
Di Gennaro and Matese ﻿Plant Methods           (2020) 16:91  
https://doi.org/10.1186/s13007-020-00632-2

METHODOLOGY

Evaluation of novel precision viticulture tool 
for canopy biomass estimation and missing 
plant detection based on 2.5D and 3D 
approaches using RGB images acquired by UAV 
platform
Salvatore Filippo Di Gennaro*   and Alessandro Matese 

Abstract 

Background:  The knowledge of vine vegetative status within a vineyard plays a key role in canopy management in 
order to achieve a correct vine balance and reach the final desired yield/quality. Detailed information about canopy 
architecture and missing plants distribution provides useful support for farmers/winegrowers to optimize canopy 
management practices and the replanting process, respectively. In the last decade, there has been a progressive diffu-
sion of UAV (Unmanned Aerial Vehicles) technologies for Precision Viticulture purposes, as fast and accurate method-
ologies for spatial variability of geometric plant parameters. The aim of this study was to implement an unsupervised 
and integrated procedure of biomass estimation and missing plants detection, using both the 2.5D-surface and 
3D-alphashape methods.

Results:  Both methods showed good overall accuracy respect to ground truth biomass measurements with high 
values of R2 (0.71 and 0.80 for 2.5D and 3D, respectively). The 2.5D method led to an overestimation since it is derived 
by considering the vine as rectangular cuboid form. On the contrary, the 3D method provided more accurate results 
as a consequence of the alphashape algorithm, which is capable to detect each single shoot and holes within the 
canopy. Regarding the missing plants detection, the 3D approach confirmed better performance in cases of hidden 
conditions by shoots of adjacent plants or sparse canopy with some empty spaces along the row, where the 2.5D 
method based on the length of section of the row with lower thickness than the threshold used (0.10 m), tended to 
return false negatives and false positives, respectively.

Conclusions:  This paper describes a rapid and objective tool for the farmer to promptly identify canopy manage-
ment strategies and drive replanting decisions. The 3D approach provided results closer to real canopy volume and 
higher performance in missing plant detection. However, the dense cloud based analysis required more processing 
time. In a future perspective, given the continuous technological evolution in terms of computing performance, 
the overcoming of the current limit represented by the pre- and post-processing phases of the large image dataset 
should mainstream this methodology.

Keywords:  Unmanned aerial vehicle, Precision viticulture, 3D model, Missing plants, Canopy biomass

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Plant Methods

*Correspondence:  salvatorefilippo.digennaro@cnr.it
Institute of BioEconomy, National Research Council (CNR-IBE), Via G. 
Caproni, 8, 50145 Florence, Italy

http://orcid.org/0000-0003-0065-1113
https://orcid.org/0000-0001-8244-2985
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-020-00632-2&domain=pdf


Page 2 of 12Di Gennaro and Matese ﻿Plant Methods           (2020) 16:91 

Introduction
Vineyards are highly heterogeneous due to structural 
factors mediated by topography and soil characteristics, 
and non-structural factors, mediated by crop practices. 
Remote sensing technologies have been successfully used 
for vineyard monitoring and could be useful to describe 
vineyard variability. Unmanned Aerial Vehicles (UAV) 
provide high flexibility of use, low operational costs and 
very high spatial resolution Matese et al. [17]. RGB sen-
sors mounted on UAVs are capable of providing high-
resolution images that can be processed to build digital 
surface models (DSMs), using three-dimensional (3D) 
reconstruction software based on stereo vision or struc-
ture from motion (SfM) algorithms Padua et al. [16, 22]. 
Using these methods, a large set of applications can be 
undertaken such as biomass monitoring [4–6], volume 
characterization Ballesteros et  al. [3], Matese et  al. [15], 
Pádua et al. [21] and early-season crop monitoring [10], 
[26]. Many authors reported that the use of SfM from 
UAV-images may produce a 3D point cloud similar 
to one obtained acquiring data with a LiDAR [12, 29]. 
Photogrammetric dense point cloud has a point density 
depending on the image spatial resolution and overlap 
level, but with a consistently lower cost than a LiDAR 
one. These advantages have led to an increasing interest 
in this technology and in the last few years, several stud-
ies utilized dense point clouds from SfM in vineyards 
with different applications Ballesteros et al. [3, 14, 30].

Mesas-Carrascosa et al. [19] applied colour vegetation 
indices in point clouds for the automatic detection and 
classification of points representing vegetation and calcu-
lated the height of vines using as a reference the heights 
of points classified as soil.

Anifantis et al. [2] performed a comparison on an adult 
super-high-density olive orchard, using three methods 
for tree row volume (TRV). The first method (TRV1) 
was based on close-range photogrammetry from UAVs, 
the second (TRV2) was based on manual in  situ meas-
urements, and the third (TRV3) was based on a formula 
from the literature.

Comba et al. [9] proposed an innovative unsupervised 
algorithm for vineyard detection and vine row features 
evaluation, based on 3D point-cloud maps processing. 
The main results are automatic detection of the vineyards 
and local evaluation of vine row orientation and inter-
row spacing. The overall point-cloud processing algo-
rithm can be divided into three mains steps: (1) precise 
local terrain surface and height evaluation of each point 
of the cloud, (2) point-cloud scouting and scoring proce-
dure on the basis of a new vineyard likelihood measure 
and lastly, (3) detection of vineyard areas and local fea-
tures evaluation.

Comba et al. [8] used a data fusion approach to achieve 
high consistency of the obtained huge data for vigour 
characterization in vineyards using 2.5D multispectral 
aerial imagery, 3D point cloud crop models and aerial 
thermal imagery.

Missing plants in a vineyard is a critical issue that can 
be managed by new technologies. Different events such 
as disease, winter injury or mechanical damage cause 
missing plants over the years and the initial number of 
vines per hectare decrease. As a consequence, farmers 
lose a significant percentage of potential vineyard pro-
duction. The simplest approach to identifying missing 
plants would be to detect areas not covered by canopy 
along the row. Unfortunately, vertical aerial photography 
is often unable to identify the actual situation under the 
top of the canopy, and in the case of absence of a plant, 
neighbouring plants can extend their shoots and foliage 
to occupy the adjacent free space. Using a raster surface 
approach, the estimation of height and area from UAV 
measurements does not denote tangible errors because 
the ground-based measurements have been derived by 
applying the conventional geometric equation that con-
siders trees as ellipsoid forms, which can produce inexact 
ground estimations. Torres-Sánchez et al. [27], reported 
that 3-D products derived in their study reconstructed 
the irregular shape of the crown, which hypotheti-
cally allows better estimation of tree volume than those 
derived from ground measurements. A step forward 
could be taken using a methodology typical for forestry 
applications [28], where the 3D dense cloud is recon-
structed as an object shape from a set of unorganized 
points. Using these methods, not only the tree crown 
shape was estimated, but also the entire canopy.

The aim of this study was to implement an unsuper-
vised and integrated procedure of biomass estimation 
and missing plants detection, using both the 2.5D-surface 
and 3D-alphashape methods.

Results are presented in Sect. “Results” and discussed 
in Sect.  “Discussion”. The most significant conclusions 
are shown in Sect.  “Methods”. The last section presents 
the study area and the methods used both for data acqui-
sition and processing.

Results
Model validation
The model validation was performed by compar-
ing research outputs with independent in-field obser-
vations. This phase evaluates the quantitative and 
qualitative accuracy and allows the comparison of alter-
native research methodologies. The ground-measured 
volume per vine was calculated using field data aiming to 
validate UAV 2.5D and 3D methods (Fig. 1).
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Vine height and thickness are among the most used 
agronomic parameters by farmers for in-field vol-
ume measurements, being non-destructive and easy to 
acquire. These variables were therefore chosen to validate 
the model. Figure  2 shows the linear regression results 
between canopy volume estimation made by 2.5D (black 
triangle) and 3D (red circle) methods and volume ground 
measurements.

Both methods present a high value of R2 (0.71 and 0.80 
for 2.5D and 3D, respectively) confirming the good accu-
racy of the models, with values distribution very close to 
the 1:1 line. In some cases, 2.5D method tends to over-
estimate since it is derived by applying the conventional 
geometric equation that considers the vine as rectangular 

cuboid form. On the contrary, the 3D method tends to 
underestimate canopy volume as a consequence of the 
alphashape algorithm, which produces shapes more 
complex than a rectangular cuboid taking in account 
the irregular shapes and detecting each single shoot and 
holes within the canopy.

Biomass estimation and missing plants detection
The vines volume within each polygon grid (3 plants) of 
the whole vineyard was calculated using the 2.5D and 3D 
method. As a consequence of the high heterogeneity of 
this vineyard in terms of plant age, vine spacing and can-
opy management, the analysis was performed separat-
ing the northern (Fontone) from the southern site (Case 
Basse). First, a comparison between the two methods of 
canopy volume estimation is shown in Fig. 3. The values 
represent the canopy volume estimation of all polygons 
grid in the two sites. In line with the results of the model 
validation section, both sites show a biomass overesti-
mation of the 2.5D with respect to the 3D method, less 
marked in Case Basse than Fontone, being closer to the 
1:1 line.

The comparison between the two methods pro-
vided an overall good correlation, with higher correla-
tion coefficient and accuracy in term of values in Case 
Basse (R2 = 0.68, RMSE = 0.78  m3) with respect to Fon-
tone (R2 = 0.46, RMSE = 1.28  m3). In detail, in Fontone 
(Fig. 3a) the regular geometry of the rows and the larger 
dimension of the canopy top derived from the shoot 
wrapping management cause a higher estimation of 
the mean canopy volume per polygon grid in the 2.5D 
method (2.03 ± 0.63  m3), which takes into account the 

Fig. 1  Data processing of sampled vines (a, d) using 2.5D (b, e) and 3D (c, f) methods

Fig. 2  Linear regression results between vine canopy volume 
estimation made by 2.5D (black triangle) and 3D (red circle) methods 
with observed volume
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improved canopy thickness. In this case the 3D approach 
presents lower mean values (0.83 ± 0.43  m3), evaluating 
the presence of holes and canopy thickness reduction in 
the middle part of the canopy. Case Basse site, which has 
a diffuse heterogeneity due first of all to the absence of 
canopy management, presents a scattered distribution 
and higher volume values per polygon grid (Fig. 3b). As 
for Fontone, in this site the 2.5D method provides higher 
mean values (1.46 ± 0.84  m3) than the 3D approach 
(0.84 ± 0.60 m3). The 3D method shows similar mean val-
ues of canopy volume in both sites, with a higher stand-
ard deviation error in the Case Basse site, in line with the 
characteristics described previously.

Table 1 summarizes the results obtained with the two 
methodologies within each site. The first column reports 
the potential number of plants calculated on the basis of 
vine spacing (Fontone 4444 plant/ha, Case Basse 3333 
plant/ha) and site surface values. The next three columns 
show the cumulative amount of missing plants estimated 
by the 2.5D and 3D methods, and monitored on the 
ground, followed by the percentage accuracy obtained 
by the two methods with respect to ground truth obser-
vations. Finally, the last two columns present the mean 
canopy volume (m3/vine) estimated by the two methods, 

calculated from the total canopy volume derived from 
the sum of each row volume, divided by the number of 
plants detected (potential plants minus estimated miss-
ing plants).

Fontone shows a total of 521 missing plants counted 
with ground observations, the 2.5D method underesti-
mates with a total of 446 missing plants (−14.40%), while 
the 3D method overestimates observed value with a total 
of 553 missing plants detected (+6.14%). In the Case 
Basse site with a total of 1931 missing plants monitored 
on the ground, the 2.5D and 3D methods provide an 
overestimation of 16.36% and 11.05%, respectively.

Fontone site has significantly fewer missing plants 
than Case Basse, mainly due to the smaller surface area 
(0.7 ha Fontone and 1.9 ha Case Basse). However, consid-
erable influence derives from the age of the vines, which 
in absolute values led to a percentage of missing plants 
monitored on the ground with respect to the potential 
plants of 16.75% in Fontone and 30.98% in Case Basse, 
planted in 1999 and 1973, respectively.

Taking into consideration the canopy volume estima-
tion, Table 2 shows that in Fontone site the two 2.5D and 
3D methods identified a mean canopy volume value of 
0.79 m3 and 0.34 m3, respectively. In line with the other 

Fig. 3  Linear regression between volume estimation of each polygon grid obtained with 3D and 2.5D methods for both sites a Fontone and b 
Case Basse

Table 1  Results of  missing plants (MP) and  canopy volume per  vine (CVol) estimation for  each site using 2.5D and  3D 
methods

Site Potential plants 2.5D 
estimated 
MP

3D 
estimated 
MP

Ground 
observed 
MP

2.5D accuracy (%) 3D accuracy (%) 2.5D estimated 
CVol (m3/vine)

3D estimated 
CVol (m3/
vine)

Fontone 3111 446 553 521 −14.40 + 6.14 0.79 0.34

Case basse 6233 2247 2171 1931 + 16.36 + 11.05 0.72 0.41
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site, in Case Basse the 2.5D estimates higher values than 
3D method, with 0.72 m3 compared to 0.41 m3.

Discussion
Biomass estimation and missing plants detection
The 2.5D method showed different behaviour for missing 
plants estimation in the two sites. In Fontone the method 
identified an underestimation due to the palissage tech-
nique, which caused frequent cases of missing plants hid-
den by adjacent plant’s shoots wrapped on the top wire of 
the row. In the case of a missing plant covered by vigorous 

shoots, the 2.5D method based on the length of section 
of the row with lower thickness than the threshold used 
(0.10  m), tended to return false negatives (Fig.  4a). On 
the contrary, in Case Basse site the 2.5D approach over-
estimated the number of missing plants with many false 
positives, because different spacing between vines causes 
numerous short non-vegetated sections, while the dis-
persed canopy with many lateral shoots leads to low veg-
etated canopy along the rows, which are frequently below 
the thickness threshold of the method (Fig. 4b). Instead, 
the 3D method, identifying missing plants on the basis of 
mean average canopy volume, managed to recognize the 
entire canopy volume including lateral shoots, and there-
fore provided fewer false positives than 2.5D method in 
the case of short interruptions or sections of reduced 
thickness. The irregular conditions of Case Basse led to 
a higher error in missing plants estimation than in Fon-
tone site, where the palissage cover didn’t affect the accu-
racy of the 3D methodology, which correctly identifies 
the empty space of a missing plant under the wrapped 
shoots of adjacent plants. However, the 3D method 
showed a general overestimation, which derived from the 
need to set an average volume value of the canopy in the 
phase preliminary to data processing. So, in the case of 
areas with low vigour plants, where the canopy volume 
is much lower than the set threshold value, the method 

Table 2  Experimental vineyard description

Site Fontone Case Basse

Vineyard surface 0.7 ha 1.9 ha

Row orientation NE/SW NE/SW

Year 1999 1973

Rows 19 36

Variety Sangiovese Sangiovese

Rootstock 110R Kober 5BB

Vine training system Cordon spur-pruned Cordon spur-pruned

Vine spacing 2.5 x 0.9 3.0 x 1.0

Canopy management Shoots wrapped along 
the row

Free shoots

Fig. 4  Details of vineyard conditions affecting missing plants detection in Fontone and Case Basse sites: (a-Fontone) false negative and (b-Case 
Basse) false positive with 2.5D method, (c-Fontone) false positive with 3D method due to different canopy thickness within the field and false 
positive with both method due to new replacement vines (d-Fontone and e-Case Basse)
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could return false positives. In fact, if the total volume 
of 3 plants in a polygon grid was lower than the volume 
of two average plants, it would identify the presence of 
a missing plant (Fig. 4c). This could be considered as the 
main limitation of the 3D methodology in high spatial 
variability conditions, however, this issue could be over-
come by finding representative polygon grids without 
missing plants and calculating the average vine volume 
value. Some new replacement vines within both sites 
provide an additional increase of false positives cases in 
both sites (Fig. 4d Fontone and Fig. 4e Case Basse).

The different canopy architectures in the two study 
sites caused a volume overestimation applying the 2.5D 
method due to the increasing estimation of vine thickness 
within each polygon grid. In fact, in the Fontone site the 
palissage management caused greater top canopy area 
as a consequence of the huge number of leaves on main 
and lateral shoots, while in Case Basse site the free shoots 
extending in the inter-row zone increased the mean 
thickness value identified. The 3D method overcame that 
limitation, identifying a volume closer to the real canopy 
geometry in terms of lower thickness under the canopy 
top in Fontone, and considering the free shoots in the 
inter-row for their real volume in Case Basse, while in the 
2.5D method there was a high increase in the rectangu-
lar cuboid formula. Unfortunately, to validate the aver-
age canopy volume estimation identified at whole field 
level, numerous samples of pruned wood within each site 
would be necessary, given the geometric differences in 
the two areas of the vineyard.

General discussion
The thorough analysis performed on the huge data-
set (around 1000 vines) by the extraction of geometric 
parameters based on polygon grids provides a feasible 
and fast tool for missing plant and biomass evaluation on 
large areas. Furthermore, applying a surface 3D recon-
struction approach, the UAV estimation of canopy 
height, area and volume is an objective tool with respect 
to subjective ground-based measurements derived by 
applying the conventional geometric equation that con-
siders the trees as ellipsoid or cuboid forms, which can 
produce inexact ground estimations. Figure  5 shows a 
graphical output of the 3D method, which represents a 
thematic map of the missing plants detected within each 
polygon grid at whole vineyard level, while overlaid white 
dots are the ground truth observations. It could be a val-
uable support map for the farmer when replacing missing 
plants.

Previous studies have made an effort to calculate 
geometric variables of vines using UAV point clouds. 
Mesas-Carrascosa et al. [19] reported good results com-
paring ground measurements of the heights of individual 

grapevines with the estimated heights from the UAV 
point cloud, showing high determination coefficients 
(R2 > 0.87) and low root-mean-square error (0.07 m). For 
volume characterization, Anifantis et al. [2] described the 
calculation of tree row volume (TRV) comparing three 
different methodologies that show an average value of 
the difference equal to +13% between the method based 
on UAV and manual in situ measurements. Caruso et al., 
2017 found a good correlation between measured and 
UAV estimated canopy volume, with a constant height 
of 0.9 m R2 was equal to 0.62, while R2 increased (0.75) 
when the actual distance of the canopy from the ground 
was used in the calculation, but in this case the estimated 
canopy volume diverged from the 1:1 line.

Regarding missing plant detection, Comba et  al. [9] 
developed maps with the spatial location of classifica-
tion inaccuracies in terms of over, under, extra and miss-
detected areas. The good detection index was found to be 
always greater than 90.0%, with an overall average value 
on the four point-cloud maps of 94.02. Unfortunately, 
the validation dataset was developed manually using the 
high-resolution images without a robust ground truth 
measurement. Comba et al. [8] reported an index similar 
to that used in this paper, the index I3D related to canopy 
vigour, defined as triangulated mesh by an alphashape 
function, with α radius parameter equal to 0.5, calcu-
lated from the UAV 3D point cloud. The results are very 
interesting, showing a good classification of vines in dif-
ferent vigour classes using multi source data that give an 
improvement ranging from 67% to 90% with respect to a 
single data source. However, the validation dataset lacked 

Fig. 5  Example of graphical output of the 3D method representing 
a thematic map of the missing plants detected within each polygon 
grid, with overlaid white dots representing ground truth observations
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ground measurements made by expert agronomists who 
classified the vineyard blocks into three classes on the 
basis of vigour and canopy density. De Castro et al. [10] 
used DSM-OBIA model for the detection of the area 
and height of vines, and the existence of gaps. The cor-
rect classification percentage (true positive) for each field 
and growth stage analyses surprisingly reached 100%. 
False negatives that indicated gaps wrongly classified as 
vines only occurred in one field, with 3.2%. Weiss and 
Baret [30] sampled 20 sites called elementary sampling 
units (ESU) covering a 10 m square area. The percentage 
of missing segments of rows for each ESU was computed 
and results showed that when the percentage of missing 
row segments and percentage of missing pixels are low 
(ESUs 1 to 4, 13, 16, 17), a very good consistency between 
the two methods and ground measurements is observed. 
[20] found high accuracy in grapevine detection (94.40%) 
and low error in grapevine volume estimation, and in a 
new work [21] this accuracy is higher (99.8%), as well as 
in the individual grapevine identification (mean overall 
accuracy of 97.5%), both works using the same method.

Puletti et  al. [24] used the Red channel for identifica-
tion of grapevine rows achieving acceptable accuracy 
values (lower than 87%), however the inter-row spaces 
were not vegetation-covered. In accordance with Castro 
et al. [10], the use of DSM and a 3D model in vine clas-
sification is shown to be more accurate than a spectral 
approach, especially in the challenging spectral similar-
ity scenario due to cover crops growing in the inter-rows. 
The methodology presented in this study for geometric 
characteristic evaluation and vine classification was fully 
automatic compared to others that needed a manual 
adjustment in filtering non-vine features [13], manual 
detection [9] or prior training of the classifier Poblete-
Echeverria et al. [23]. Although some of these approaches 
have a high accuracy level, they required user interven-
tion and absence of inter-row grass cover.

However, considering the low flying quote and forward 
speed needed for the methodologies suggested to obtain 
the necessary accuracy dense clouds, the UAV battery 
autonomy is the main limit in terms of surface covered in 
a single survey. Nevertheless, the recent advances in UAV 
technologies provide new commercial products, which 
is a cost-effective solution that can cover a 3 ha vineyard 
in a single survey using the acquisition protocol tested in 
this study. Moreover, with respect to traditional spectral 
monitoring, a strong point of the RGB geometric analysis 
is the relative independence from light conditions. Con-
sequently, the methodology suggested represents a fea-
sible tool to monitor large areas exploiting a wide time 
window during the day. The main issue remains the large 
amount of data acquired to be processed, because image 
processing requires computers to be equipped with a 

larger working memory to reconstruct dense clouds 
and perform image analysis, especially following 3D 
methodology.

Conclusion
This study confirmed the feasibility of a rapid assessment 
of biomass volume using different approaches based on 
the SfM algorithm applied to high resolution RGB images 
with large overlap acquired by a UAV platform. A sec-
ondary task was an accurate identification of missing 
plants within the rows, also able to detect a single dead 
vine, where only the cordon is present, partially covered 
by adjacent ones. These methods provided thematic maps 
related to biomass and missing plants with the aim of 
supporting the farmer in canopy management in order to 
achieve the desired vine balance. Another potential appli-
cation could be optimization of the re-planting process, 
better quantifying the order of new vines from a nursery 
and allowing fast localization of each re-planting site. 
This paper describes a rapid and objective tool for the 
farmer to promptly identify canopy management strate-
gies and drive replanting decisions. In the future, given 
the continuous technological evolution in terms of com-
puting performance, this methodology could find wide 
diffusion eliminating the current limit represented by the 
pre- and post-processing phases of the large dataset of 
images necessary for this type of approach. Furthermore, 
it will also be possible to use flights with an angled cam-
era to acquire a double dataset relating to each side of the 
row. This allows an extremely accurate point cloud to be 
obtained, but currently it is not feasible on large surfaces 
due both to the additional surveys needed for each vine-
yard, and the processing times that would be very lengthy 
or even impossible in the case of intermediate level work-
stations, given the high memory requirement for the 
management of such large datasets.

Methods
Experimental site
The research was undertaken in 2019 during fruit-set 
phenological stage, in a non-irrigated 2.6  ha vineyard 
(43.00°N, 11.26°E) located in Montalcino Domain (Siena, 
central Italy) on the Agricola Case Basse farm. The vine-
yard is divided in two parts, the south side planted in 
1973 (Case Basse) and the north planted in 1999 (Fon-
tone) (Table 2).

This vineyard was chosen to evaluate the methodo-
logical approach under extreme and different conditions. 
In fact, Case Basse presents an irregular structure with 
different plant ages and spacing along the rows due to 
large number of replacements over the years, with sev-
eral cases of bilateral cordon trained to cover an adjacent 
missing plant. On the contrary, Fontone has a regular 
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spacing, fewer missing vines and less presence of new 
replacement plants (Fig. 6).

The canopy management approach used by Agricola 
Case Basse farm is based on the “palissage” technique, 
which is an alternative tool respect to the widely used 
hedging practice to control vine vigour. According to 
this canopy management, the long shoot tips that would 
normally be hedged are wrapped horizontally along the 
last catch wire on the top of the canopy. As reported 
by France et  al. [7], this approach slowed shoot growth 
earlier during the season and reduced or eliminated the 
need for leaf removal in the fruiting zone, due to fewer 
lateral shoots. Other benefits are the reduction of bot-
rytis incidence and severity because there is a better air 
flow through the cluster, and improved protection from 
hail. At flight time, the palissage technique was used only 
in Fontone, while in Case Basse site the long shoots were 
still extended in the inter-row.

Remote sensing platform and data pre‑processing
The flight campaign was performed using an open-
source UAV multi-rotor platform consisting of a modi-
fied multi-rotor Mikrokopter (HiSystems GmbH, 
Moomerland, Germany) described in a previous work 
of the authors [16]. A universal camera mount equipped 
with three servomotors allowed accurate image acqui-
sition through compensation of tilt and rolling effects. 
The RGB camera was a Sony Cyber-shot DSC-QX100 

RGB camera (Sony Corporation, Tokyo, Japan) with a 
20.2 megapixel CMOS Exmor R sensor and a Carl Zeiss 
Vario-Sonnar T lens. The flight campaign was per-
formed on 20 June 2019 with a single flight survey con-
ducted at 25 m above ground level at midday, yielding 
a ground resolution of 0.005 m/pixel. The RGB camera 
was set at 2  s automatic trigger frequency with auto-
matic exposure. The waypoint route was generated to 
obtain more than 75% overlap between photos (forward 
overlap) and flight lines (lateral overlap), in order to 
achieve the highest accuracy in mosaicking elaboration 
step. A dataset of 501 images was used to generate pre-
processed products using Agisoft Metashape Profes-
sional v.1.6.0 (Agisoft LLC, St. Petersburg, Russia). The 
alignment and dense point cloud elaboration steps were 
realized with “highest accuracy” and “ultra high qual-
ity” respectively, requiring around 10  h of computing 
time with a workstation equipped with two Intel Xeon 
E5-2690 v4 processors, 256 GB RAM and GPU Nvidia 
Quadro M6000 24 GB. The accurate dense point cloud 
(1345 million points) (Fig.  7a) was then processed to 
generate the digital elevation model (DEM) (Fig.  7b) 
and the orthomosaic (Fig. 7c) taking 40 min computing 
time. Data analysis computational time was 1 and 3  h 
for 2.5D and 3D respectively. The on-site evaluation for 
biomass volume was limited to sampling vines used for 
validation, while the missing plants ground geolocating 
required about 6 h.

Fig. 6  Experimental vineyard and detailed conditions of Fontone (a) and Case Basse (b) areas
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Ground measurements
Ground-truth measurements were performed for model 
validation. For vine volume assessment, they consisted of 
measuring canopy geometric features of 6 vigorous sam-
ple vines. In detail, canopy mean height above the cordon 
(CH), canopy mean length along the row (CL) and mean 
thickness (CT) recorded at cordon level, 0.8  m above 
the cordon and top of the canopy were measured. As a 
consequence of the heterogeneity of Case Basse site, two 
vines with bilateral cordon were chosen as sample vines.

The canopy volume of each vine was calculated using 
the following equation: 

The missing plant validation was performed collect-
ing field data by visually counting and georeferenc-
ing each missing plant with a 0.02  m accuracy D-GPS 

Canopy volume = CH×CT×CL.

(Differential-GPS LeicaGS09, Leica Geosystems, Heer-
brugg, Switzerland).

2.5D approach–surface model method
Starting from the DEM originated by Agisoft, a uniform 
polygon grid was then generated to isolate three plants 
in each vine-row. Case Basse has 3.0 × 1.0  m vine spac-
ing, so each polygon grid was generated starting from 
the middle point between two rows with regular spacing 
of 3.0 × 3.0 m, while in Fontone, with a 2.5 × 0.9 m vine 
spacing, each polygon grid was 2.5 x 2.7  m. Vines and 
soil were also separated with a thresholding approach. 
The “imopath” function of MATLAB [18] b (Mathworks, 
Natick, MA, USA) was applied to the DEM to mitigate 
the effect of terrain slope. Otsu’s thresholding technique 
was then used to distinguish between soil and vines, 
generating a logical mask of the complete field [6]. Mat-
lab “graythresh” function was used to computes a global 

Fig. 7  Detail of pre-processing products: dense point cloud (a), digital elevation model (b) and orthomosaic (c)
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threshold from grayscale image, using Otsu’s method. 
This method chooses a threshold that minimizes the 
intraclass variance of the thresholded black and white 
pixels. The global threshold was then used with “imbina-
rize” to convert a grayscale image to a binary image. At 
this point, the geometric features of vines (vine height dh 
and mean thickness δm ) in each polygon grid were extrap-
olated. The DEM of a representative region is shown in 
Fig. 8a. White pixels identify soil and black pixels identify 
vine rows.

The sum of black pixels (logical indexing equal to 0) 
was computed for each column, defining the vine thick-
ness function δ(x) (in pixels) along the region length. The 
region length corresponded to the vine extent along the 
row. This sum was then multiplied for the real spacing 
associated with each pixel dp and the cosine of the angle 
θ indicating vine slope with respect to the horizontal axis 
of the original image. The function 
δp(x) = δ(x) ∗ dp ∗ cos(θ) represents the distribution of 
vine thickness with respect to the central axis of the vine 
row (Fig.  8b). Consequently, the zones where δp(x) = 0 
identifies missing plants. Computationally speaking, 
missing plants are identified considering all points with 
δp(x) < 0.1 m. The remaining set of points was consid-
ered as vine thickness. The mean thickness was com-
puted as the mean value of δp(x) avoiding missing plants 
δm =

〈

δp(x)
〉

 considering only values with δp(x) ≥ 0.1 . 

With the same approach, the mean elevation of vines and 
soil was computed for each row of the image. Figure 8c 
shows the vertical distribution of vine and soil elevation. 
The mean vine-elevation h(v)m  was considered as the first 
quartile value of h(v)

(

y
)

 . The mean soil-height h(s)m  was 
extracted as the third quartile value of h(s)

(

y
)

 , obtaining 
vine height as dh = h

(v)
m − h

(s)
m  . 0.8 m was then subtracted 

from dh considering the height of the cordon measured 
on validation vines. At this point, it was possible to esti-
mate the biomass associated with the complete region 
VDEM and a mean plant Vp . The volume associated with 
the mean plant was: Vp = dh ∗ dL ∗ δm where dL = 0.9 is 
the vine length defined by vine spacing in the vineyard 
for Fontone and 1.0 m for Case Basse. The volume associ-
ated with the DEM was VDEM = dh ∗ dA , where dA is the 
area of the vines computed by multiplying the total num-
ber of black pixel Npx to the area associated with each 
pixel, i.e., dA = Npx ∗ (dp ∗ cos (θ))2 . The number of 
missing plants in the region was identified as: Next =

Lv
ℓp

 
where ℓp is the length of a plant in the vineyard, equal to 
0.9 or 1.0 m according to vine spacing and extension Lv of 
the line with missing plant thickness δp(x) < 0.1 m.

3D approach —alphashape method
Starting from the 3D dense cloud generated by Agisoft, 
an alphashape Edelsbrunner and Mucke [11] or volume 
that envelopes the set of 3D points must be obtained to 

Fig. 8  Digital elevation model of vines within a polygon grid and its geometric features. Vine length (b) and thickness (b) are extrapolated through 
the binarized image (a), mediating the values on the image columns. The soil and vine elevation are obtained mediating respective pixels on 
horizontal rows (c)
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estimate volumes. The generated dense point clouds 
were loaded with its original point density to Matlab. 
Alphashape allows the reconstruction of an object’s 
shape, namely alphashape, from a set of unorganized 
points. The parameter α is used to tune the “tightness” of 
the shape around the points. For a very large value of α, 
the shape is equivalent to a convex hull. For a very small 
value of α, the alphashape forms holes and pockets with 
the shape clustering around the original points. Matlab 
“alphashape” function was used to create a bounding vol-
ume that envelops a set of 3-D points. It is then possible 
to manipulate the alphashape object to tighten or loosen 
the fit around the points to create a non-convex region 
and perform geometric queries (Ribeiro et  al. [25]). 
Firstly, the canopy points of the 3D dense cloud were 
extracted for each polygon grid using a “planeModel” 
object to construct a parametric plane model (Fig. 9a, b, 
c). Soil and vines were separated using Matlab function 
“pcfitplane” with the parameters equal to 0.5 and 5 for 
maxDistance and maxAngularDistance, respectively.

The “alphashape” function was then applied for each 
polygon using an α value of 0.5 (Fig. 9d). The function 
allowed both calculation of the alphashapes and vol-
ume estimation. Finally, a volume map was obtained 
as the union of the volume maps of all sampled rows. 
To obtain the volume map of a row, the volume value 
of each section was projected onto the segment join-
ing the starting and ending co-ordinates of the row. 
For each polygon grid, missing plants are calculated 
as the total volume within each polygon divided by the 
average vine volume in the field. For the latter value 
the average volume of polygon grids where no miss-
ing plants were found was divided by three (number of 
plants in each polygon grid). The resulting average vine 
volume was 0.39 and 0.31 for Case Basse and Fontone, 
respectively.
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