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Abstract 

Background:  Plant height is an important morphological and developmental phenotype that directly indicates over-
all plant growth and is widely predictive of final grain yield and biomass. Currently, manually measuring plant height is 
laborious and has become a bottleneck for genetics and breeding programs. The goal of this research was to evaluate 
the performance of five different sensing technologies for field-based high throughput plant phenotyping (HTPP) of 
sorghum [Sorghum bicolor (L.) Moench] height. With this purpose, (1) an ultrasonic sensor, (2) a LIDAR-Lite v2 sen-
sor, (3) a Kinect v2 camera, (4) an imaging array of four high-resolution cameras were evaluated on a ground vehicle 
platform, and (5) a digital camera was evaluated on an unmanned aerial vehicle platform to obtain the performance 
baselines to measure the plant height in the field. Plot-level height was extracted by averaging different percentiles of 
elevation observations within each plot. Measurements were taken on 80 single-row plots of a US × Chinese sorghum 
recombinant inbred line population. The performance of each sensing technology was also qualitatively evaluated 
through comparison of device cost, measurement resolution, and ease and efficiency of data analysis.

Results:  We found the heights measured by the ultrasonic sensor, the LIDAR-Lite v2 sensor, the Kinect v2 camera, 
and the imaging array had high correlation with the manual measurements (r ≥ 0.90), while the heights measured by 
remote imaging had good, but relatively lower correlation to the manual measurements (r = 0.73).

Conclusion:  These results confirmed the ability of the proposed methodologies for accurate and efficient HTPP of 
plant height and can be extended to a range of crops. The evaluation approach discussed here can guide the field-
based HTPP research in general.

Keywords:  Plant height, Sorghum, Ultrasonic sensor, Laser rangefinder, Kinect time-of-flight camera, 
Photogrammetry, Digital elevation model
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Background
The stress from a growing world population and the less 
favorable environment from the changing climate require 
substantial improvements of grain crops production by 
2050 [1]. To meet this requirement, crop cultivars that 
have high yield and stress tolerance need to be selected 
by innovative crop breeding methods. During the past 
decades spectacular advances in “next generation” DNA 
sequencing are rapidly reducing the cost of genotyping 

and enabling genomics-assisted breeding. In contrast, 
methods for rapid characterization of plant traits have 
advanced little [2]. Therefore, high-throughput plant 
phenotyping (HTPP) platforms are needed that can accu-
rately characterize plant phenotypes of large populations 
in the field with a fraction of the time and labor of man-
ual phenotyping methods [3].

Among various traits, plant height is a fundamen-
tal morphological phenotype that directly indicates the 
plant growth and is highly predictive of biomass and 
final grain yield. Continuous plant height measurements 
throughout the season can contribute to identifying dif-
ferent growing stages and consequently select genotypes 
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that have the longer grain filling period to produce more 
yield. Theoretically, plant height is defined as the shortest 
distance between the upper boundary (the highest point) 
of the main photosynthetic tissues (excluding inflores-
cences) and the ground level [4]. Though easily defined, 
human bias on identifying the optimal upper boundary 
selection will potentially exist during manual plant height 
measurement in the field condition. Also, as plant height 
is conventionally measured using measuring sticks in the 
field, this manual data collection is laborious and time-
consuming, hence not scalable for large field experiments 
or many repeated measures at high temporal resolution. 
Due to these major challenges, proximal sensing technol-
ogies become a practical solution to implement HTPP of 
plant height.

In recent 5 years, various automatic sensing techniques 
have been explored to measure plant phenotypes under 
field conditions. Plant height as a quantitative trait can be 
measured by both sensors and imaging devices and there 
is a broad range in the mechanics and functional opera-
tion of these different sensors and cameras [5]. These 
examples include using time-of-flight (ToF) techniques 
where range sensors can directly provide the distance 
between the sensor and the target object (i.e., the plant 
canopy). Accordingly, the plant height can be calculated. 
These sensors typically include the ultrasonic sensor, the 
light detection and ranging (LiDAR), and the ToF cam-
era. The ultrasonic sensor is a range detector, which can 
provide measurements that are well correlated with the 
ground truth measurements if finely tuned [6, 7]. An 
advantage of the ultrasonic sensor is it senses objects 
within its operating sound cone and provides an averaged 
distance which results in an inherent noise filtering of the 
variable plants within a plot [6]. However, the sensor field 
of view (FoV) selection is complicated, because narrow 
FoV may not cover a sufficient area of the plant canopy, 
while wide FoV may include non-plant objects outside 
the canopy area.

Compared to the ultrasonic sensor, LiDAR can pro-
vide a much higher resolution of the 3D canopy structure 
when mounted on a mobile field vehicle [8, 9], and the 
plant height can be extracted through post-processing. 
However, the digital point cloud of the canopy is very 
sensitive to LiDAR’s resolution, sampling frequency, and 
its geo-locations during movement. In addition, LiDAR is 
considerably more costly than the ultrasonic sensor.

A final option is ToF cameras that can extract distance 
in image arrays. As inexpensive hardware, a consumer-
grade ToF camera, Microsoft Kinect, was developed for 
simultaneous color and distance detection in 2010. Its 
upgraded version—Kinect for Windows v2 was released 
in 2013 and has been proved as a promising tool for 
3-dimensional (3D) plant height measurement recently 

[10, 11]. However, Kinect v2 is sensitive to direct sunlight 
and requires proper shading to provide suitable measure-
ments [10].

Unlike being measured directly by the ToF techniques, 
plant height can also be extracted from 3D plant archi-
tecture generated by photogrammetry, which uses 
structure-from-motion (SfM) algorithm to construct 3D 
digital elevation model (DEM) from common features 
in 2-dimensional (2D) images [12]. Nguyen et  al. [13] 
designed a field robot with 16 high-resolution cameras 
on an arc-shaped structure to collect 2D plant images 
in different viewing angles for 3D plant structure recon-
struction. Due to the proximal and limited views of plants 
from each camera, images have to be taken from multiple 
cameras or taken at a fast frequency on a mobile platform 
to obtain sufficient overlaps for photogrammetry. Also, 
the huge image set requires a high computing capacity 
for 3D reconstruction. In addition to the ground-based 
image acquisition, plant images can also be captured 
from varying viewing angles by a camera carried by an 
aerial vehicle [14, 15]. Due to the high camera elevation 
above the ground, much fewer images are needed to 
generate the DEM of plants for plant height extraction 
than the images captured by the ground-based platform. 
However, the geospatial resolution of DEMs from remote 
imaging is lower than the 3D plant model from proximal 
imaging.

Through reviewing different sensing technologies for 
plant height measurement, we could find advantages 
and drawbacks of each method. Most research focussed 
on the performance of using only one sensing method 
for plant height measurement, yet lacked quantitative 
comparison among other sensing technologies applied 
on the same plant. Therefore, it is not directly informa-
tive for appropriate sensor selection. As such, the overall 
objective of this work was to evaluate the performance 
baselines of multiple sensing and imaging technologies 
for in-field plant height measurement. In this study, we 
used sorghum as the target crop for phenotyping. As a 
major grain in the United States and Sub-Sahara Africa, 
sorghum is one of the most important sources of food, 
feed, and bioenergy. Field studies of stress tolerance in 
diverse sorghum germplasm are particularly challenging 
for phenotyping because of the wide variation in stand 
establishment and plant morphology. We used two sen-
sors and three types of cameras for sorghum height 
measurement. A ground vehicle and an unmanned aerial 
vehicle (UAV) were used as the proximal and the remote 
sensing platform respectively. We proposed data pro-
cessing methods for the dataset of each sensing technol-
ogy, quantitatively compared the results to the manual 
measurements, discussed the issues with each sensing 
method, and provided our recommended solutions for 
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field-based high-throughput phenotyping of plant height 
in sorghum.

Methods
Ground‑based data acquisition system
A phenotyping mobile unit (PheMU) [16] was developed 
to collect plant phenotypic data at Kansas State Uni-
versity (KSU), Manhattan, KA. The PheMU equipment 
(Fig.  1) was retrofitted with a high-clearance sprayer 
(Bowman Mudmaster, Bowman Manufacturing Co., 
Inc., Newport, AR, USA). The height of the sensor boom 
was adjustable to collect sensor measurements of plant 
height in different stages. To reduce the shadows on the 
canopy and capture images in a balanced light condition, 
a rectangle-shape shade sail (Kookaburra OL0131REC, 
Awnings-USA, Camanche, IA, USA) was mounted on 
the sensor boom. For plant height measurement, four 
types of sensing and imaging devices were installed on 
the boom for simultaneous data collection from a sin-
gle-row of the plant. The devices included an ultrasonic 
sensor (U-GAGE Q45U, Banner Engineering Corp., 
Minneapolis, MN, USA), a LIDAR-Lite v2 (LL2) sensor 
(LIDAR-Lite v2, Garmin International, Inc., Olathe, KA, 
USA), a Kinect camera (Kinect for Windows version 2, 
Microsoft Corp., Redmond, WA, USA), and an imaging 
array comprised of four digital single-lens reflex (DSLR) 
cameras (EOS 7D, Canon, Inc., Tokyo, Japan), each with 
a fixed zoom lens (EF 20  mm f/2.8 USM, Canon, Inc., 
Tokyo, Japan). All devices were placed in a nadir view 
of the plant. In addition to the sensing and imaging 
devices, two GNSS antennae (AG25, Trimble, Westmin-
ster, CO, USA) were installed at each end of the sensor 
boom and connected to two RTK GNSS receivers (FmX 
integrated display, Trimble, Westminster, CO, USA) for 
georeferencing the sensor observations and images. An 

open-source software toolkit [17] for controlling sen-
sors and logging data was developed and deployed on a 
laptop computer. Raw sensor observations and image file 
names were attached with time stamps during data col-
lection and were saved as text files on the laptop. Image 
files from the Kinect and four cameras were transferred 
to the laptop right after captured.

Aerial‑based image acquisition system
A low-cost unmanned aerial system (UAS) [15] was inte-
grated for high throughput phenotyping of large breed-
ing nurseries at KSU, Manhattan, KA (Fig.  2). The UAS 
consisted of a low-cost UAV (IRIS+, 3D Robotics Inc., 
Berkeley, CA, USA), a custom-designed gimbal (designed 
by Dr. Dale Schinstock at KSU), and a modified Canon 
S100 camera (Blue-Green-NIR, 400–760  nm, MaxMax.
com LDP LLC, Carlstadt, NJ, USA). The IRIS+ is a light-
weight quadcopter UAV, controlled by an open-source 

Fig. 1  A ground-based HTPP platform on a retrofitted MudMaster sprayer. Sensors mounted on the boom were marked as (1) a Kinect for Windows 
v2, (2) four DSLR cameras, (3) a LIDAR-Lite v2 sensor, and (4) an ultrasonic sensor

Fig. 2  A UAS HTPP platform consisting of an IRIS+ quadcopter, a 
gimbal, and a digital camera
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Pixhawk autopilot system (PixHawk sponsored by 3D 
Robotics, www.plann​er.ardup​ilot.com). A uBlox GPS 
with integrated magnetometer was equipped with the 
IRIS+ for navigation. The gimbal compensated for the 
UAV movement in the pitch and roll directions during 
the flight to allow for nadir image acquisition. The GPS 
inside the S100 camera attached the geo-location data to 
the raw images for georeferencing.

Field experiment and data collection
In this study, we used US × Chinese recombinant inbred 
lines (n = 670) generated by crossing chilling-sensitive US 
line BTx623 with chilling-tolerant Chinese accessions: 
“Hong Ke Zi”, “Kaoliang”, and “Niu Sheng Zui”. These 
RILs were replicated twice in the early-season chill-
ing stress experiment, which consisted of 48 rows and 
40 ranges in the field. These RILs were planted on April 
7th, 2016, around 45  days earlier than the conventional 
planting date for sorghum, at the KSU Ashland Bot-
toms Research Farm (39.139  N, 96.619  W) in Manhat-
tan, KA. Despite early planting on April 7th, sorghum 
seedlings did not emerge until April 28th due to severe 
drought. Among the 48 rows, phenotypic data were col-
lected on two rows (from the center of the field) across 
40 ranges on June 16th and 17th (approximately 50 days 
after emergence of sorghum seedlings). Overall, 80 sin-
gle-row plots were traversed. In these 80 plots, two plots 
were not planted for placing the ground control points 
(GCPs). The GCPs were used for geospatial correction 
and the alignment of aerial images. There were 47 plots 
consisted of BTx623 × Hong Ke Zi RILs, 21 plots of 
BTx623 × Kaoliang RILs, 7 plots of commercial sorghum 

Pioneer84G62, and one plot each of Hong Ke Zi, Kao-
liang, and BTx623 accessions.

Data was collected by the PheMU on two selected rows 
sequentially, as the sensor sets could scan only one row 
for every pass. The sensors and cameras were aligned 
with the central line of each plot. The Kinect collected 
three images by every trigger—RGB, depth, and infrared 
images, although only the depth images were used for 
plant height extraction. All four DSLR cameras used the 
same settings listed in Table 1.

Aerial image acquisition using the UAS followed the 
methodologies of Haghighattalab et  al. [15]. Detailed 
settings of the Canon S100 camera are listed in Table 1. 
Additional data collection information is shown in 
Table 2.

For manual measurements, a barcoded height stick 
with the 1-cm resolution was used with a barcode scan-
ner (Symbol CS3000, Motorola Inc., Chicago, IL, USA). 
The manual measurements were scanned into a tablet 
computer using the Field Book app [18]. In this study, the 
sorghum height was manually measured from the ground 
level to the youngest, completely unfurled leaf. Three 
individual plants in each plot were measured, and the 
averaged height was used as the plot-level plant height.

Data processing for height measurement
Ultrasonic and LIDAR‑Lite v2 point observations
The sensor measurements were georeferenced following 
the approach of Wang et al. [19]. The boundary coordi-
nates of each field plot were delineated in quantum GIS 
(QGIS) (www.qgis.org) from the patterns reflected from 
the sensor measurements [19]. Measurements inside 
each plot boundary were geotagged with the designated 

Table 1  Camera settings

Camera Resolution (MP) Image format Shutter speed Aperture ISO Trigger control

Canon EOS 7D 18 mid-JPG 1/500 s f/5 400 Canon EDSDK

Canon S100 12 RAW​ Shutter priority mode Auto Auto Canon CHDK

Table 2  Data collection information

Measuring approach Carrier Moving speed (m/s) Elevation above ground 
(m)

Sampling rate (Hz) Collection 
date (days 
after emergence)

Ultrasonic sensor PheMU 0.2 1.35 10 50

LIDAR-Lite v2 5

DSLR camera array 5

Kinect v2 1

Canon S100 IRIS+ 2 25 0.33 51

Manual measurement 51

http://www.planner.ardupilot.com
http://www.qgis.org
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plot identifier. The plant height was calculated as the dif-
ference between the sensor elevation above ground and 
the sensor observation. Two approaches for extracting 
the plot-level plant height were implemented: (1) the 
maximum measurement for a given plot, and (2) the 
average of the top 5% of all measurements inside a given 
plot. Both plot-level plant height values were compared 
with the manual measurements.

Kinect v2 depth images
The depth images were geotagged and georeferenced 
following the same approach as for processing the sen-
sor observations to assign plot identifier for each image. 
As the Kinect camera has a wide FoV, the depth images 
also contained parts of the neighborhood plots beside 
the target plot. Therefore, each depth image was cropped 
by 40% in the width and the height (Fig. 3), leaving only 
observations for the target plot. Identical to the previ-
ous data processing method, the maximum measurement 
and the average of the top 5% of all the height values from 
all cropped depth images inside each plot were used as 
two assessments of plot-level plant height.

DSLR camera images
The RGB images of DSLR cameras (in the mid-JPEG for-
mat) were georeferenced and geotagged following the 
same approach as to processing the depth images. Images 
within the same plot were imported to Agisoft PhotoS-
can (AgiSoft LLC., St. Petersburg, Russia) to generate the 
red–green–blue (RGB) orthomosaic photo and the DEM 
of each individual plot. The RGB orthomosaic photo was 
then converted to the Hue-Saturation-Intensity (HIS) 
orthomosaic photo, and areas of bare soil were masked 
using the Hue channel, leaving the vegetative area inside 
each plot (Fig. 4). The maximum and the averaged top 5% 

of the elevation values from the DEM within the vegeta-
tive area were used as the canopy elevation. Bottom 1% of 
the elevation values from the DEM within the whole plot 
area were used as the plot terrain elevation. The plot-level 
plant height was calculated as the difference between the 
canopy elevation and the terrain elevation.

Aerial images
The raw images (in the CR2 format) of the entire field 
captured by the Canon S100 were converted to 16-bit 
linear TIFF images and then corrected for lens distor-
tion using the Canon Digital Photo Professional software. 
The TIFF images were then imported to Agisoft Photo-
Scan to generate the blue-green-near infrared (BGNir), 
orthomosaic photo and the DEM of the entire field. Geo-
location information of the GCPs deployed in the field 
was used by Agisoft Photoscan to optimize the camera 
locations, resulting in a more accurate DEM. Once gen-
erated, the orthomosaic photos and the DEMs of the 80 
selected plots were trimmed out by the field plot bound-
aries in QGIS. Then the BGNir orthomosaic photo was 
converted to the green normalized difference vegeta-
tion index (GNDVI) photo to classify plant versus soil 
and remove the soil component, leaving the vegetative 
area inside each plot (Fig. 5). Finally, the plot-level plant 
height was calculated following the same method as to 
calculate the plant height from the proximal DEM gener-
ated by the DSLR camera images.

Results and discussion
Two plots were selected to demonstrate the height obser-
vations and DEMs by each sensing technology. The first 
plot (Plots 1–4 as shown in Fig. 6a) was a densely vegeta-
tive plot with a fully closed canopy, and the second plot 
(Plots 2–4 as shown in Fig. 6b) was a sparsely vegetative 

Fig. 3  Depth image generated from the Kinect binary output. The left panel shows a complete depth image of one shot. The right panel is the 
cropped depth image showing the observed plot
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plot with individually observable plants. Due to the early-
season chilling stress, the emergence rate of each plot 
was uneven causing different lengths and plant density 
for each plot.

Measurements by the ultrasonic and LIDAR‑Lite v2 sensor
The georeferenced sensor measurements could be con-
sidered as a sparse point cloud delineating the pro-
file of the plant canopy (Fig.  7). We observed that the 

plot-level plant height measured by the ultrasonic sen-
sor was higher than the LL2 sensor. This is likely due 
to the sampling rate of the ultrasonic sensor being 
two times higher than the LL2 sensor, resulting in a 
higher spatial resolution. A second factor was that the 
ultrasonic sensor has a larger FoV from a sound cone 
than the FoV from a light pointer of the LL2 sensor. In 
that case, the light pointer is possible to measure the 

Fig. 4  Image processing procedures to generate the proximal DEM from DSLR camera images
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distance from the sensor to ground between individual 
leaves while the ultrasonic sensor averaged observa-
tions within its operating sound cone. Due to this dif-
ference in FoV, the ultrasonic sensor measurements 
reflected less variance even within the sparsely veg-
etative plot as the measurements shown in Plots 2–4 
(Fig.  7). The ultrasonic sensor, therefore, appears to 
work with delineating the overall canopy profile, while 
the LL2 sensor gives an assessment of more peak values 
of the canopy. In this study, we chose the LL2 sensor 
because it was a very low-cost range finder originally 
designed for measuring the UAV elevation above the 
ground. From the results the LL2 sensor provided, it 
could be further evaluated whether a LiDAR with a 
higher sampling rate and a potential 3D point cloud of 
the canopy structure can be used for extracting more 
accurate plant height.

Depth images captured by the Kinect camera
Each trimmed depth image had around 51K pixels. It 
could be considered as a 2D projection of a 3D dense 
point cloud to demonstrate the canopy profile (Fig.  8). 
The red areas indicate the top 5% of the canopy used to 
calculate the plot-level plant height. The ten images of 
Plots 1–4 were collected as the PheMU traversed over 
the plot from south to north, while the other ten images 
of Plots 2–4 were collected from north to south. Different 
from the approach of Jiang et al. [10], we did not gener-
ate the plot panorama by stitching all the depth images 
within each plot because we wanted to include all the 
depth measurements without downsampling. From the 
red-colored areas in different depths images, the regions 
mainly contributing to the plot-level height could be 
located. Compared with the sensor measurements, 2D 
depth images highly increase the spatial resolution of the 
canopy height.

Fig. 5  Image processing procedures to generate the remote DEM from aerial images



Page 8 of 16Wang et al. Plant Methods  (2018) 14:53 

DEMs generated by proximal and remote imaging
In this study, around 150 high-resolution images cap-
tured on the ground were averagely used to generate 
the proximal DEM of each of the two plots in the same 
range, while 135 aerial images were used to generate the 
remote DEM of the entire 80 selected plots. Accordingly, 
DEMs generated by proximal imaging were visualized 

much sharper than DEMs generated by remote imaging 
(Fig. 9). The ground pixel sizes of the DEMs by proximal 
and remote imaging were 0.2 and 2 cm/pix, respectively. 
Although there were minor absolute elevation differences 
between the proximal and remote DEMs, which was due 
to being georeferenced by two GNSS systems, the plant 
height would not be affected as it was calculated from the 
difference between the canopy and the soil elevations. 
We observed that within the sparsely vegetative plot the 
plant height by remote imaging was lower than that by 
proximal imaging. It was likely because remote image 
acquisition resulted in fewer common key-points among 
the image overlapping areas within a sparsely vegetative 
plot for generating the DEM of the canopy. Therefore, 
the DEM could not delineate a complete canopy profile, 
resulting in many lower plot-level height values than 
the manually measured height measurements. In addi-
tion, compared with one 12 MP digital camera carried by 
a UAV, four 18  MP DSLR cameras carried by a ground 
vehicle for proximal image acquisition provided higher 
resolution ground images than aerial images and more 
images in a unit area for DEM generation. Therefore, the 
3D canopy profile by proximal imaging resulted in more 
precision than by remote imaging for plant height extrac-
tion. In this study, we did not use as many cameras as 
Nguyen et al. [13] (i.e., 16 cameras) and did not angle the 
cameras on the ground vehicle because we only wanted 
to collect sufficient images for plant height extraction 
rather than for 3D reconstruction of the complete plant.

Comparisons of plant height
The plot-level plant height results were derived by both 
the maximum and the averaged top 5% of the measure-
ments. These two types of plot-level measurements of 
the 80 selected plots for each of the sensing technologies 
were compared with manual measurements (Figs. 10, 11).

According to the quantitative comparison results 
(Figs. 11, 12), the plot-level height values measured by the 
averaged top 5% of the proximal DEM values were the 
closest to the manual measurements. This is likely due 
to the ultra-high spatial resolution of the proximal DEM 
and the relatively larger point sampling size for average 
height calculation.

The second most accurate plant height measurement 
method benchmarked to the manual measurements 
in this study was using the ultrasonic sensor (Figs.  10, 
11,  12). We found that using the ultrasonic sensor, the 
plot-level height calculated either from the maximum 
measurement or the averaged top 5% of the measure-
ments did not show significant differences. We also 
observed that the plot-level height measured by the ultra-
sonic sensor was consistently higher than the manual 
measurement. A possible reason is that the approach to 

Fig. 6  A complete view of a a densely vegetative plot and b a 
sparsely vegetative plot
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calculating the plot-level height measured by the ultra-
sonic sensor is capturing the very highest canopy height 
from the large field of view; however, this part of the 
canopy may not reflect the height of the majority part of 
the plot due to the inner-plot height variance (Fig.  13). 
The number of measurements within each plot were also 
much lower for the ultrasonic sensor, giving more sam-
pling error. This issue with the ultrasonic sensor indicates 
the advantage of the proximal DEM, as the huge sample 
size of the DEM provides a sufficient representative sam-
ple for very accurate averaging.

The low-cost LL2 sensor has the third highest corre-
lation coefficient value (Figs. 10, 11, 12). A possible rea-
son causing the height measurement differences from 
the manual measurements was due to the low sampling 
rate and the pointer-based, narrow FoV of the LL2 sen-
sor (Fig.  14). According to the results provided by the 
LL2 sensor, there is a reasonable hypothesis that if 
using a LiDAR, which has a high sampling rate and the 

capacity to generate a 3D dense point cloud of the can-
opy, the height measurement accuracy should be highly 
improved. However, the cost and complexity of these 
LiDAR systems are likely to be restrictive.

We observed the plot-level plant height using the maxi-
mum measurement by the Kinect camera had a higher 
correlation with the manual measurement than using 
the averaged top 5% measurements (Figs. 10, 11), but the 
height values were higher than the manual measurements 
(Fig. 12). The plot-level height using the averaged top 5% 
measurements had a lower correlation with the manual 
measurement, mainly because of the measurements from 
the plots whose plot-level height were lower than 0.5 m 
(Fig. 11). According to the observations, it is very likely 
the Kinect camera has an optimal range for measur-
ing distance. In this study, the canopy located from 0.8 
to 1.1  m to the Kinect camera had a better correlation 
with the manual measurement (Fig. 11). Therefore, if the 
Kinect camera is mounted at a consistent height above 

Fig. 7  Height observations by the ultrasonic sensor and the LL2 sensor of two plots. The red circles indicate the ultrasonic sensor measurements, 
while the blue squares indicate the LL2 sensor measurements. The solid pink and black lines indicate the averaged top 5% observations by the 
ultrasonic sensor and the LIDAR-Lite v2 sensor, respectively. The dashed green line shows the manual (ground truth) observation. The vertical yellow 
lines mark the start and end of the plot. The X-axis in each panel indicate the northing coordinates in meters in the Universal Transverse Mercator 
(UTM) 14 N coordinate system. The Y-axis in each panel indicate the distance measurements in meters
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ground level while measuring the plant height, it may not 
be able to provide accurate results for those canopy out 
of the camera’s optimal measuring range.

The DEM generated by remote UAV imaging underes-
timated many plant height measurements (Fig. 12), with 
many plot-level height values lower than the manual 
measurements (Figs.  10, 11). In this study, poor emer-
gence due to early-season chilling stress resulted in 34 

sparsely vegetative plots among the 80 selected sor-
ghum plots. Considering the limitations of DEMs gener-
ated by proximal imaging noted in the previous section, 
we can partially explain the reason for the low correla-
tion with the manual measurements. We examined the 
plant height of Plots 1–17, which provided the maximum 
height difference between the manual measurement and 
the height measurement by remote imaging. Even the 

Fig. 8  Depth images of two plots. The areas marked in red indicate the top 5% of the canopy height measurements. The upper panel (a) shows the 
depth images of Plot 1–4, while the lower panel (b) shows the depth images of Plot 2–4
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maximum DEM value was used to calculate the plant 
height, the calculated plant height was still lower than 
the manual measurement. Therefore, to collect sufficient 
data to delineate the canopy profiles similar to the field 
condition in this study, a potential solution is to use a 
camera with higher resolution (greater than 12 MP) and a 
lower flight elevation (lower than 25 m).

Performance comparison
According to the results of this study, we compared the 
performance of each sensing technology, as shown in 
Table 3.

The rank could change with improved data collection 
settings and data processing approaches. Regarding the 
resolution, although the digital camera used by remote 
imaging had a relatively high resolution, if the DEM 
generated by the aerial images cannot delineate a com-
plete canopy profile, the high camera resolution cannot 
provide an accurate plot-level height. The rank of the 

Fig. 9  Digital elevation models (DEM) of two plots generated by a ground-based proximal imaging by DSLR camera arrays and b UAV-based 
remote imaging by a digital camera
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equipment cost only considered the sensing device cost, 
not including the platform cost. The most time-consum-
ing data processing procedure was generating the DEMs 
by photogrammetry. As the proximal imaging captured 
the most high-resolution images, it took the longest time 
for data processing.

According to what we learned from this study if the 
plant height accuracy has the priority, an ideal methodol-
ogy is to use a sensor fusion technology by a LiDAR and 
an array of high-resolution cameras carried by a ground 
vehicle platform. The ortho-photo stitched by high-
resolution images of the cameras can be registered to 
the 3D dense point cloud generated by the LiDAR data. 
Pixel information can be used to extract the plant can-
opy area. Then the plant height can be calculated from 
the non-averaged point observations within the canopy 
area. However, the data collection and data process-
ing are expected to be time-consuming as well as a high 
equipment cost. If we pursue the low equipment cost and 

the high calculation efficiency, an array of ultrasonic sen-
sors carried by a ground vehicle platform is an optimal 
solution for the plant height measurement, but using 
this method may still lose geospatial resolution com-
pared with image data. If the data collection efficiency 
is with more concern, such as data collection in a large-
scale breeding field, using a LiDAR and a high-resolution 
camera carried a UAV is a feasible solution; however, 
there will be huge cost from the equipment and the data 
processing.

Conclusions
We investigated five different sensing technologies for 
field-based HTPP of plant height with a case study in 
sorghum. Using the data collection approaches and the 
data processing methods introduced in this study, we 
found the plot-level height values measured by the ultra-
sonic sensor, the LL2 sensor, the Kinect camera, and the 
proximal imaging by four DSLR cameras were all highly 

Fig. 10  Maximum measurements as plot-level plant height compared with manual measurements. The panels above the diagonal of each 
figure correspond to the Pearson’s correlation coefficients of plot-level height measurements between each two sensing technologies. The 
asterisks indicate the level of significance (***P < 0.001). The panels on the diagonal of each figure show the histograms of the 80 plot-level height 
measurements by each sensing technique. The panels below the diagonal of each figure show the bivariate scatter plots with the spline fit lines
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correlated with the manual measurements. Therefore, 
each sensing technique could be used for precisely and 
quickly measuring large numbers of sorghum genotypes 
to identify height variance.

Although the height measured by remote imaging 
had a lower correlation with the manual measurements 
in this study, the accuracy can be improved by using a 
higher resolution camera and collecting the images at 
a lower flight altitude. In fact, HTPP by remote sensing 
with UAV has vast potential due to its fast data collection 
speed, compatibility to plants with different morpho-
logical traits, and high geospatial resolution. Subsequent 
studies on UAV phenotyping will focus on tuning the 
data collection settings and refining the plant trait extrac-
tion algorithms.

We provided data processing method for each sensing 
technology to extract the plot-level plant height. These 
methods can be of immense value in HTPP of diverse 
germplasm subjected to different biotic and abiotic 
stressors that cause reduced crop stand and impacting 
plant height. We found deriving the plot-level height 
by averaging a portion of the highest sensing observa-
tions would work for densely vegetative plots, but not 
for those sparsely vegetative plots. Future studies will 
focus on the fusion of the sensor measurements (i.e., 
the LiDAR point cloud) and pixels information to build 
ultra-high resolution plant structure models for com-
plex trait extraction. Also, as the sensing approaches of 
using the Kinect camera and DSLR imaging arrays pro-
vide both color and morphological information, they 
can assist in identifying plants, quantifying the plant 
counts, and measurement of individual plants in those 

Fig. 11  Averaged top 5% measurements as plot-level plant height compared with manual measurements. The panels above the diagonal of 
each figure correspond to the Pearson’s correlation coefficients of plot-level height measurements between each two sensing technologies. The 
asterisks indicate the level of significance (***P < 0.001). The panels on the diagonal of each figure show the histograms of the 80 plot-level height 
measurements by each sensing technique. The panels below the diagonal of each figure show the bivariate scatter plots with the spline fit lines
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Fig. 12  Box plots of plant height measurements of 80 selected plots by different sensing technologies. The upper one used maximum height as 
the plot-level height, while the lower one used averaged top 5% measurements as the plot-level height

Fig. 13  Height observations by the ultrasonic sensor and the LL2 sensor at Plots 1–24. The red circles indicate the ultrasonic sensor measurements, 
while the blue squares indicate the LL2 sensor measurements. The solid pink and black lines indicate the averaged top 5% observations by the 
ultrasonic sensor and the LIDAR-Lite v2 sensor respectively. The dashed green line shows the manual (ground truth) observation. The vertical yellow 
lines mark the start and end of the plot. The X-axis in each panel indicate the northing coordinates in meters in the UTM 14 N coordinate system. 
The Y-axis in each panel indicate the distance measurements in meters
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sparsely vegetative plots. In conclusion, the approaches 
investigated in this study for HTPP of sorghum height 
can be applied to measure plant height of any number 
of other crops, such as corn, cotton, and soybeans, and 
enable more precise and higher throughput measure-
ments for breeding, genetics, and agronomic studies.

Abbreviations
2D: 2-dimensional; 3D: 3-dimensional; BGNir: blue-green-near infrared; DEM: 
digital elevation model; DSLR: digital single-lens reflex; FoV: field of view; GCP: 
ground control point; GNDVI: green normalized difference vegetation index; 
HIS: hue-saturation-intensity; HTPP: high throughput plant phenotyping; KSU: 
Kansas State University; LiDAR: light detection and ranging; LL2: LIDAR-Lite 
v2; MP: mega pixels; PheMU: phenotyping mobile unit; QGIS: quantum geo-
graphical information system; RGB: red–green–blue; RIL: recombinant inbred 
line; SfM: structure-from-motion; ToF: time-of-flight; UAS: unmanned aerial 
system; UAV: unmanned aerial vehicle; UTM: universal transverse mercator.

Fig. 14  Height observations by the LL2 sensor and the ultrasonic sensor at Plots 1–13. The red circles indicate the ultrasonic sensor measurements, 
while the blue squares indicate the LL2 sensor measurements. The solid pink and black lines indicate the averaged top 5% observations by the 
ultrasonic sensor and the LIDAR-Lite v2 sensor respectively. The dashed green line shows the manual (ground truth) observation. The vertical yellow 
lines mark the start and end of the plot. The X-axis in each panel indicate the northing coordinates in meters in the UTM 14 N coordinate system. 
The Y-axis in each panel indicate the distance measurements in meters

Table 3  Performance comparison of each sensing technique

Sensors Carriers Performance

Resolution Equipment 
cost 
per unit

Accuracy compared with the ground truth Data processing cost

LIDAR-Lite v2 sensor Ground vehicle Low, only reflect 
1-dimensional meas-
urements

< $100 Low, due to the low sampling frequency Low

Ultrasonic sensor $300–$800 High

Kinect camera ~ 0.2 MP < $300 High, within the optimal measuring range

DSLR cameras  ~ 18 MP > $800 Highest High, due to 
photogrammetry 
processing

Digital cameras UAV ~ 12 MP < $600 Lowest
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