
Li et al. Plant Methods           (2020) 16:77  
https://doi.org/10.1186/s13007-020-00623-3

RESEARCH

An efficient method to reduce grain 
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Abstract 

Background: A fast, reliable and non-destructive method is needed to qualify the extractives content (EC) in heart-
wood of T. sinensis cores in the breeding program for studying the genetic effect on EC. However, the influence of 
grain angle on near infrared (NIR) spectra prediction model for EC is unclear. In this study, NIR spectra were collected 
from both cross section and radial section of wood core samples in order to predict the EC in heartwood.

Results: The effect of grain angle on calibration EC model was studied. Several different spectra pre-processing 
methods were implemented for calibration. It was found that standard normal variation (SNV) followed by 1st deriva-
tive yielded the best calibration result for T. sinensis EC. Grain angle had a significant influence on the predicted model 
for EC when using the whole NIR spectra. However, after testing a certain point of the prior variables for EC that were 
selected by the significant multivariate correlation (sMC), the influence of grain angle was significantly eliminated.

Conclusions: It is suggested that NIR spectroscopy is a promising method to predict EC in the solid wood without 
effecting grain angle.
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Background
Trees produce various types of wood timber for industry 
and society construction. One of the most valuable and 
popular types of wood, especially in China, is the natu-
ral durable wood with splendid colours. Natural durable 
wood has self-preservation ability to survive biological 
decay [1, 2]. Besides, different wood colours, for instance, 
yellow and red, potentially increase the wood value for 
end use. Therefore, natural durable wood with colours 
has been widely studied. In the tree stem, the inner part 
of wood is called heartwood, and the outside of wood is 
recognized as sapwood. As the tree grows, cells in the 

inner part of sapwood begin to die and accumulate mas-
sive secondary metabolites. Meanwhile, the sapwood 
turns into heartwood with natural durability and colour 
[3]. However, traditional methods testing wood natural 
durability are costly and time-consuming. It is reported 
that the extractives in the heartwood play an important 
role in the formation of colour and natural durability 
[4]. Decomposition and discolouration will occur when 
the extractives are removed from the durable wood [5]. 
Therefore, the amount of EC in heartwood has been 
studied as a proxy for natural durability [6].

The variation of EC in heartwood is huge and can be 
decreased by genetic selection [7]. There are differ-
ent ways to determine the quantity of extractives in 
heartwood. Traditional methods such as Soxhlet and 
accelerated solvent extraction (ASE) [8] are time- and 
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cost-consuming and not suitable for tree breeding and 
selection programs, which rely on the measurement of 
large number of samples. Therefore, a high throughput 
and rapid measurement method for EC is needed.

Near infrared spectroscopy (NIR) is a non-destructive 
technique that is used for the analysis of the composition 
of chemical compounds in general [9–11]. It is applied to 
determine the quantity of heartwood extractives in some 
tree species [12–14] and it yields promising and reliable 
results. The NIR spectra collected from different samples, 
either wood powder or solid, influence the performance 
of wood traits prediction model.

The models built on the different size of milled wood 
powder are different and perform higher accuracy than 
the model based on the solid wood when predicting 
chemical properties in eucalyptus wood with NIR spec-
troscopy [15]. However, wood sample grinding is also 
a time-consuming step and it reduces the extractive 
content prediction time. EC prediction from the solid 
wood samples is a suitable alterative way for NIR model 
calibration.

NIR spectra taken from the solid wood samples are 
influenced by many factors, such as moisture content 
[16] and grain angle [17]. It is claimed that the grain angle 
influences the EC prediction of Eucalyptus bosistoana 
with NIR spectra and this influence can be minimized by 
external parameter orthogonalization (EPO) algorithm 
[6]. Alternatively, this influence will be reduced by fea-
ture selection methods. One of the most important fea-
ture selection methods that can help NIR calibrations 
to get rid of confounding effects [18–20] is called sig-
nificant Multivariate Correlation (sMC) [21]. It is aimed 
to find the most important variables in NIR spectra and 
can remove the irreverent variables that influence the 
accuracy of the model prediction when predicting the 
target chemicals content in plants. It is a good choice 
to conduct the method of feature selection combined 
with partial least squares regression (PLS). However, the 
important features in the NIR spectra for the grain angles 
and EC are little known.

T. sinensis is a native Chinese tree species that has been 
widely distributed in China. It has a long history of culti-
vation for its digestible buds in China. In addition, T. sin-
ensis also has the advantages of fast growing and bright 
red heartwood which lead to its wide use in furniture 
and industry. It is widely studied in many fields, includ-
ing the cultivation, reproduction, biological activity of T. 
sinensis, and physical and chemical characteristics of its 
wood. However, little is known about the nature dura-
bility and red colour timber. To establish a high quality 
breeding program for durability and red wood selection, 
an alternative way is needed to allow a fast and efficient 
measurement of the heartwood quality of T. sinensis. If 

NIR can be successfully used to analyse the heartwood 
properties without any grain angle influence, traditional 
methods which are time- and cost-consuming can be 
replaced. And consequently, it will give a lot of benefit for 
selection.

Hence, This study will focus on the effect of grain angle 
on NIR spectra obtained from T. sinensis cores, and study 
the possibility of applying NIR as a rapid and precise 
method to predict the extractives content from the solid 
core samples of T. sinensis without grain angle influence.

Results
PLS models with full length of NIR spectra
Table 1 shows PLS regression models for calibration and 
validation from the spectra with and without pre-pro-
cessing constructed with EC and grain angle. Calibra-
tion model has different accuracy between EC and grain 
angle. Regardless of the pre-processing methods, wood 
core NIR spectra combined with PLS model lead to a 
good result to discriminate wood longitudinal growth 
direction  (0o) and cross section  (90o). PLS regression 
model for EC shows lower  R2 result comparing to grain 
angle. The number of latent variables (LVs) in PLS models 
appears to need more in grain angle than in EC. Com-
pared to other different pre-processing methods, the PLS 
regression models combined with SNV + 1st derivative 
yield the best results with  R2

Cal of 0.83 and  RMSECal of 
1.35 for calibration and  R2

V of 0.78 and  RMSEV of 1.44 

Table 1 Analysis of  several PLS models using full spectra 
with and without pre-processing methods

R2 Cal The coefficient of determination on calibration, RMSECal root-mean-square 
error on calibration, R2 v The coefficient of determination on validation, RMSEV 
root-mean-square error on validation, LVs latent variables

Pre-treatment Calibration Validation

R2 Cal RMSECal (%) LVs R2 v RMSEV (%)

EC

 No (raw spectra) 0.83 1.36 10 0.64 1.60

 SNV 0.81 1.48 7 0.66 1.68

 1st derivative 0.82 1.38 8 0.47 1.94

 2nd derivative 0.76 1.57 9 0.72 1.58

 SNV+1st derivative 0.83 1.35 9 0.78 1.44

 SNV+2nd derivative 0.79 1.45 8 0.74 1.52

Grain angle

 No (raw spectra) 0.92 11.52 10 0.90 11.76

 SNV 0.98 6.36 15 0.94 10.10

 1st derivative 0.96 8.62 14 0.94 9.26

 2nd derivative 0.98 6.06 16 0.95 9.01

 SNV+1st derivative 0.98 5.43 16 0.95 9.28

 SNV+2nd derivative 0.95 6.23 19 0.94 9.23
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for validation. However, different pre-processing meth-
ods do not promote much robust model for grain angle.

NIR spectra
The result shows that SNV + 1st derivative performs the 
highest ability for EC prediction by PLS model. Therefore, 
SNV + 1st derivative pre-processing method was taken 
for optimal wavenumber selection. SNV+1st derivative 
spectra of wood discs are shown in Fig.  1. Although all 
spectra have a very similar shape, there is still huge varia-
bility in absorbance. The significant multivariate correla-
tion of grain angle is mostly observed between 9000 and 
7000 cm−1. There is some overlap with sMC of EC in this 
region. The effect of grain angle performing on the spec-
tra from 9000 to 7000  cm−1 and 5000 to 4000  cm−1 is 
stronger than the region from 7000 to 5000 cm−1, espe-
cially stronger than the region around 8800, 7400, 7100 
and 4200 cm−1.

Figure  2 shows the significant multivariate correla-
tion (sMC) of EC (line dotted red) and grain angle (solid 
black) on PLS model for each wavenumber of the T. sin-
ensis heartwood spectra. It can be clearly seen that the 
important wavelength variables for EC and grain angle 
have some overlap region. However, some regions can 
be clearly distinguished between EC and grain angle. 
The most important region for grain angle mainly is 
located at 8200 to 7800  cm−1. The region around 6000 
and 8500  cm−1 is highly related to EC with no grain 
angle influence. Therefore, the important region that is 
only highly correlated to EC prediction (the both points 

in Fig.  2) was selected for PLS model calibration. The 
important region of the grain angle and other irrelevant 
variables have been removed from the NIR spectra.

PLS models with sMC selection
The PLS calibration models for EC and grain angle with 
these selected wavenumbers are shown in Table  2, In 
total, 19 wavenumbers are selected, which is account-
ing to less than 1% of the total number of wavenumbers. 
With the prior selection of wavenumbers for EC, the  R2 
of EC calibration is still high (0.84) with a low RMSE of 
1.21 conversely. Simultaneously the  R2 for grain angle 
has been hugely reduced from 0.90 to 0.36, which signifi-
cantly reduces the influence of grain angle on NIR spec-
tra when calibrating for EC. The reference values versus 
NIR predicted values plot of the leave-one-out cross-val-
idation for EC in the calibration sets and validation sets 
are displayed in Fig. 3. It shows that the samples are rea-
sonably well distributed both in calibration and valida-
tion. With the sMC selected variables, PLS model yields 
higher accuracy of EC prediction without grain angle 
influence.

The score plot of PLS models applying both full length 
of NIR spectra and the sMC selection variables are shown 
in Fig.  4. It shows clearly that without the sMC selec-
tion, the grain angle has significant influence on EC. The 
EC based on these two groups is clearly distinguished 
(Fig.  4a). However, improved with sMC selection, these 
two angle groups of the EC prediction are mixed together 
and the influence are successfully reduced (Fig. 4b).

Fig. 1 SNV+1st derivative absorbance spectra of average 0 and 90 degree angles between 9000 cm−1 and 4000 cm−1 in wood cores of T. sinensis 



Page 4 of 9Li et al. Plant Methods           (2020) 16:77 

Mode check
The selected model was tested on the validation data. 
The one-way ANOVA test was used to compute the 
mean variance of two angles group. The results show 
that the prediction of EC by PLS model using the full 
spectra is significantly different between 0° and 90° 
angle. The predicted EC at 90° shows higher than that 
at 0°. However, the difference has been reduced with 
no statistically significant difference between 0° and 90° 
grain angle direction when taking use of the NIR model 
with sMC selected wavenumbers to predict the EC 
(Fig. 5). In addition, due to the lower RMSE and higher 
 R2 of sMC model, the predicted distribution range of 
EC in these two grain angles by sMC selected wave-
numbers model is smaller than using the full length of 
spectra model.

Discussion
T. sinensis has a long history of culture for its digest-
ible buds in China. The heartwood of T. sinensis is also 
valuable and has a huge potential furniture market [22]. 
To analyze the wood properties for genetic selection, 
a fast and efficient way to realize the wood properties 
is needed. NIR spectra of solid wood is recognized as a 
potential method for predicting wood properties [23]. 
Similar to our result, we successfully make use of wood 
cores NIR spectra to predict the EC in the heartwood 
of T. sinensis. The wood cores PLS model has shown a 
promising and reliable EC prediction results with a high 
 R2

V value of 0.78 and low  RMSEV of 1.44% using the full 
SNV+1st derivative pre-processed spectra. However, the 
model for different grain angles also contributes a high 
accuracy which could influence the EC prediction result. 

Fig. 2 The influences of grain angle and EC on NIR spectra of T. sinensis. In this graphs, sMC_angle: black solid line, the importance of variables 
for grain angle that selected by sMC; sMC_EC: red dash line, the importance of variables for EC that selected by sMC: SNV+1st: green dote line; 
Optimum wavenumbers selected: blue area

Table 2 Analysis of two PLS regression models (EC and grain angle) using sMC selected spectra variables with SNV+1st 
derivative preprocessing method on calibration and validation set

R2 Cal The coefficient of determination on calibration, RMSECal root-mean-square error on calibration, R2 v The coefficient of determination on validation, RMSEV root-
mean-square error on validation, LVs latent variables

Pre-treatment Number 
of variables

Calibration validation

R2 Cal RMSECal (%) LVs R2 V RMSEV (%)

EC SNV+1st derivative 19 0.84 1.21 5 0.80 1.42

Grain angle SNV+1st derivative 19 0.36 39 5 0.30 45
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The influence of grain angle of wood samples on the NIR 
spectra when other chemicals need to be predicted has 
been studied for a long time. In our study, we found that 
the EC prediction of T. sinensis from PLS model was 
influenced by the grain angles (Fig.  5). Supported by Li 
and Altaner [6] who employed NIR spectroscopy to 
predict the EC in Eucalyptus bosistoana and the result 
showed that the grain angle had a significant influence 
on the EC prediction model and the grain angle influ-
ence was removed after the EPO algorithm was applied, 
which was different from our study. Gierlinger et al. [24] 
evaluated the difference of spectra of heartwood from 
axial and radial face to classify three species of larch. 
They addressed that spectra from axial faces showed less 
heterogeneity among larches. Schimleck, et al. [25] com-
pared the accuracy of two different NIR models based on 
the spectra of radial-longitudinal and radial-transverse 
face to predict wood property. The result showed that 
radial-longitude provided a stronger calibration model 
than radial-transverse. Fujimoto et  al. [26] found that 
grain angle had an influence on the reflectance of spec-
tra when collecting spectra from the wood surface on dif-
ference angles. The difference in model accuracy of grain 
angle estimation from the wood cross section and radial 
section can be explained by the variation of anatomical 

structures from the different surfaces. The exposure of 
parenchyma cells in radial section is higher than that in 
cross section. They are the main factors for mechanical 
properties and vary from different surfaces.

It is imperative to find out the dominant variables 
from multiple sources of NIR variation related to grain 
angle which should be removed when calibrating PLS 
model for EC. The sMC method which is developed by 
Tran, et  al. [21] can be efficiently used for important 
variable selection. sMC can provide an optimal variables 
list which is most correlated to the response. These vari-
ables with minimal false negative and false positive errors 
improve the predictive performance of the PLS model. 
In our study, there are only 19 variables from the spec-
tra using of sMC method and a high EC prediction model 
was contributed with a high  R2

V of 0.80 and a low  RMSEV 
of 1.42, and meanwhile the grain angle influence has been 
highly reduced.

Two strong water absorbance bands exist around 7070 
and 5100 cm−1, which are similar to the 1st overtone of 
OH- bands. It is reported that the peak band approxi-
mately 6000  cm−1, due to the 1st overtone of C–H 
stretching vibrations of methyl, methylene and ethylene 
groups, is mostly relevant to the extractives [27]. Some 
differences between 0° and 90° have been observed from 

Fig. 3 Observed vs. predicted for the EC prediction without influence of grain angle using only 19 spectra variables that selected by sMC methods 
in the a calibration and b validation sets



Page 6 of 9Li et al. Plant Methods           (2020) 16:77 

band 9000 to 7000 and 5500 to 4000 cm−1 and are related 
to cellulose [26, 28–30].

The significant multivariate correlation of grain angle 
is most observed between 8500 and 7500  cm−1. There 
is some overlap in this region with sMC of EC. How-
ever, NIR spectra have some high correlation with EC 
from region 6000 to 4000 cm−1 and have low correlation 
with grain angle. It shows no correlation with grain angle 
especially at ~ 6000 and 5400 cm−1. The similar result is 
obtained by Schwanninger et al. [27]. It is claimed that it 
is possible to select NIR spectra for calibrating EC with-
out grain angle influence. Hence, according to the sMC 
result for both EC and grain angle, the region of NIR 
spectra of high correlation with EC and low grain angle is 
selected for calibrating PLS model.

The robustness of our prediction model for EC hugely 
reduces the influence of grain angle, which makes it 
easier to measure the cores, because the grain in the 
cores is of uncertainty caused by the difficulty to locate 
the ‘up and down’ orientation of the tree in the core 
and the grain variation inherent in the tree. The model 
developed in this study provides a promising and reli-
able method for predicting EC in solid wood. Compared 
to grinding wood samples into powder, it provides a fast 

and non-destructive way while saving time and cost for 
analysing.

Conclusions
Our study demonstrates that it is possible to predict 
EC in heartwood of T. sinensis by establishing NIR PLS 
regression models from solid wood samples. With the 
prior wavenumbers selected by sMC method which 
reduces the effect of grain angle on NIR spectra, the 
result yields a promising and efficient prediction method 
for EC in heartwood without affecting grain angle. Fur-
thermore, it is not necessary to consider whether the NIR 
spectra measures cores or the powder of the grind wood 
to obtain powder spectra for prediction. NIR spectra of 
solid wood serves as a fast and non-destructive method 
for forest tree breeders, and it improves the efficiency to 
screen T. sinensis for heartwood quality with the assis-
tance of NIR spectroscopy.

Materials and methods
Materials
T. sinensis was planted in 2006 at Kaihua Forest Farm, 
Zhejiang province, P.R. China (118°20′E,29°12′N). 52 
open-pollinated families were randomly block designed 

Fig. 4 The score plot for the PLS model of EC prediction based on the full length of NIR spectra and the sMC optimal selected spectra variables. Red 
square: 90 degree angle; black dot: 0 degree angle
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as 4 tree plots and repeated 10 times. The annual average 
precipitation and temperature in this site are 1814  mm 
and 16.3 °C respectively.

Sample processing
223 wood cores, with 14 mm diameter, were taken from 
the bottom of tree trunk of 12 years old T. sinensis. Cores 
were labelled directly on the surface and placed into a 
paper bag. All samples were being air-dried for a month 
until a stable moisture percentage was obtained. After 
being air-dried, the longitudinal growth direction  (0o) 
and cross section (90o) of each core sample were marked. 
The surface of  0o and  90o were then sanded by a P100 
medium‐sized grit sandpaper to obtain a consistent sur-
face for NIR spectra collection.

NIR spectral measurements
NIR spectra from cores were taken at room tempera-
ture with a fibre optics probe (Antaris II System, Thermo 
Electron Company, USA) at wavelength from 9000 to 
4000  cm−1 at 10  cm−1 resolution. Each NIR spectrum 
was taken at regular intervals (5 mm) from pith to bark in 
heartwood along the  0o and  90o surface of cores and the 

average weight was calculated. Average 64 times scan-
ning of each spectrum leaded to one final spectrum.

EC extraction
Each core was cut into small chips with a chisel and 
milled into fine powder with a 2-mm screen. The wood 
powder sample was oven dried at 60 °C to obtain a sta-
ble moisture content. All core samples were prepared 
for extraction after the NIR spectra collection. The 
accelerated solvent extraction (ASE) was processed 
supported by the thermo accelerated solvent extrac-
tor 350 (Thermo Fisher Scientific, Bellefonte, PA, 
USA) with ethanol. The methods were similar to Li 
and Altaner [6]. 4  g of wood powder was placed into 
a stainless steel cells and the setup extraction process 
was as following: 15  min static time, temperature 70°, 
100% rinse volume and 2 extraction cycles. The extrac-
tive solutions of samples were collected into a dry alu-
minium foil tray with known mass and placed in the 
fume cupboard overnight for the ethanol to evaporate. 
Subsequently the extracts were dried in an oven over-
night at 105 ℃ to remove moisture. The mass of the 
extract was determined and the extractives content 

Fig. 5 The variance of predicted EC between two grain angles on T. sinensis cores samples using full spectra (a) and sMC variables selected spectra 
(b); p-values significant level: ***: 0.001, **: 0.01, *:0.05
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was calculated on a dry mass basis. EC for the samples 
ranged between 1.23% and 16.49% with an average of 
8.86%.

NIR spectra processing
To find out whether the grain angle has an effect on the 
NIR spectra for EC prediction in T. sinensis or not. The 
optimal range of the spectrum for accurate calibration 
was investigated. PLS regression was used to perform 
grain angle classification analysis and to predict EC. The 
data from the samples was divided into two data set by 
Kennard-Stone sampling with Euclidean distance [31], 
including 200 selected samples as calibration data and 
the remaining 37 as validation data set for PLS model 
calibration and validation. Different spectra pre-pro-
cessing was applied on the NIR data sets before model 
calibration to character the best suitable pre-process-
ing method, which includes standard normal variation 
(SNV), 1st and 2nd derivative of Savitzky-Golay algo-
rithm with a 2 order polynomial and 15 window sizes. A 
filter method [32] which is called significant multivariate 
correlation (sMC) was carried out to find out the most 
important variable for grain angle and EC respectively 
and to eliminate the unimportant variables and develop 
a more reliable and robust model for EC prediction. The 
coefficient of determination  (R2) and root-mean-square 
error (RMSE) derived from both the calibration  (R2

Cal 
and  RMSECal) and validation  (R2

V and  RMSEV) were 
implemented to track the model performance. Data anal-
ysis was conducted in R software (version 3.1.2) [33]. The 
pls package [34] was used for PLS and sMC-PLS model 
performing and the plsVarSel [32] for sMC variables 
selection. The prospectr package [35] was used for NIR 
spectra manipulation and Kennard-Stone sampling, and 
the ggplot2 package [36] for visualization plot.
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