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METHODOLOGY

Core-labelling technique (CLT): a novel 
combination of the ingrowth-core method 
and tracer technique for deep root study
Eusun Han*  , Dorte Bodin Dresbøll and Kristian Thorup‑Kristensen 

Abstract 

Background Ingrowth‑core method is a useful tool to determine fine root growth of standing crops by inserting 
root‑free soil in mesh‑bags for certain period of time. However, the root density observed by the method does not 
directly explain the nutrient uptake potential of crop plants as it varies over soil depth and incubation time. We have 
inserted an access‑tube up to 4.2 m of soil depth with openings directly under crop plants, through which ingrowth‑
cores containing labelled soil with nutrient tracers were installed, called core‑labelling technique (CLT). The main 
advantage of CLT would be its capacity to determine both root density and root activity from the same crop plants in 
deep soil layers. We tested the validity of the new method using a model crop species, alfalfa (Medicago sativa) against 
three depth‑levels (1.0, 2.5 and 4.2 m), three sampling spots with varying distance (0–0.36, 0.36–0.72 and > 5 m from 
core‑labelled spot), two sampling times (week 4 and 8), and two plant parts (young and old leaves) under two field 
experiments (spring and autumn).

Results Using CLT, we were able to observe both deep root growth and root activity up to 4.2 m of soil depth. Tracer 
concentrations revealed that there was no sign of tracer‑leakage to adjacent areas which is considered to be advanta‑
geous over the generic tracer‑injection. Root activity increased with longer incubation period and tracer concentra‑
tions were higher in younger leaves only for anionic tracers.

Conclusions Our results indicate that CLT can lead to a comprehensive deep root study aiming at measuring 
both deep root growth and root activity from the same plants. Once produced and installed, the access‑tubes and 
ingrowth‑cores can be used for a long‑term period, which reduces the workload and cost for the research. Therefore, 
CLT has a wide range of potential applications to the research involving roots in deep soil layers, which requires fur‑
ther confirmation by future experiments.
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Background
Despite their potential to exploit deep plant nutrient 
resources [35], the dynamics of nutrient uptake by deep 
roots is poorly understood. In fact, the majority of root 
investigations carried out in arable fields are limited to 
the topsoil (i.e. ≤ 0.3 m) [22], while even annual crops can 
often grow roots to 2 m depth or deeper [15, 46].

In agro-forestry studies root development and uptake 
beyond 2  m of soil depth have been confirmed [8, 33], 
while only few agronomic studies reached beyond 2  m 
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of soil depth (e.g. [27]). One of the common reasons for 
the reluctance to study deep roots is the lack of suit-
able methods. Root methods that can be applied for root 
studies beyond 2 m of soil depth are rare and expensive 
to adopt. Therefore, a technical development of root 
methods at depth is required.

Root methods can be broadly categorized into destruc-
tive and non-destructive methods. The former includes 
the profile wall method [3] that has been used for deter-
mination of root distribution patterns in arable subsoil 
[16]. Sampling procedures such as soil core (e.g. [28, 51, 
57]) and monolith sampling (e.g. [36]) have been also 
used for determination of rooting density, rooting depth 
and root architecture at various spatial scales. Such 
destructive methods are laborious, and number of obser-
vations is often limited.

Non-destructive approaches such as the minirhizo-
tron technique is useful for dynamic observation of deep 
roots, and has been widely used in agronomic field stud-
ies in relation to nutrient dynamics of crop plants [45, 
53]. Recently, non-invasive technique utilizing a wide 
range of electromagnetic radiation for root phenotyping 
has been proposed [56], which however, requires further 
investigation in field conditions.

Ingrowth-core methods are also suitable for rapid, and 
thereby frequent investigation of gross growth of roots 
[50]. The basic concept of the technique is to place a 
known volume of root-free soil in a mesh-bag to which, 
the fine roots of standing crops grow within the known 
time and depths. Advantages of ingrowth-core methods 
can be that it reduces the uncertainty of the time interval, 
i.e. observers can assume that the root growth occurred 
during the known period of time [9]. A downside of 
the approach is that it can be biased as roots are grow-
ing into an initially root-free environment, which would 
not occur in undisturbed soil. In addition, inserting the 
mesh bags might disturb the root growth. However, this 
was proven not to be significant by investigating on the 
root growth near to the disturbed area by the profile wall 
method [50].

Tracer techniques are useful tools for studying root 
activity—as defined “the ability of the plant root to 
induce changes in soil close to the root” [14], which 
affects plants’ nutrient acquisition. This approach focuses 
on the plants’ capacity to acquire the given nutrients by 
comparing the accumulated tracer contents between 
labelled and un-labelled plants. 15N, as a stable isotope, is 
a well-known tracer for the study of the plant-soil inter-
face [13], and has been used for root studies also under 
arable field conditions [30]. By the use of the stable iso-
tope, N uptake has often been related to rooting density 
[55] and rooting depth [1]. Isotopes of K and S also exist, 

but due to high costs, nutrient analogues are often used. 
Among nutrient analogues Li has been recognized for 
its usefulness as an analogue to K. One of the pioneering 
studies by Martin et al. [37] concluded on the validity of 
Li as a tracer after experiments in a barley and field bean 
intercropping set-up. Cs [59] and Rb [7] as monovalent 
cations are also known to have the same uptake mecha-
nism as K. As an analogue to S, Se is used as it is taken 
up via high affinity sulphate transporters and have simi-
lar uptake pathways as S in plant roots [52]. In addition, 
radioactive tracers such as 33P and 32P were adopted for P 
uptake studies [12, 41], especially with mycorrhizae [42], 
which however, requires safer handling of the radioactiv-
ity in field conditions.

Applying tracers by injection include a risk of tracer 
mobility, especially in case of high rainfall after labelling 
[17]. This requires extra efforts to reduce the leaching 
risk, e.g. covering the plot surface, or to verify the move-
ment of tracers by analyzing soil samples adjacent to the 
injected spots. Therefore, a secure way of labelling with a 
minimized risk of leaching or escaping of tracers will be 
helpful in tracer studies.

Incubation time of ingrowth-cores has been suggested 
in a wide range of periods; less than 4  weeks under 
actively growing annual crops (e.g. barley and potato) 
due to the mortality of fine roots [50], and longer than 
6–9  months in boreal and temperate coniferous forests 
[26, 54]. However, no field experiments have been con-
ducted to test the optimum incubation time for deter-
mining the root growth and shoot-labelling status, and 
none in arable subsoils.

In tracer studies the rooting density is often determined 
on adjacent plants and not the plants receiving the tracer 
[8]. This separated approach for root uptake vs. root den-
sity investigation can potentially lead to a misleading 
interpretation of the data. Distribution patterns of soil 
nutrients and roots are highly heterogeneous, especially, 
in the subsoil [22, 60], and as a result the spots for tracer 
application and shoot biomass collection might not have 
the same conditions as the spots for root measurements.

Therefore, a feasible method that can allow us to meas-
ure the root characteristics and nutrient accumulation 
by the shoot of the same plants in situ is called for. The 
aim of this study was to develop a method for measur-
ing root growth and activity within the same soil volume 
beyond 2 m of soil depth. For this purpose, we have com-
bined the ingrowth-core method with tracer-labelling 
and developed the core-labelling technique (CLT). Alfalfa 
(Medicago sativa L.) was chosen as a model plant to test 
the CLT, as it is known for its deep-rooting capacity.

The new approach should meet the following criteria:
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• To quantify deep root growth beyond 2  m of soil 
depth;

• To allow precise location and time of tracer applica-
tion;

• To allow root extraction of the labelled soil volume 
after the end of the experiment.

Therefore, we have constructed long sloping metal 
access-tubes with openings that are placed directly under 
plants, through which ingrowth-cores with labelled-soil 
are installed. We hypothesize that (i) the alfalfa roots will 
grow into the ingrowth-cores within a 60  days period 
and that tracer concentration will increase in the shoot 
due to the uptake; (ii) the CLT with its containment can 
precisely locate the labelled spot, so only the targe-plants 
growing directly above the labelled-spots are labelled; 
(iii) tracer concentration is higher after 8  weeks than 
4  weeks due to the prolonged root growth period and 
thereby increased accessibility to the labelled soil; (iv) the 
CLT can demonstrate relationships between root density 
and root uptake activity.

Materials and methods
Experimental site
A field trial was established at the experimental station 
of the University of Copenhagen in Taastrup, Denmark 
(55° 40′ N; 12° 18′ E). The soil was an Agrudalf soil clas-
sified as sandy loam according to the ISSS classification. 
Detailed description on the soil physical and chemi-
cal condition at the study site is available in Table  1. A 
soil profile observation was done by national soil survey 
of Denmark in Tune, approximately 8  km away from 
the study site consisting of the same glacial till material. 
According to the survey, the soil profile consists of six 
horizons, viz., Ap (0–25 cm), Bt (25–43 cm), Bt (g) (43–
66 cm), Cc(g)1 (66–95 cm), Cc(g) (95–116 cm) and Ceg 
(> 116 cm). Weather data were collected at a weather sta-
tion 0.3 km from the experimental site (Fig. 1). The tem-
perature and precipitation were measured at 2 and 1.5 
meters-height, respectively.

Design and installation of access‑tubes and ingrowth‑cores
A stainless-steel access-tube (Fig.  2; left) with a total 
length of 5.85  m and an inner-diameter of 0.01  m was 
inserted using a spiral auger (Arkill Holding, Denmark) 
into the soil at 30° from the vertical line (Fig.  3). It had 
0.55  m-long openings at three intervals at 0.85–1.40  m, 
2.6–3.15  m and 4.6–5.15  m. Due to the 30° angle, it 
created three corresponding soil depth-levels, verti-
cally; 1.0  m (0.74–1.21  m), 2.5  m (2.25–2.73  m) and 
4.2  m (3.98–4.46  m). The ingrowth-cores were devel-
oped as stainless-steel tube structures with openings, 
designed to be filled and re-packed with tracer-labelled 
soil and inserted into the access-tubes (Fig. 2; right). One 
ingrowth-core had a container of 0.55  m-long with an 
inner-diameter of 0.01 m. In the center of each ingrowth-
core structure a thinner steel tube was placed, result-
ing in a net ingrowth-core volume of 3931   cm3. Each 
ingrowth-cores had 6 circular openings with a diameter 
of 0.06 m (Fig. 2; right). The openings of ingrowth-cores 
were designed to match those of access-tubes (Fig.  2; 
right)  through which, the plant roots from the bulk soil 
can access the soil inside the ingrowth-cores. A steel rod 
system was developed for the insertion and retraction of 
three ingrowth-cores into each access-tube. The cross-
ing bar inside the ingrowth-core was needed to provide 
stability upon stacking the ingrowth-cores and also to 

Table 1 Physical and chemical soil characteristics at the study site

Soil type Soil depth (m) pH Clay (%) Silt (%) Fine sand (%) Coarse sand (%) Bulk density 
(g  cm−3)

P (%) K (%)

Ingrowth‑core soil 8.1 12.5 12.4 45.5 28.9 0.004 0.041

Field soil 0–0.25 7.6 13.0 15.2 42.3 27.8 1.56 0.042 0.110

0.25–0.75 7.8 20.2 12.9 40.3 26.1 1.64 0.013 0.084

0.75–1.5 4.5 19.9 16.3 37.8 25.9 1.76 0.006 0.065

1.5–3.0 8.2 19.3 18.9 36.6 25.1 1.77 < 0.004 0.074

3.0–4.5 8.1 19.0 25.9 33.1 21.7 1.77 0.004 0.111

Fig. 1 Precipitation (mm) and mean temperature in 2017 at the 
study site
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regulate the distance between them (see Fig.  2). At the 
bottom of the access-tube, a cylinder-shaped docking-
system was installed as a guiding system for the place-
ment of the ingrowth-cores into the access-tubes (Fig. 2; 
left). The top end of the two lower cores had a corre-
sponding structure, so that the ingrowth-cores could be 
locked on top of each other. The reason for having the 
pre-installed semi-permanent access-tubes was to pro-
mote simpler and less laborious insertion/extraction of 
ingrowth-cores for long-term field trials, which other-
wise require soil-drilling each time. 

Experimental design
Alfalfa (M. sativa L. ‘Creno’) was sown on Sep 9, 2015. 
The seeding density was 2.5 g  m−2. The crop was mowed 
three times per season. No fertilizer was applied during 
its growth. Two experiments were performed  in 2017; 
one in spring (4 May–4 July) and the other in autumn 
(31 Aug–2 Nov). Access-tubes were inserted at the plot 
heads of six alfalfa plots (1.5 m × 10 m) leading to six rep-
licates. In the spring experiment, due to a soil collapse in 
one access-tube, the replicates were reduced to five.

Experimental procedure
Core‑labelling
15N, Li, Cs, Rb and Se were used as nutrient tracers. They 
were prepared from 15NH4Cl,  Li2CO3,  Cs2CO3,  Na2SeO4 
and  Rb2CO3 with the amount of 275.24 mg, 210.78 mg, 
728.26  mg, 0.474  mg, 535.02  mg per ingrowth-core, 
respectively. Except for 15N, the assumed enrichment 
levels were derived from Hoekstra et al. [17]. The tracers 
were prepared in solution form and mixed with a subsoil 
medium. While re-packing the labelled soil in the spring, 
a high soil strength was created to avoid soil spillage with 
a bulk density of 1.78 g  cm−3. At the second experiment 
in autumn, we applied a glass-fiber mesh covering the 
holes in the ingrowth-cores and lowered the bulk density 
to 1.44 g  cm−3. The soil used for the ingrowth-cores was 
a sandy loam subsoil taken from below 0.5  m (Roskilde 
Stone & Gravel Ltd.). Physical and chemical characteris-
tics of subsoil medium are available in Table 1. After re-
packing is done, the ingrowth-cores were inserted into 
the access-tubes.

Shoot sampling and measurement
Two shoot samplings took place in both experiments at 
week 4 and 8 after the core-labelling. At week 4 young 
and old leaves were collected, separately, whereas the 
entire biomass was collected as a whole at week 8.

Samples were collected directly above each of the 
three ingrowth-cores. Due to the insertion angle, each 
0.55  m ingrowth-core had the corresponding length 
on the surface of 0.275  m (Fig.  4). Although the diam-
eter of the ingrowth-core was 0.1 m, we targeted at the 
width that corresponded to three crop rows (equivalent 
to 0.36  m). Thus, the total area of sampling per open-
ing was 0.275 m × 0.360 m on the soil surface for both 
experiments. In the spring experiment, shoot samples 
were collected from three different spots. Firstly, shoots 
were sampled as described at the targeted areas directly 
above the labelled ingrowth-cores (core-spot; 0–0.36 m). 
In addition, the area around the core-spot was sampled 
(around-spot; 0.361–0.720  m), and as a control, shoot 
samples at least 5 m away from the core-spot were col-
lected (remote-spot).

The collected samples were oven-dried at 85  °C for 
48  h, and ground for further analysis. Stable isotopic 
ratios of N (15N) was measured at Stable Isotope Facility, 
UC Davis, using a ThermoScientific GasBench-Precon 
gas concentration system interfaced to a Thermo Scien-
tific™ DELTA V™ Plus isotope-ratio mass spectrometer 
(Bremen, Germany). Upon analysis of the nutrient ana-
logues, the samples were microwave-digested in nitric 
acid (70%). For the spring experiment, the sample digests 

Fig. 2 Schematic diagrams of an access‑tube with ingrowth‑core 
inserted (left) and an ingrowth‑core (right)
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were analyzed by Inductively Coupled Plasma Mass Spec-
trometry (ICP-MS, Thermo Scientific iCAP-Q equipped 
with CCTED; collision cell technology with energy dis-
crimination, Bremen, Germany). In the autumn experi-
ment, the digests were analyzed using ICP Sector Field 
Mass Spectrometry (ICP-SFMS, ELEMENT XR, Thermo 
Scientific, Bremen, Germany) using a combination of 
internal standardization and external calibration.

In the autumn experiment, the tracer concentra-
tions from the core-spots were subtracted to the tracer 
concentrations from the remote-spot to calculate the 
excess tracer concentrations (dTC).

Root sampling and measurement
The ingrowth-cores were retracted for root sampling 
after 8  weeks of core-labelling  and the soil samples 
were stored in a cooling room (5  °C) until the extrac-
tion. The entire volume of the soil re-packed into 
ingrowth-cores was taken out and visible roots were 
separated by root washing. The clean root samples 
were scanned on a flatbed scanner (Epson Perfection 
V700). The resulting root images (600 dots per inch; 
DPI) were analyzed with the ‘WinRHIZO Pro’ (Version 

2016c, 32 Bit) software. Minimum surface area of 
the object was set for 2   cm2, and minimum length to 
width ratio of the root objects to 2. Medium image 
smoothening was chosen for noise removal. Root-
length density (RLD; cm   cm−3), root diameter (mm) 
were obtained from the images. Root biomass (RBM; 
mg   cm−3) was determined after drying the root sam-
ples for 48 h at 85 °C in the oven. Specific root length 
(SRL; m  g−1) was calculated based on RBM and RLD.

Statistical analysis
R version 3.4.1 R Core [44] was used for statistical anal-
ysis. The package lme4 [2] was used for linear mixed-
effects model analysis [43]. For the root traits (RLD, 
RBM, root diameter, and SRL) the effects of core-label-
ling depth—1.0 and 2.5  m for the spring experiment 
and 1.0, 2.5 and 4.2 m for the autumn experiment, were 
tested. In the spring experiment, the effects of sampling 
distance (core-, around- and remote-spot) and core-
labelling depth (1.0 and 2.5 m) on the tracer concentra-
tions in aboveground biomass were tested. In autumn 
experiment, the effects of sampling time (week 4 and 8) 
and core-labelling depth (1.0, 2.5 and 4.2 m) on excess 
tracer concentrations (dTC) were tested. The effects 

Fig. 3 A schematic diagram describing the concept of core‑labelling technique (CLT); Figures of plants are from Kutschera et al. [31]
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of sampling part (young and old leaves) on the tracer 
concentrations measured after 4 weeks of core-labelling 
were tested in the spring and autumn experiments.

Main effects and interactions were tested for signifi-
cance (P≤ 0.05) based on the approximated degrees of 
freedom calculated by the package lmerTest [32]. Dif-
ferences were considered significant at P < 0.05. Tukey 
test P-values for pairwise comparisons were adjusted 
for multiplicity, by single step correction to control the 
family-wise error rate, using the multcomp package [19].

Results
Installation, cost and labour requirement 
for implementation of CLT
Depending on the soil and weather conditions, the soil-
drilling using a spiral auger and the insertion of access-
tubes allowed the installation of 6-8 access-tubes per 
day with two labours. It indicates that one day was suf-
ficient to install the required number of access-tubes 
for this study, which resulted in a cost of 7000 Euros 
(52,080 Danish Krone). Six days by one professional 
were required to produce 18 ingrowth-cores for the 

Fig. 4 A schematic diagram on shoot sampling strategies. In spring experiment: shoot samples for core‑spot (black‑shaded area) were collected 
within 0.275 m × 0.360 m directly above the ingrowth‑cores. Samples from around‑spot (grey‑shaded area) were collected around the core‑spot 
(0.361–0.720 m). Shoot samples from remote‑spot (white‑shaded area) were collected > 5 m away from the core‑spots. In both experiments: shoots 
were sampled twice (week 4 and week 8). At week 4, young and old leaves were collected separately, whereas the entire biomass was collected at 
week 8
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given study with a cost of 2830 Euros (21,120 Danish 
Krone).

Labelling of soil with the nutrient tracers and re-pack-
ing of the soil into 18 ingrowth-cores required less than 
a day with three labours. Insertion of the ingrowth-cores 
into the access-tubes required three labours, which was 
done in a day. We were able to finish the shoot sampling 
in a day with two labours. Extraction of ingrowth-cores 
required three labours and an electronic winch mounted 
on a tractor, and it required one day to complete.

Alfalfa root growth into ingrowth‑cores
Roots of alfalfa grew into ingrowth-cores at all depths. 
The density-based traits such as RLD and RBM exhib-
ited low amount and did not significantly differ between 
soil depths in either of the seasons (Fig.  5a, b, e and f ). 
The variability in RLD in the spring experiment was high, 
from 0.003 to 0.082 cm   cm−3 at 1.0 m depth. In spring, 
the root diameter decreased significantly with depth, 
which led to the significant effect of depth on SRL. No 
differences in root diameter and SLR between the depth 
was found in the autumn (Fig. 5g and h).

Effect of sampling spot on tracer concentrations
Concentration of tracers at different sampling spot with 
varying distance (core-spot, around-spot and remote-
spot) and core-labelling depth (1.0  m and 2.5  m) is 
presented here based on the data from the spring 
experiment. According to mixed-effects model analy-
sis,  core-labelling depth significantly affected tracer 

concentrations of 15N (Fig. 6a) while Li, Cs, Se and Rb 
were unaffected (Fig.  6b–e). Tracer concentrations of 
15N, Cs and Li were significantly affected by sampling 
spot. Se and Rb concentrations were affected by neither 
factor (Fig. 6d, e, i and j).

Multiple comparisons on tracer concentra-
tions  between the sampling spots  were carried out. 
Tracer concentrations of 15N, Li and Cs (Fig. 6f–h) were 
significantly higher at the core-spot compared to the 
remote-spot across the core-labelling depths, meanwhile 
the around-spot exhibited moderate differences. Se and 
Rb concentrations revealed decreases from the crop-spot 
to remote-spot, however, the differences were not signifi-
cant (Fig. 6i and j).

Effect of sampling time on excess tracer concentrations 
(dTC)
In the autumn experiment, excess tracer concentrations 
(dTC) at three core-labelling depths (1.0, 2.5 and 4.2 m) 
at two sampling times (week 4 and week 8) were ana-
lyzed. Regardless of core-labelling depth the dTC of 15N 
and Li was significantly affected by the core-labelling 
depth, in which, 1.0 m depth revealed significantly higher 
dTC (Fig. 7a and b). The difference between 2.5 and 4.2 m 
was insignificant. Cs dTC also revealed similar decrease 
along the depth, but the difference was not significant 
(Fig. 7c). Se dTC and Rb dTC were not affected by core-
labelling depth (Fig.  7c, d and e). Cs dTC was signifi-
cantly higher at week 8 compared with week 4 (Fig. 7h). 
Although 15N, Li and Rb (Fig. 7f, g and j) showed similar 

Fig. 5 Root‑length density (RLD; cm  cm−3), root biomass (RBM; mg  cm−3), root diameter (mm) and specific root‑length (SRL; g  m−1) of alfalfa 
affected by core‑labelling depth measured in the spring (a–d) and autumn experiment (e–h). Small letters indicate significant differences between 
the treatments (Tukey HSD; P ≤ 0.05). Means and one SE are shown
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increase in dTC over the sampling time, the difference 
was not significant. Rb revealed a mild decrease in dTC 
over the sampling time, but the effects were insignificant.

Effects of sampling part on tracer concentration
In both experiments, shoot samples were separately col-
lected from young and old leaves to compare the tracer 
concentrations between the sampling parts. As shown in 
Fig. 8, the anionic tracers, i.e., 15N and Se, revealed sig-
nificant differences in tracer concentrations between the 
sampling parts—Se in both experiments (Fig.  8d and i) 
and 15N in spring experiment (Fig. 8f ). No other tracers 
exhibited the effects of sampling part (see Fig. 8b, c, e, g, 
h and j).

Root density vs. tracer concentration
We have found low values for both tracer concentrations 
and root density. Nevertheless, the relationships between 
RLD and tracers were significant (P ≤ 0.05).  R2 values 
between RLDs and 15N, Li, Cs, Se and Rb were 0.840, 
0.738, 0.756, 0.213 and 0.630, respectively (Fig.  9a–e). 
However, only few data points with high x and y values 
have driven the linear relationship.

Discussion
Using CLT, root activity was detected in the aboveground 
biomass above the core-labelled spot and the effects of 
core-labelling were also moderately shown up to 0.72 m 
of distance horizontally. Maximum root activity was 
shown earlier for the mobile anionic tracers compared to 

Fig. 7 Excess tracer concentrations (dTC) of 15N, Li, Cs, Se and Rb from alfalfa shoot biomass affected by core‑labelling depth (1.0, 2.5, 4.2 m; a–e) 
and sampling time (Week 4 and 8; f–j) in the autumn experiment. Roman letters indicate significant differences between the treatments (HSD 
Tukey; P ≤ 0.05). Means and one SE are shown

Fig. 6 Tracer concentration of 15N, Li, Cs, Se and Rb in alfalfa shoot biomass affected by core‑labelling depth (1.0 and 2.5 m; a–e) sampling distance 
(core‑, around‑ and remote‑spot; f–j) in the spring experiment. Roman letters indicate significant differences between the treatments (HSD Tukey; 
P ≤ 0.05). Means and one SE are shown
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the less mobile cationic tracers. The relationship between 
rooting density and tracer uptake was positively corre-
lated but considering the data distribution, it was rather 
inconclusive.

Deep root growth into the ingrowth‑cores
As hypothesized (i), CLT, with its deep access-tubes and 
ingrowth-core installation, was capable of capturing deep 
root growth below 2  m depth. To our knowledge, this 
study illustrates the deepest application of an ingrowth-
core technique, which, has commonly been used to a 
maximum of 0.5  m soil depth [5, 50]. We found alfalfa 
root growth and activity at 4.2 m depth in autumn, which 
exceeds the deepest observation on alfalfa roots, so far, 
done by Weaver [58] at 3.7 m after 6-years cultivation of 
the species. In a Haplic Luvisol, perennial crops, such as 
alfalfa, chicory and tall fescue were found to have deep 
roots when observed to 2 m of soil depth [15, 24]. When 
grown as mixture with Festuca pratensis and Phleum 
pratense, alfalfa resulted in 1.5  m of maximum root-
ing depth [48]. In extreme cases soil water depletion has 
shown root activity of alfalfa deep roots up to 10 m of soil 
depth [10, 34].

The deep-rooting of alfalfa in our study site must be 
attributed to its taproot system with a high penetration 
capacity [38]. The species is also known to create soil 
biopores [15]. The increase in biopore density formed 
by the penetration of large-sized taproots [23, 39] might 
be responsible for establishment of deep roots. Another 
reason for deep rooting might be the less frequent mow-
ing done at the study site (max. 3 cuts per season) which 
might have enhanced the rapid root growth [58]. Finally, 
the deep roots found could also be a result of methodo-
logical issues. Inserting tubes into the soil always poses 

the risk of disturbance e.g. leaving gaps between the tube 
and the soil facilitating root growth along the tube.

In contrast to the high rooting depth, we have found 
lower rooting density of alfalfa than expected. Accord-
ing to our observation, the ground water level at the 
study site was above 2.5 m depth during the incubation 
period, which might have affected the increase in root-
ing density. The frequency of sampling, in general, is 
perceived as 2–4 weeks of time to ensure minimum root 
mortality of the ingrown fine roots [6, 50]. In our study, 
we doubled the time, to allow time for tracer uptake after 
roots had grown into the ingrowth-cores. Therefore, it is 
hard to conclude if the sampled roots after 60 days were 
at the peak in terms of density. Moreover, as indicated 
in Table 1, we have used same soil batch for re-packing 
regardless of the depth-levels for ingrowth-core instal-
lation. As a result, there were differences in soil texture 
between bulk soil and the re-packed soil, especially at 
depth (> 3.0 m), which might have retarded root growth 
into the ingrowth-cores due to the discontinuity in soil 
properties [4].

The surprising result that there were no significant dif-
ferences in RLD between the three depths is expected to 
be a result of the high data variability, which might have 
been caused by heterogeneous root distribution in the 
deep soil layers [22] and the aforementioned limitation 
exerted by installation disturbance.

Horizontal and vertical variation in root activity
Our hypothesis (ii) was only partially met. We have iden-
tified the labelled area using the CLT as intended, but 
the range of labelling area was larger than we assumed. 
We have found a tendency that tracer concentration 
to be elevated at the around-spot. Considering the 

Fig. 8 Tracer concentration of 15N, Li, Cs, Se and Rb in alfalfa shoot biomass affected by sampling part (young and old leaves) collected 4 weeks 
after the core‑labelling in spring (a–e) and autumn experiment (f–j). Roman letters indicate significant differences between the sampling part (HSD 
Tukey; P ≤ 0.05), respectively. Statistical analysis was done with log‑transformed variables. Means and one SE are shown
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containment-capacity of CLT the uptake of tracers at 
around-spot should be interpreted as acquisition by the 
extended root system of the neighbor plants. This is also 
in agreement with previous studies. For example, when 
Li was applied as a tracer into 50  cm of soil depth at 
327 ppm (2 g of LiCl in 1000 g of soil), the adjacent maize 
plants up to 1 m distance were able to access the tracer 
[47]. However, it is uncertain to which extent the hori-
zontal root proliferation happens when the deep roots 
are exposed to different conditions, such as soil compac-
tion. One of the disadvantages of the generic injection 
techniques is its susceptibility for horizontal and vertical 
movement of the tracer solution after the injection, espe-
cially, due to high rainfall. In Hoekstra et al. [17], it was 
found that high rainfall (78 mm at the study site) during 
the incubation period caused increased concentration 
of the tracers (Cs, Rb and Sr) below the injection depth. 
Based on our observation in the spring, such leakage of 
tracers from the ingrowth-cores did not happen or hap-
pened to a minimum extent.

In the spring experiment, root activity did not differ 
significantly between the soil depths. Nevertheless, root 
activity tended to be higher at the upper soil layers as the 
rooting density in upper layers tended to be higher, espe-
cially in spring. Despite the different depth-scale applied 
compared to the current study, Hoekstra et al. [17] found 
that the depth-wise difference in plant excess tracer con-
centration (dTC) and recovery rates of Cs between 0.05 
and 0.2 m was more than 5-folds when tested on a grass 
mixture. This is close to our findings in the spring experi-
ment. The tracer concentration fell by a factor of 4.5 
when the ingrowth-core depth was increased from 1.0 
to 2.5  m in our experiment. Similarly, using Sr, Rb and 
Li, injection of tracer solutions at 0.05  m showed sig-
nificantly higher root activity of seven grassland-species 
compared with injections at 0.15 and 0.25 m [11].

Temporal variation in root activity
The significant increases in excess tracer concentration 
(dTC) of Cs over the sampling time (from week 4 to 8) 
partially confirms our hypothesis (iii) stating that tracer 
concentration after longer incubation time is higher com-
pared to shorter time. However, the time of sampling did 
not alter 15N and Se dTC. Considering the concentration 
differences between the young and old leaves, it is clear 
that the anionic tracers, i.e., 15N and Se, seem to be taken 
up by deep roots within 4 weeks of incubation, whereas 
the cationic tracers required longer period time.

Fig. 9 Linear regression between root‑length density (RLD; 
cm  cm−3) and nutrient tracers (15N, Li, Cs, Se and Rb). The shaded area 
represents one SE
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In autumn experiment, regardless of sampling time, 
dTC of 15N, Li, Cs and Se revealed positive values indi-
cating the tracer was taken up from week 4 or even ear-
lier. However, tracer accumulation was not concentrated 
in younger leaves at that time for Li and Cs. This might be 
attributed to the accumulation pathways of the cations. 
Especially, Li is known to be firstly accumulated in the 
roots, then translocated to the old leaves and does not 
escape the location owing to the incapacity for phloem 
transport [25]. Overall, it can be suggested that the 
optimum period of incubation for 15N and Se is within 
4  weeks, while the other tracers need longer time for 
optimal uptake and measurement. Therefore, we suggest 
that the optimum period for incubation in CLT should 
differ based on the tracers used.

Based on the data on the positive dTC values in 
autumn experiment (except for Rb at 1.0 m), we assume 
that the tracer uptake happened up to 4.2 m of soil depth. 
However, we are also cautious to conclude on the uptake 
at depths, especially for Se and Rb. Firstly, no distinc-
tive differences in dTC Se and dTC Rb between the soil 
depth may imply that the magnitude of tracer uptake was 
at very minimum level. Moreover, although we observed 
no indication of sharing ingrowth-cores between the 
plants at different depth-levels, at ground level the plants 
were separated by less than 1  m horizontally, which 
might have allowed a sharing of ingrowth-cores between 
plant from different depth-treatments, i.e. plants above 
ingrowth-cores inserted at 4.2 m were able to reach the 
ingrowth-cored inserted at 2.5  m. Moreover, the over-
all concentrations of Se and Rb at the labelled area was 
low. Therefore, it is possible that even the small amount 
of Se and Rb snatched from upper-soil layers (e.g. from 
2.5 m-labelled ingrowth-core) might have been substan-
tial to indicate the significant effects of labelling.

Root density vs. tracer uptake
Our hypothesis (iv) on root density vs. tracer uptake was 
not confirmed by our CLT results. Despite the statisti-
cal indication by the linear regression, the relationship 
between root density and tracer uptake does not seem 
to be straight forward. The observed relationship was 
driven by one observation combining high root density 
with high uptake of all five tracers. First of all, we aimed 
to detect root activity at depth-levels where a low root 
growth was expected and shown. In addition, we did not 
substantially increase the enrichment levels of the nutri-
ent tracers compared to other studies done on highly 
active root zones [18]. The reason was to avoid to affect 
root growth and activity of the target plants due to high 
concentrations of the applied chemicals [29], e.g. Toxic-
ity in plants [49]. As a result, we had to work with a low 
labelling level close to the background levels and thereby 

a low increase in tracer concentration, which might have 
affected the relationship between the root density and 
shoot tracer concentration.

Hoekstra et al. [17] found that increasing injection den-
sity from 36 to 144 injections  m−2 can reduce variability 
of tracer concentrations. It is difficult to compare this to 
the injection density of our approach. Yet considering 
the sampling area created per ingrowth-core (0.099  m2), 
it is approximately 10 injection points per  m−2, which is 
substantially lower than previous studies (e.g. > 190 injec-
tions per  m2 [21, 40]), hence the risk for high variation 
in tracer concentration. One question remaining is, if the 
detected rooting density inside the ingrowth-cores would 
have been enough to draw the large proportion of tracer 
applied. In general, RLD higher than 0.1  cm   cm−3 is a 
pre-requisite for a sufficient soil water extraction [20], 
which might be why the higher RLD values drove the lin-
ear relationship strongly in our study.

Potential and improvement of the CLT method
Our study shows the potential of the core-labelling tech-
nique (CLT) for studying deep nutrient uptake under 
field conditions, using either nutrient tracers (15N) or 
nutrient analogue tracers. Once produced and installed, 
the access-tubes and ingrowth-cores can be used for a 
long-term period, which can substantially reduce the 
workload and cost for research afterwards.

Despite the promising results, we have also identi-
fied some drawbacks of the approach. First of all, we have 
observed that the soil at the opening areas of access-tubes 
occasionally collapsed and left a dent, which potentially 
reduced bulk soil to re-packed soil contact. This might 
explain the large variation in root growth. Therefore, the 
design of the openings in the access-tubes may be adjusted 
to decrease the risk of soil-collapse while still allowing roots 
to grow across from the bulk soil to the ingrowth-core soil.

Moreover, due to the steep insertion angle the access-
tube openings only left a short distance between the 
core-spots on the soil surface. This means that we can-
not exclude the possibility of horizontal root growth and 
uptake from the shallower layers of plants supposedly tak-
ing tracers up from the deeper soil layers. However, as roots 
were found in all ingrowth-cores we expect the uptake to 
originate from there. The possible effect of horizontal 
growth could in future studies be determined by adding 
different tracers at the different depths and not using it for 
multiple tracer studies. Alternatively, a less steep insertion 
angle would separate the aboveground core-spots more 
but would require much longer access-tubes leading to 
increased potential of disturbance and impracticality upon 
insertion and extraction of the ingrowth-cores.

Except for 15N, one question which remain is the 
effect of background concentration of the elements used 
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as tracers on the results. In general, it is recommended 
to have information on their level of availability in the 
soil, before deciding the amount of label to apply to the 
ingrowth-core soil.

Conclusions
Our results suggest that CLT can be used to detect root 
activity of deep roots in arable fields. The approach com-
bines deep-drilled permanent access-tubes installed at 
an angle, and portable ingrowth-cores used for placing 
labelled soil at different soil depths. Using CLT, research-
ers can locate the labelled spots underneath and be used 
to study spatial and temporal variation in root activity. 
The method has good potential for answering both basic 
and applied research questions about roots and their 
activity in deep soil layers. Further studies involving more 
realistic root-soil interface for determining deep root 
activity are required confirm the contribution deep roots 
to crop nutrient dynamics.
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