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METHODOLOGY

Classification of CITES-listed and other 
neotropical Meliaceae wood images using 
convolutional neural networks
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Abstract 

Background: The current state-of-the-art for field wood identification to combat illegal logging relies on experi-
enced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumula-
tion of this expertise is time-consuming and access to training is relatively rare compared to the international demand 
for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective 
global scale enforcement of international treaties such as the Convention on the International Trade in Endagered 
Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports.

Results: We present highly effective computer vision classification models, based on deep convolutional neural 
networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, includ-
ing CITES-listed Swietenia macrophylla, Swietenia mahagoni, Cedrela fissilis, and Cedrela odorata. We build and evaluate 
models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 
to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes 
consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of 
traditional wood identification.

Conclusion: The end-to-end trained image classifiers that we present discriminate the woods based on digital 
images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and cap-
tured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional 
neural networks to develop practical models for field screening timber and wood products to combat illegal logging.

Keywords: Wood identification, Illegal logging, CITES, Forensic wood anatomy, Deep learning, Transfer learning, 
Convolutional neural networks
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Background
In the last decade, international interest in combating 
illegal logging has been on the rise (e.g. the US Lacey Act 
2008; the Australian Illegal Logging Prohibition Act 2012; 
the European Union Timber Regulation 2013; Japan’s 
Act on Promotion of Distribution and Use of Legally 
Logged Wood Products 2016) as has interest in forensic 
methods to support them [1–3]. Although emphasis on 
laboratory-based forensic science is common, especially 

among laboratory scientists, one of the primary road-
blocks to meaningful enforcement of these laws is the 
availability of efficient field-deployable tools for screen-
ing timber outside the laboratory [4]. Conceptually sepa-
rating laboratory-based forensic analysis of specimens 
submitted as evidence and field-screening of wood and 
wood products at ports and border crossings is central 
to defining the context of the problem to be solved and 
the degree of specificity necessary to solve it in a way 
that is meaningful in the real world. Because field law 
enforcement agents are, in most jurisdictions, required to 
establish some form of probable cause to detain or seize 
a shipment of wood, tools intended for field deployment 
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should be designed to meet this need efficiently [4]. The 
threshold of evidence for probable cause or its interna-
tional analogs is much lower than forensic-level thresh-
olds, so tools for field screening to establish probable 
cause can provide results with coarser resolution and 
lesser certainty than laboratory forensic methods. A typi-
cal field screening evaluates the veracity of a claim on a 
import-export form or shipping manifest. For example, a 
shipping manifest may claim that the wood is Khaya but 
a field agent determines that the wood is anatomically 
inconsistent with Khaya and in fact is a better match for 
Swietenia and so the shipment could be detained while 
a specimen is submitted for full laboratory forensic 
analysis.

This kind of field screening of wood has historically 
been done, if done at all, by human beings with hand 
lenses and keys, atlases of woods, or field manuals 
(e.g.  [5–10] and others). Such keys are based on the fact 
that wood structure observed macroscopically shows 
abundant, characteristic variation typically permitting 
identification at the suprageneric or generic level, with 
greater specificity possible by highly trained experts or by 
accessing microscopic characters in the laboratory. 
Humans with hand lenses are still the state-of-the-art in 
the field in most countries,1 but the time and cost embod-
ied in establishing and maintaining this human-based 
biological domain knowledge, and the variability of skill 
and accuracy among those applying such knowledge, 
means this approach is difficult to scale up to keep pace 
with increased international interest in and demand for 
field screening of timber and other wood products.

Computer vision has the potential to provide a practi-
cal and cost effective way to replace human-based bio-
logical domain knowledge for field screening of wood in 
trade. One of the primary advantages of this potential is 
the ability to generate reproducible identifications not 
dependent on individual human training [11], as long as 
sufficient images of the woods in question are available 
for training classifiers and can be captured in the field. 
In computer vison terms, the problem of image-based 
wood identification is one of texture-based image clas-
sification  [12, 13]. Convolutional neural networks have 
achieved state-of-the-art  [14–17] results for image clas-
sification in the past few years. While in general convolu-
tional neural networks require large datasets (historically 
not readily available in the context of wood identifica-
tion), transfer learning [18] (“Methods” section) provides 
a pathway to train competitive image classification 
models using moderate amounts of data by leveraging 

1 Note that in Brazil, the state of São Paulo’s Instituto Florestal developed an 
“online” identification system where field agents transmitted macroscopic 
photos to experts in the laboratory who provided near real-time identifica-
tions to inform detention decisions.

pre-trained networks, e.g. ones that have been trained 
on the ImageNet dataset [19]. Convolutional neural net-
works trained on the ImageNet dataset have been shown 
to be powerful off-the-shelf feature extractors  [20] and 
transfer learning effectively leverages these general pur-
pose feature extractors, with parameter fine tuning, and 
permits the use of smaller application-specific datasets 
for training powerful classifiers. Successfully developing 
a field-deployable computer vision model for commercial 
wood species that are threatened or endangered [e.g. spe-
cies proteted by the Convention on the Trade in Endan-
gered Species (CITES)] is a step toward generating a 
scalable tool for law enforcement to use to combat global 
illegal logging.

The botanical issue of species delimitation is not a mat-
ter purely of taxonomy when it comes to illegal logging 
and species conservation through vehicles such as 
CITES. Any law or treaty that identifies and protects 
organisms at the species level necessarily depends on the 
taxonomic circumscription of those species as a founda-
tional predicate for defining the protected organisms 
themselves. The complex interplay of laws for conserva-
tion, taxonomy, species circumscription, and the viability 
of field-level screening and forensic-level identification of 
those organisms or their derived products has prompted 
practical changes to species protection levels in CITES 
(e.g. the promotion of Swietenia macrophylla to be at the 
same protection level as Swietenia mahagoni and Swiete-
nia humilis in 20032). Prior to this elevation, unscrupu-
lous traders had the ability to claim a shipment was the 
less-protected species and forensics could not prove 
otherwise.

In a real-world practical context, not all woods can or 
need to be identified to the species level. For example, the 
trade name African mahogany includes several species of 
Khaya that are frequently sold interchangeably under this 
trade name and separating them at the species level may 
not be meaningful in trade—the more important ques-
tion is likely to be whether they are Khaya or the genuine 
mahogany genus, Swietenia. Figure 1 shows a “confusion 
cladogram”, a depiction of the expected nested likelihoods 
of woods (at the genus level) that could be confused with 
each other based on traditional hand lens wood identica-
tion. The relative anatomical distinctness of each genus 
(vertical axis) and the relative variability within the genus 
(extent of the black bars along the horizontal axis) are pro-
vided as representations of traditional wood identification 
domain knowledge. Based on the relationships in Fig.  1, 
Khaya and Swietenia would be expected to be somewhat 
confusable, despite being fundamentally different woods 

2 The polymorphic nature of Swietenia and its generic circumscription are 
considered in detail in [21, 22].
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with different commercial values, different wood techno-
logical properties, and different level of protection under 
CITES. A field-screening technology that could determine 
the genus of a wood in trade would be of great practical 
value, with one that could provide a reliable species-level 
discrimination being the idealized goal.

In this study we report on highly effective computer-
vision classification models, based on deep convolutional 
neural networks trained via transfer learning, to identify 
10 neotropical species in the family Meliaceae, including 
CITES-listed species Swietenia macrophylla, Swietenia 
mahagoni, Cedrela fissilis, and Cedrela odorata  [7]. We 
selected taxa that have real-world relevance in interna-
tional timber trade and/or represent an interesting range 
of overlapping (inter- and intra-class variability) wood ana-
tomical patterns, structural variability, and distinctness of 
anatomical pattern at multiple scales (Fig. 1). These models 
discriminate the various woods based on digital images of 
the transverse surface of solid wood blocks, using images 
roughly at a hand lens magnification, thus also suitable for 
human-mediated provisional identification. The transverse 

surface of wood specimens at a port, border crossing, or 
other point of control can be prepared for imaging with 
a modicum of training and a sharp utility knife. We dem-
onstrate proof-of-concept for image-based wood identi-
fication using convolutional neural networks and suggest 
avenues of future inquiry, to develop and eventually deploy 
computer vision in the field.

Methods
Convolutional neural networks
Convolutional neural networks (CNNs)  [23] are state-
of-the-art classifiers  [14–17] that have powered many 
recent advances in image classification. CNNs have a 
multilayer architecture of convolutional operations inter-
spersed with non-linear activation functions and pooling 
operations which enable them to learn rich non-linear 
representations for image classification. The parameters 
of CNNs can be learnt automatically in an end-to-end 
fashion given sufficient data. While automated represen-
tation learning from data is an attractive feature, train-
ing CNNs from scratch typically requires large datasets 

Fig. 1 Expected identification relationships based on the generalized wood anatomical distinctness of each group of species (increasing distinct-
ness along the vertical axis) and relative variability within each group of species (variability increasing with increasing bar length along the horizon-
tal axis). The blue tree (confusion cladogram) to the right of the images indicates the expected nested sets of woods likely to be confused with each 
other based on their anatomical distinctness and variability. Conventional wisdom in wood anatomical identification does not predict species-level 
resolution
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which may not be available. A practical way to build CNN 
based image classifiers using moderately sized datasets 
is through transfer learning where features learnt using 
large datasets in a related domain are leveraged for the 
task at hand.

Transfer learning
Transfer learning  [18] is a machine learning technique 
for building powerful classifiers when large datasets are 
unavailable. In transfer learning, knowledge gained by 
training accurate classifiers (pre-trained models) using 
large datasets in one domain is reused/leveraged to build 
powerful classifiers in a related domain where access to 
large datasets is unavailable. In the context of image clas-
sification using CNNs, the layers closer to the input layer 
learn generic features such as edges and blobs. Transfer 
learning effectively exploits this observation and enables 
building powerful CNN based image classifiers using 
moderately sized datasets. Specifically, the lower layers 
(close to the input) are retained along with their learned 
parameters; whilst the top layers are removed/custom-
ized for the problem at hand and initialized with ran-
dom parameters. All the parameters of this customized 
network are learnt using the available dataset and this 
process is called finetuning. The VGG16 [15] model pre-
trained on the ImageNet dataset  [19] is well studied for 
image classification via transfer learning and we employ 
it to build classifiers for wood identification.

CNN architecture for wood identification
The architecture for the CNN image classifier that we 
trained for wood identification is shown in Fig.  2. We 
used the first 10 layers (7 convolutional and 3 max pool-
ing layers) from the pre-trained VGG16 network. All the 
convolution layers have 3 pixel × 3 pixel kernels and 
ReLU activations  [24], with a one pixel wide zero pad-
ding such that the output feature maps of each convolu-
tion layer has the same dimensions as its input. The max 
pooling layers in the VGG16 architecture pool data over 
a 2 pixel × 2 pixel image window and have stride 2 pix-
els, which results in halving the dimensions of the input 
feature map to the layer. We add global pooling (two vari-
ants), batch normalization  [25], dropout  [26] and fully 
connected layers on top of the 10-layers of the VGG16 
base. The global pooling layer provides a measure of the 
“energy” in each of the texture channels that are extracted 
by the fine tuned VGG16 convolution layers. We trained 
models with global average pooling and global max pool-
ing layers. We used a dropout value of 0.5. The fully con-
nected layer produced class prediction scores for 10 and 
6 classes for the species and genus level classification 
models respectively. Softmax activation was used to out-
put class prediction scores in the fully connected layer.

Specimen preparation and imaging
Taxa selected for the study (Table 1) represent the more 
common commercial and confusable neotropical 
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Fig. 2 A schematic of the CNN architecture employed for wood 
identification. We trained models with both global average pool-
ing and global max pooling layers (with the performance being 
comparable). The dimensions of the feature maps are in pixels of the 
form: (height, width, depth). The final classification layers has 10 and 6 
outputs for the species and genus level models respectively
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Meliaceae woods, as well as representative species of 
Khaya, as this genus is grown in plantation in some neo-
tropical areas. Complete transverse surfaces of scientific 
wood specimens from the xylaria3 at the US Forest Prod-
ucts Laboratory in Madison, WI were sanded for macro-
scopic imaging. 2048 pixel × 2048 pixel, 8-bit RGB 
images of the transverse surfaces (representing 
∼ 6.35 mm × 6.35 mm of tissue) were captured using a 
Point Grey Flea 3 digital camera (FL3-U3-88S2C-C) 
without image sharpening, and optimizing the camera 
shutter times to center the image histogram around 128 
whilst minimizing the number of overexposed and 
underexposed pixels. When possible, more than one 
unique image was collected from each xylarium speci-
men. After image capture, we annotated the images to 
indicate the presence of surface preparation artifacts, 
atypical wood anatomy, misidentified wood specimens, 
and to designate archetypal specimens. This resulted in a 
total of 2303 images.

Patch dataset creation
We divided the dataset of 2303 images into a (approxi-
mate) 60%/40% train/test split. The summary of the 
training and testing split image counts are provided in 
Table  1. Next, patches of size 2048 pixel × 768 pixel 
were extracted from the dataset images and resized to 
1024 pixel × 384 pixel. For each class (species), we 
extracted 500 and 200 patches from the training and 
testing splits respectively. Due to the classes not being 
balanced in our dataset, we allowed considerable over-
lap  between patches for classes with fewer images. 
Such minority class oversampling has been shown to 

3 The Madison (MADw) and Samuel J. Record (SJRw) collections were used.

be effective for training CNNs in the presence of class 
imbalance [27]. We also created a dataset to train/evalu-
ate the genus-level classifier by taking a subset of 500 
training patches and 200 testing patches from the above 
patch dataset in such a way that the species image pro-
portions within a genus was respected. The summary of 
the number of patches used for training and evaluating 
the species and genus level models are in Table 2.

Training
Model training was carried out in two phases. In the first 
phase, we used the convolutional layers of the VGG16 
network as feature extractors (i.e. layer weights fro-
zen) and the custom top level layers were trained for 30 
epochs using stochastic gradient descent with a learn-
ing rate of 10−4 and a momentum of 0.9. In the second 
stage we finetuned the parameters of the entire network, 
including the convolutional layers, for 100 epochs with 
early stopping if the test split accuracy did not improve 
for 10 epochs. The Adam optimizer [28] was used for the 
second stage with a learning rate of 10−3 and a decay of 
5× 10−4. For both stages we minimized the categorical 
cross entropy loss using a batch size of 8. The architecture 
definition and training was implemented using Keras [29] 
with the TensorFlow [30] backend on a NVIDIA Titan X 
GPU. Accuracy curves, for the second stage of training, 
are presented in Fig. 3.

Table 1 Training and testing splits of the image dataset 
by class at the species level

Splits for the genus level model are the sums of the individual species in each 
genus. The total number of images is 2303

Species Training split Testing split

Cabralea canjerana 41 18

Carapa guianensis 305 134

Cedrela fissilis 133 59

Cedrela odorata 354 160

Guarea glabra 45 20

Guarea grandifolia 33 14

Khaya ivorensis 240 105

Khaya senegalensis 36 16

Swietenia macrophylla 372 165

Swietenia mahagoni 37 16

Total 1596 707

Table 2 Summary of patch datasets for species/genus 
level models

Model #Classes #Training patches #Testing patches

Species level 10 5000 2000

Genus level 6 3000 1200

Number of epochs
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Fig. 3 Plot of patch-level prediction accuracies for the species and 
genus models during training. Accuracies are shown up to the epoch 
at which early stopping was done (epoch 25 for the species model 
and epoch 37 for the genus model)
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Evaluation
Accuracies of class predictions on the patches in the test 
split are reported in Table 3. In addition, for the images in 
the test split, we extracted 5 equally spaced patches from 
each image, summed the prediction scores for these 5 
patches and chose the class with the maximum summed 
score as the prediction for the image. The image level 
accuracies are also presented in Table  3. To understand 
the errors made by the models we provide confusion 
matrices for the species and genus models at the image 

level (Figs. 4, 5). We present the confusion matrices and 
training curves for the models with the global average 
pooling layer (the corresponding entities for the model 
with the global max pooling layer were comparable and 
are not presented).

Results and discussion
Wood anatomy typically varies characteristically at the 
generic rather than the specific level even when analyzed 
with light microscopy [31]—species-level distinctions are 
typically based on external morphological, reproductive 
and vegetative characteristics that are not reflected in the 
wood anatomy, at least as analyzed by human experts. 
Given this traditional limitation of wood identification, 
it is necessary to distinguish between species-level and 
genus-level accuracy and hence we trained and evaluated 
10-class species-level and 6-class genus-level models.

The overall accuracy of the predictions of our models 
is shown in Table 3. In order to calculate the genus-level 
accuracy from the 10-class species-level model (shown 
on the second row of Table 3 (“Genus level (from 10-class 
species level)”), we consider predictions of the wrong 
species but the correct genus as correct predictions and 
report those metrics. The image-level confusion matrices 
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Fig. 4 Image-level confusion matrix for the 10-class species-level model. On-diagonal results (correct predictions) coded in tones of blue, with 
proportions in bold. Off-diagonal results (incorrect predictions) coded in tones of red, with values of zero not presented or colored

Table 3 Model prediction accuracies

Model Patch level (%) Image level (%)

Global average pooling

 Species level (10 class) 89.8 87.4

 Genus level (from 10-class species 
level)

95.4 95.4

 Genus level (6 class) 97.6 97.5

Global max pooling

 Species level (10 class) 89.2 88.7

 Genus level (from 10-class species 
level)

96.9 97.0

 Genus level (6 class) 97.2 97.3
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for the species-level and genus-level models are shown in 
Figs. 4 and 5 respectively.

10‑Class species‑level model
Slightly less than 6% of the images of Cabralea were mis-
classified as Guarea, and within Guarea, approximately 
7% of the images of Guarea grandifolia were misclassi-
fied as Guarea glabra, but no images of either genus were 
classified as any genus outside these two. As shown in the 
confusion cladogram of Fig. 1, these results are in keep-
ing with expectations based on traditional wood identifi-
cation, and represent sensible errors.

The predictions made by the model for Carapa images 
are perfect, but the class also draws misclassified images 
from four species of three genera, which is again consist-
ent with the known high variability of Carapa, as a taxon, 
as shown in Fig.  1, where the horizontal bar indicating 
variability is second only to that for Cedrela.

Within Cedrela, the genus identified as the most vari-
able in Fig.  1, all the misclassified images (more than 
20%) of Cedrela fissilis are predicted as Cedrela odorata 
and all the misclassified images (also more than 20%) 
of Cedrela odorata images are predicted as Cedrela fis-
silis. For Cedrela the model correctly determines the 
genus, but these CITES-listed species cannot be as reli-
ably separated from each other as other species in our 
dataset. The absence of non-CITES-listed Cedrela in our 

dataset precludes the possibility of testing the ability of 
our model to discriminate between CITES-listed and 
non-CITES-listed species in this genus.

The model showed comparatively poor performance in 
classifying images of both species of Khaya, both in terms 
of the relatively low proportion of images correctly clas-
sified, and in that all misclassified images were assigned 
to species in other genera. Nearly all those images were 
attributed to Carapa guianensis, which is the closest 
nested relationship shown in the confusion cladogram 
(in Fig. 1), the remaining were classified as Swietenia, the 
next most closely related group in the cladogram.

Within Swietenia, the model’s classification of S. 
mahagoni images was perfect, but slightly less than 4% of 
S. macrophylla images were classified as Carapa guianen-
sis and nearly 5% were incorrectly classified as S. mahag-
oni. Interestingly, no images of Swietenia were classified 
as Khaya or Cedrela.

When these species-level model results are reconsid-
ered at the genus level, all the predictive errors within 
Cedrela and Guarea disappear, and less than 2% of Swiet-
enia and less than 1% of Cedrela images are misclassified 
outside their genera. Because all the misclassified images 
of Khaya were attributed to species in different genera, 
consolidating the species-level results at the genus level 
does not alter the model’s relative performance in this 
genus.

Cabralea

Carapa

Cedrela

Guarea

Khaya

Swietenia

C
ab

ra
le

a

C
ar

ap
a

C
ed

re
la

G
ua

re
a

K
ha

ya

S
w

ie
te

ni
a

Tr
ue

 g
en

us

Predicted genus

1.000
0.999 - 0.980
0.979 - 0.950
0.949 -  0.850
< 0.850

0.000

> 0.020
0.011 - 0.020 
0.006 - 0.010    
0.001 - 0.005

Proportion correct

Proportion incorrect
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6‑Class genus‑level model
Field screening of wood for most law enforcement pur-
poses need not be accurate at the species level. Hence 
we also created an explicit genus level model in order 
to determine if clubbing species of the same genus 
into a single generic class would increase genus-level 
performance.

Table 3 presents summary data showing the improved 
performance of the explicit 6-class genus-level model 
compared to the genus-level results from the 10-class 
species-level model. The 6-class genus-level model 
(Fig. 5) shows major improvement for Cabralea, Cedrela, 
and Guarea, all of which are classified perfectly, and for 
Khaya which has only 1% of its images misclassified (as 
Cedrela). Interestingly, Carapa, despite being monotypic 
in the 10-class species-level model (and thus function-
ally a genus-level class in that model), loses specificity in 
the 6-class genus-level model, with approximately 4% of 
its images classified as Khaya, and another half-percent 
each as Cedrela and Swietenia. Roughly 2% of the Swi-
etenia images are classified as Carapa, and roughly the 
same amount are classified as Khaya. This is interesting 
because in the 10-class species-level model, the only mis-
classification of a Swietenia image outside the genus was 
as Carapa. These results suggest that future work may 
benefit from targeted clubbing of some classes, especially 
if the real-world utility of species-level identification dur-
ing field screening is minimal or non-existent.

In addition to achieving a useful level of resolution for 
field identification of wood specimens in trade, clubbing 
the individual species within each genus into one class 
has several potentially favorable side-effects. If one has 
access to expert-level biological domain knowledge about 
class variability in the dataset, targeted decisions on label 
space granularities can result in classes that are more 
favorable for training supervised machine learning algo-
rithms [32]. Lack of access to sufficient reference images 
at the species level is likely to be endemic and a limiting 
factor for image-based wood identification, but classes 
clubbed to the genus level are more likely to contain suf-
ficient images. In addition to the biological and machine 
learning considerations and constraints, access to law 
enforcement expertise could further inform class defini-
tion taxonomies to ensure that the ultimate field-level 
tool is most relevant in the locales it is deployed.

Summary
The global context of trade in illegally logged wood 
necessarily invokes the need for large-scale or scalable 
solutions. Enforcement of existing law and support for 
additional protection requires a scientific and forensic 
basis for evaluating claims about wood and wood prod-
ucts, whether that claim is a species, a genus, a region of 

origin, or age. One part of a global solution is laboratory-
based forensic methods that support successful pros-
ecutions, but it is first necessary for law enforcement to 
identify, detain, and sample problematic shipments at 
points of control using effective field screening tools.

We presented a deep convolution neural network, 
trained using transfer learning, capable of separating 
anatomically similar commercial and endangered woods 
of the Meliaceae family at both the genus and species 
level, with image-level accuracy greater than 90%. This 
accuracy is far in excess of the minimum necessary to 
establish probable cause or other appropriate legal predi-
cate for seizing or halting the transport of a shipment of 
wood. Our models operate on macroscopic images of 
the transverse surface of wood blocks—such a surface 
can be prepared and an image taken in situ by trained 
field agents. Convolutional neural networks trained end-
to-end, either using transfer learning or trained from 
scratch (given sufficient datasets), clearly have the poten-
tial to provide a scalable way to accommodate model 
building in the various controlled contexts. Although 
we used the well-studied VGG16 pre-trained network to 
build our models, we are currently exploring other model 
architectures (e.g.  [16, 17]). These alternate architec-
tures, and their variants, have fewer parameters than the 
VGG networks and maybe well-suited for a system that 
can be deployed using mobile phones  [33]. We are also 
exploring scaling the models to hundreds of woods with 
human expert-informed label space taxonomies, and are 
studying methods to visualize [34, 35] and interpret the 
representation learned by the deep neural networks and 
compare it against traditional human-designed identifi-
cation keys.

We believe that deep convolutional neural networks 
along with expert-informed label space taxonomies for 
controlling context show promise in developing an effec-
tive field screening tool for wood identification. For com-
puter vision solutions to contribute most robustly in this 
area, either the context must be tightly controlled so that 
the number of classes remains low (e.g. a regional port 
with a limited number of local taxa) or the models must 
scale-up beyond the proof-of-concept we present here, 
by discriminating 102–103 classes of wood successfully, 
and such models must be tested and vetted in field appli-
cation. The cooperation of machine learning experts, 
law enforcement officers, and forensic wood anatomists 
shows great potential to develop informed label space 
granularities that ensure the most relevant field-deploy-
able models for field screening wood identification. Mod-
els developed, tested, and vetted cooperatively in this way 
can provide reliable, scalable field-screening of wood in 
trade to protect threatened and endangered species (e.g. 
CITES-listed species) and combat illegal logging.
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