimental methodology, mapping, 
and statistical analysis
In this work, three datasets were used to evaluate the 
estimation performance of Chl content. As shown in 
Table  5, the PROSAIL-based canopy spectral data were 
designated as the simulated dataset (obtained using the 
PROSAIL RTM, n = 350), while the field-based (obtained 
using the FieldSpec 3 spectrometer, n = 206 + 370 = 576) 
and UAV-based (obtained using the UHD185 spectrom-
eter, n = 195) canopy spectral data were designated as the 
real (field) and real (UAV) datasets, respectively.

As shown in Fig. 4, a simulated dataset, a field dataset 
and a UAV-based dataset were used to evaluate the per-
formance of the VNAI index and 11 traditional Chl VIs. 
The simulated dataset was used to evaluate the responses 
of the 11 traditional Chl VIs and the proposed VNAI to 
Chl-Cab and LAI. Then, the three best-performing Chl 
VIs were selected for performance comparison using a 
field dataset. Finally, the Chl estimation performances of 
these three best-performing Chl VIs and the VNAI were 
evaluated using UAV-based soybean canopy remote sens-
ing data for growth stages S1–S4, including (i) a calibra-
tion dataset consisting of 132 samples and (ii) a validation 

(4)VNAI = α + β dataset consisting of 63 samples. Crop canopy param-
eters (e.g., LAI, fractional vegetation cover [FVC]) differ 
greatly in different growth stages, and thus linear and 
exponential regression equations were used to evaluate 
the performances of the VNAI and other Chl indices for 
each growth stage for the estimation of soybean Chl.

Additionally, four bands from the UAV-based remote 
sensing images—namely 494 (blue), 558 (green), 662 
(red), and 830  nm (NIR)—and the VNAI were used to 
map the Chl content of the soybean canopy. Further-
more, the coefficient of determination (R2), root-mean-
square error (RMSE), and mean absolute error (MAE) 
were used to evaluate the Chl estimation performance of 
each Chl VI.

Results
Response of VNAI to Chl‑Cab and LAI
Figure 5 shows the responses of the angles α and β, and 
the VNAI, to Chl-Cab and LAI. As shown in Fig. 5a and 
b, the angles α (R2 = 0.828) and β (R2 = 0.744) of the veg-
etation canopy spectral reflectance increase as Chl-Cab 
increases.

However, the effect of the LAI on α and β may reduce 
their sensitivity to Chl-Cab. As the LAI increases, the 
angle α decreases and the angle β increases (Fig. 5). The 
effects of the LAI on α and β were mitigated by using the 
sum of α and β. As shown in Fig., the correlation between 
Chl-Cab and the VNAI (R2 = 0.953) is greater than the 

Table 5  Details of the simulated, real (field), and real (UAV) datasets

– denotes no data

Dataset Type Stage Number of plots Calibration Validation Total 
number 
of data

Simulated PROSAIL – 350 – – 350

Real (field) Field A S1 51 – – 206

S2 51 – –

S3 51 – –

S4 42 – –

S5 11 – –

Field B S1 76 – – 370

S2 76 – –

S3 76 – –

S4 76 – –

S5 66 – –

Real (UAV) Field A S1 51 39 12 195

S2 51 32 19

S3 51 36 15

S4 42 25 17

Total – 132 63 –
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Fig. 4  A schematic representation of the experimental methodology. VI: vegetation index. Chl: chlorophyll. SRF: spectral response function. Chl-D: 
soybean leaf Chl content dataset measured using a Dualex 4 scientific portable sensor. PSND: Pigment-specific Normalized Difference. NDRE2: 
Normalized Difference Red-edge Version 2. TCARI/OSAVI_RE: Red-edge-based Transformed Chlorophyll Absorption Reflectance Index/Optimized 
Soil-adjusted Vegetation Index

Fig. 5  The responses of the angles α (a) and β (b), and the VNAI (c) to Chl-Cab and LAI (LAI: 2:0.5:8 m2/m2). Red and blue boxes represent low 
(Chl-Cab < 20 μg/cm2) and high (Chl-Cab > 20 μg/cm2) Chl-Cab samples
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correlation between Chl-Cab and α (R2 = 0.828) and β 
(R2 = 0.744).

Response of PROSAIL‑based Chl VIs to Chl‑Cab and LAI
Figure  6 presents the Pearson correlation coefficients 
between the Chl VIs and (i) Chl-Cab and (ii) the LAI, 
for the simulated dataset. The results show that the Chl 
VIs were correlated with Chl-Cab and LAI to varying 
degrees. For Chl-Cab, the results indicate that the cor-
relation coefficients increased in the following order: 
VNAI > TCARI/OSAVI_RE > PSND > NDRE2 > CI(red 
edge) > NDRE1 > TCARI/OSAVI > NDVI > OSAVI > RDV
I > EVI2 > EVI. Furthermore, in general, VIs which were 
highly correlated with LAI were weakly correlated with 
Chl-Cab (Fig.  6). The use of traditional Chl VIs to esti-
mate canopy Chl content may be hindered by variations 
in the crop LAI. Based on the results of the Pearson cor-
relation analysis shown in Fig. 6, the three best-perform-
ing existing Chl VIs (TCARI/OSAVI_RE, PSND, and 
NDRE2) were selected for comparison with the proposed 
VNAI.

Figure  7 shows the four VIs (VNAI, TCARI/OSAVI_
RE, PSND, and NDRE2) as a function of Chl-Cab and LAI 
using the simulated dataset (see Table 5). With increasing 
LAI, large changes were observed in PSND and NDRE2; 
However, with increasing LAI, small changes in the 
VNAI were observed (Fig. 7). Taking PSND as an exam-
ple, (i) the PSND exhibited a logarithmic relationship 
with Chl-Cab and (ii) samples with a high LAI showed a 
higher PSND than samples with a low LAI (Fig. 7). This 
indicates that the LAI may reduce the PSND-based Chl 
estimation performance. The results in Fig.  7 indicate 
that the canopy effect (LAI) has a significant influence on 
the Chl VIs.

Response of field‑based Chl VIs to Chl‑D
Figure  8 shows the four VIs as a function of Chl-D by 
using the real (field) dataset (see Table  5). The results 
indicate that the proposed VNAI has the highest Pearson 
correlation coefficient of the four selected VIs, which is 
similar to the results for the simulated dataset shown in 
Fig.  7. Additionally, the results indicate that PSND and 
NDRE2 were saturated when Chl-D = 30 (Fig.  8), which 
is similar to the findings for the simulated dataset (Fig. 7).

Response of UAV‑based Chl VIs to Chl‑D
Figure 9 shows the four Chl VIs as a function of Chl-D 
for the real (UAV) calibration dataset (see Table 5). The 
relationship between the four VIs and Chl-D for Field A 
was similar to that of the real (field) dataset (Fig. 9). The 
relationship between Chl-D and the Chl VIs is shown in 
Table 6. The Chl-D estimated with PSND and NDRE2 all 
affected by canopy effects, with R2 ranging from 0.27 to 
0.53, MAE ranging from 4.18 to 4.98, and RMSE ranging 
from 5.03 to 6.37. The Chl-D estimation accuracy using 
TCARI/OSAVI_RE was lower than that of the VNAI, 
with an R2 of 0.67, MAE ranging from 3.28 to 3.33, and 
RMSE ranging from 4.21 to 4.23. The linear-based Chl-D 
estimates using the proposed VNAI (Table  6) demon-
strated promising results, with an R2 of 0.77, an MAE of 
2.73, and an RMSE of 3.54.

Chl mapping
We used (i) the VNAI and e1, (ii) PSND and e3, (iii) 
TCARI/OSAVI_RE and e5, and (iv) NDRE2 and e7 to 
estimate the Chl content (e1, e3, e5, and e7, see Table 6). 
The estimated and measured values of Chl content are 
shown in Fig.  10. The results indicate that the VNAI 
performed better than PSND, TCARI/OSAVI_RE, and 
NDRE2. For example, when using the PSND, the higher 

Fig. 6  The absolute values of the Pearson correlation coefficient (|r|) between (i) Chl VIs and (ii) Chl-Cab and LAI (simulated dataset, n = 350). 
Note: OSAVI: Optimized Soil-adjusted VI. TCARI/OSAVI_RE: Red-edge-based Transformed Chlorophyll Absorption Reflectance Index/OSAVI. PSND: 
Pigment-specific Normalized Difference Index. NDRE2: Normalized Difference Red-edge Version 2. CI(red edge): Red-edge Chlorophyll Index. 
NDRE1: Normalized Difference Red-edge Version 1. TCARI/OSAVI: Transformed Chlorophyll Absorption Reflectance Index/OSAVI. NDVI: Normalized 
Difference Vegetation Index. RDVI: Renormalized Difference Vegetation Index. EVI: Enhanced Vegetation Index. EVI2: Two-band EVI
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Chl-Ds are underestimated (see Fig.  10) whereas the 
lower Chl-Ds are overestimated (Fig.  10). Furthermore, 
we mapped the soybean canopy Chl content for the 
four growth stages (Fig.  11) using the VNAI, the linear 
equations in Table  6 (e1), and UAV-based remote sens-
ing images. The spatial distribution of the estimated Chl 
content in the four stages indicates that the canopy Chl 
first increased and then decreased with soybean growth 
(stages S1–S4), which is consistent with the field meas-
urements of Chl content (Table 2, Fig. 10).

Analysis and discussion
Chl content estimation performance of VNAI versus (a) 
existing broadband Chl VIs and (b) red‑edge Chl VIs
Existing broadband Chl VIs primarily depend on sim-
ple band mathematics, and can be divided into the 
following three categories: (i) simple ratio VIs, (ii) 
normalized difference VIs (e.g., NDVI [69] and PSND 
[20]), and (iii) modified VIs (e.g., OSAVI [70]). The 
accuracy of Chl estimates based on existing broadband 
Chl VIs was determined by using the optimal band 
combination. Almost all two-band-based combinations 
have been tested in previous studies; However, the 

band-mathematics-based broadband Chl VIs obtained 
a low correlation with the simulated dataset (Fig. 6).

Since this study focuses on the estimation of Chl 
content using visible and NIR broadband remote sens-
ing data, all of the selected broadband VIs (NDVI, 
OSAVI, EVI, EVI2, RDVI, PSND, and TCARI/OSAVI; 
see Table  4 and Fig.  6) were calculated using visible 
and NIR broadband remote sensing spectral data. The 
results shown in Fig. 6 indicate that all previously used 
broadband Chl VIs demonstrated a significant correla-
tion with LAI, thereby indicating that LAI has a signifi-
cant influence on previous band-mathematics-based (i) 
multiple-bioparameter VIs (NDVI, OSAVI, EVI, EVI2; 
see Pearson correlation coefficients in Fig.  6) and (ii) 
broadband pigment VIs (PSND, TCARI/OSAVI; see 
Pearson correlation coefficients in Fig.  6). This phe-
nomenon contributed to the performance in the multi-
stage estimation of Chl content, which was consistent 
with previous research results [41, 42]. In contrast, 
the proposed broadband VNAI was shown to be more 
sensitive to Chl content than to the LAI, thus indicat-
ing that the VNAI may have a more robust relationship 
with Chl content (Fig. 6).

Fig. 7  The responses of the VNAI, PSND, NDRE2, and TCARI/OSAVI_RE to Chl-Cab (μg/cm2) and LAI (m2/m2) (simulated dataset, n = 350)
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Aside from the VNAI, some other promising red-edge-
based Chl VIs were investigated in this paper (CI(red 
edge), NDRE1, NDRE2, and TCARI/OSAVI_RE; see 
Table and Fig. 6). The results shown in Fig. 6 indicate that 
the VNAI-based estimates of Chl content were superior 
to those based on NDRE1, NDRE2, and CI(red edge). 
The performance of the broadband VNAI and the red-
edge-based TCARI/OSAVI_RE were found to be similar 
when using the simulated dataset (Fig.  6); however, the 
VNAI obtained more accurate estimates of Chl content 
when using the real datasets (Fig.  8, real (field) dataset: 
r (VNAI) = 0.76, r (TCARI/OSAVI_RE) = -0.65; Fig.  9, 
real (UAV) dataset: r (VNAI) = 0.88, r (TCARI/OSAVI_
RE) = -0.82). This may be due to the fact that (i) the soy-
bean LAI varies tremendously during multi-stage field 
measurement and (ii) the canopy spectral angles (α + β) 
were less affected by LAI than by the 11 other selected 
indices.

The responses of the selected Chl VIs to Chl content 
and LAI are different. The results of this study show the 
following: (a) Traditional multiple-bioparameter VIs 
and broadband pigment VIs are sensitive to LAI (Fig. 6); 
thus, traditional multiple-bioparameter VIs and broad-
band pigment VIs may not suitable for estimating crop 
Chl content over multiple growth stages or in locations 

where LAI varies greatly; (b) The Pearson correlation 
coefficients between Chl VIs and (i) Chl-Cab and (ii) LAI 
indicate that the performances of the VNAI and the red-
edge TCARI/OSAVI_RE (the best-performing red-edge 
VI) are very close (Fig.  6); thus, the VNAI can be used 
to obtain high-precision Chl maps (Table 6, Figs. 10, 11). 
Thus, the VNAI can help to obtain accurate estimates of 
Chl content when using various types of traditional free-
access multispectral remote sensing images (e.g., Landsat 
TM/ETM+/OLI).

Future applications and limitations of broadband VNAI
In previous studies, other hyperspectral techniques 
showed promising results for the estimation of the Chl 
content of vegetation (e.g., band-depth analysis tech-
niques [46, 47], continuous wavelet transform techniques 
[48, 49]). However, the use of satellite hyperspectral 
images increases the computation and storage burden. 
Furthermore, narrowband Chl VIs cannot be applied to 
data from traditional broadband multispectral remote 
sensing sensors. Additionally, satellite hyperspectral sen-
sors are expensive, scarce, and cannot provide spatial dis-
tributions of crop Chl content over large areas with both 
high temporal resolution and high spatial resolution.

Fig. 8  Responses of VNAI, PSND, NDRE2, and TCARI/OSAVI_RE to Chl-D (real (field) dataset, n = 576)
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VNAI has more advantages than the wieldy used 
broadband Chl indices and red-edge Chl indices. Firstly, a 
remote sensing sensor with four broad bands (red, green, 
blue, and NIR) is sufficient to accurately estimate the 
crop canopy Chl content using VNAI, which makes this 
method cheaper than methods that require remote sens-
ing sensors with red-edge bands, which are very expen-
sive. Additionally, VNAI can be applied to large amounts 
of satellite-based broadband remote sensing images; for 
example, the Landsat TM, ETM+, and OLI sensors can 
obtain broadband remote sensing images with red, green, 

blue, and NIR bands. In this case, the VNAI can also be 
applied to satellite remote sensing images for estimating 
large-scale vegetation canopy Chl content.

However, as with any method, VNAI has shortcomings. 
The calculation method is the most obvious one. The 
calculation method for VNAI (Eqs. 3 and 4) is relatively 
complicated compared to that of band-operation-based 
Chl VIs (Table  4), which may limit the application of 
VNAI. Additionally, this work only focused on the effects 
of the canopy on remote sensing-based Chl estima-
tion, and did not consider the effects of soil background. 

Fig. 9  The responses of real (UAV) Chl VIs to Chl-D (n = 132)

Table 6  The relationships between the UAV-based Chl VIs and Chl-D (Dualex units) shown in Fig

Equations e1, e3, e5, and e7 were used for the validation of the Chl models. R2 coefficient of determination, MAE mean absolute error, RMSE root-mean-square error

VI Equation R2 MAE RMSE

VNAI (e1) Chl-D = 0.2622 × VNAI – 53.473 0.77 2.73 3.54

(e2) Chl-D = 1.3074 × EXP (0.0097 × VNAI) 0.74 3.00 3.79

PSND (e3) Chl-D = 90.91 × PSND – 46.337 0.29 4.91 6.18

(e4) Chl-D = 1.212 × EXP (3.763 × PSND) 0.27 4.98 6.37

TCARI/OSAVI_RE (e5) Chl-D = –66.358 × TCARI/OSAVI_RE + 47.353 0.67 3.33 4.21

(e6) Chl-D = 56.11 × EXP (–2.561 × TCARI/OSAVI_RE) 0.67 3.28 4.23

NDRE2 (e7) Chl-D = 42.353 × NDRE2 + 6.2227 0.53 4.18 5.03

(e8) Chl-D = 11.158 × EXP (1.6807 × NDRE2) 0.51 4.22 5.17
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Fig. 10  Measured and estimated Chl contents using the real (UAV) validation dataset (n = 63). Note: MAE: mean absolute error; RMSE: 
root-mean-square error

Fig. 11  Maps of Chl content (Dualex units) for the four growth stages (S1–S4, NDVI > 0.3 pixels). Note: MAE(S1) = 2.17, RMSE(S1) = 2.62; 
MAE(S2) = 3.07, RMSE(S2) = 3.84; MAE(S3) = 3.08, RMSE(S3) = 3.75; MAE(S4) = 3.30, RMSE(S4) = 4.46
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Furthermore, this work analyzed and validated VNAI 
only for soybean canopy; therefore, in the future, addi-
tional quantitative field validation should be conducted 
to investigate the feasibility of conducting long-term can-
opy Chl estimation for different crops (e.g., wheat, maize, 
corn), canopy Chl ranges, and soil background using 
VNAI and remote sensing images.

Conclusion
In this work, we developed a broadband VNAI for the 
estimation of crop canopy Chl content. We evaluated 
(i) the response of the proposed broadband VNAI and 
several existing broadband and red-edge Chl VIs to Chl 
content and LAI, (ii) the performance of Chl content esti-
mation using real (field) soybean canopy spectral data, 
and (iii) soybean canopy Chl mapping using real (UAV) 
soybean canopy remote sensing images. The following 
conclusions could be drawn from this work:

	(i)	 Most previously used broadband Chl VIs were sig-
nificantly correlated with LAI, and the proposed 
broadband VNAI was more sensitive to Chl con-
tent than to LAI, thereby indicating that the VNAI 
may have a more robust relationship with Chl con-
tent (Figs. 6 and 7).

	(ii)	 With increasing LAI, the angle α decreases and 
the angle β increases (Fig. 5). The LAI effects were 
mitigated by using the sum of the angles α and β 
(Fig. 5).

	(iii)	 The estimates of Chl content based on the broad-
band VNAI were more accurate than the estimates 
based on the other investigated VIs (simulated 
dataset: Fig. 7; real (field) dataset: Fig. 8; real (UAV) 
dataset: Fig. 9, Table 6).
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