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Abstract

Background: Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops.
Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-
throughput, quantitative phenotyping methods.

Results: We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf
discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of
plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of
lettuce cultivar ‘Corbana’ against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in
Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against
Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of
intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments
resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could
screen 100 samples in parallel.

Conclusions: Automated video tracking can be used to screen large plant populations for resistance to aphids and
other piercing-sucking insects.

Keywords: Aphids, Arabidopsis, Automated video tracking, Host plant resistance, Lactuca sativa, Phenotyping,
Piercing-sucking insects, Arabidopsis thaliana
Background
More than 100 aphid species (Aphididae) are economic-
ally significant pest insects and most crops are host to at
least one species [1]. Aphids feed on phloem sap, and to
reach the phloem they move their stylets between plant
cells towards a sieve element, making short punctures in
cells along the way. Most probes are prematurely inter-
rupted in the epidermis and mesophyll. When, however,
a phloem vessel is reached, aphids can ingest phloem
sap continuously for many hours or even days [2]. Al-
though aphids inflict little tissue damage, they transmit
plant viruses and deplete host plants of photoassimilates
and free amino acids [3,4]. In wild plant populations
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aphids rarely constitute pests due to effective natural de-
fence strategies, such as epicuticular waxes, protease in-
hibitors, and induced production of secondary metabolites
[4-12]. After generations of domestication many of these
defence traits have been diminished or lost in cultivated
plants, making them vulnerable targets of herbivorous in-
sects [13,14]. The genetic backgrounds of resistance
mechanisms still remain largely elusive and genomics
studies strongly depend on the capacity for phenotyping
large panels of plants. Few high-throughput methods have
been established for assessing plant resistance to insect
herbivores, such as aphids or other piercing-sucking in-
sects [15-20]. Generally, two approaches are used to quan-
tify the level of plant defence against aphids; either
assessment of aphid population development or investiga-
tion of aphid feeding behaviour. Aphid population assays
are generally the most demanding in terms of time and
space, since they require the availability of a climate-
controlled compartment for 1 or 2 weeks and extensive
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manual work [21-23]. On the contrary, aphid feeding be-
haviour can be measured within a couple of hours via the
Electrical Penetration Graph (EPG) technique. EPG re-
cording delivers electrical waveforms comprising informa-
tion on the plant tissue that is penetrated (phloem vessel,
xylem vessel or other cells) and the stylet penetration
activity (cell puncture, salivation, ingestion, penetration
difficulties) [24,25]. EPG studies have shown that aphids
prolong phloem ingestion on suitable host plants and
delay and reduce feeding on resistant or non-host plants
[26-33]. The high specificity of the information about
plant tissue and key components of aphid behaviour,
makes this methodology appealing for exploring defence
mechanisms. A drawback of EPG is, however, the re-
stricted capacity, generally 8 plants per setup [34], and the
labour-intensive nature of wiring aphids and annotating
electrical signals.
Here, we present the methodology and validation of

image-based tracking of aphid feeding behaviour. Auto-
mated video tracking was introduced in the early 1990s
and has since been used in many animal behaviour stud-
ies [35-41]. Video tracking involves software-engineered
pattern analysis of grids of pixels in order to quantify
the location and movement of subjects over time. In this
study, we used movement patterns of the central body
point of aphids to estimate the duration of plant pene-
trations made by the aphid’s mouth parts. Previous EPG
studies showed that probes shorter than approximately
3 minutes represent penetrations in the epidermis and/
or mesophyll [26], and that probes involving phloem up-
take last on average at least 25 min [27,42,43]. This
allowed us to discriminate test probes from putative
phloem uptake events in video observations in order to
identify plants that are resistant to aphids. We bench-
marked the performance of the high-throughput video
tracking platform against EPG recordings and aphid
Figure 1 Video tracking platform. A stationary camera is mounted abov
ventilation at the left. Wells in the microtitre plate contained a leaf disc and
aphids from escaping. The camera was connected to a computer with Etho
centre point were automatically tracked (red track shows movements acros
velocity (line graph) and estimated probing (purple bar) and non-probing e
population development assays, using natural accessions
of Arabidopsis thaliana, and lettuce cultivars, Lactuca
sativa, in combination with the green peach aphid, Myzus
persicae (Sulzer), and the black-currant lettuce aphid,
Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae),
respectively.

Results
Tracking aphid feeding behaviour
Automated video tracking of aphid feeding behaviour
was performed using video tracking software and a sta-
tionary camera mounted above 20 no-choice arenas. We
introduced one aphid onto each arena, consisting of an
agar substrate almost completely covered by a leaf disc,
and recorded 20 arenas simultaneously with a frame rate
of 25 frames s−1 (Figure 1, Additional file 1: Figure S1).
Because the aphid’s mouthparts were not visible in the
multi-arena setup, we made the assumption that when
the aphid’s centre point was located on the leaf disc and
did not move, the aphid was penetrating the leaf tissue
with its stylets. By assessing video images by eye, we de-
fined velocity thresholds for the start and end of probing
events of two aphid species, M. persicae and N. ribisnigri
(Figure 2, Additional file 1: Figure S2). According to our
observations, the software was more vulnerable to prema-
ture probe endings of N. ribisnigri due to body movements
during probing (such as event γ in Figure 2). As this
aphid species is somewhat larger (±1.9 mm body length,
versus ± 1.7 mm for M. persicae), movements around the
fixated mouth resulted in a higher tangential velocity,
and therefore required a higher velocity threshold.

Accuracy
To test the accuracy of the platform, we performed auto-
mated video tracking and human observations simultan-
eously. A camera was attached to a stereo microscope to
e a microtitre plate which is placed on top of a backlight unit with
an aphid (a). Cling film was wrapped around the plate to prevent
Vision® XT video tracking software (b). Movements of the aphid’s
s 30 seconds). With this information the software calculated aphid
vents (green bar).



Figure 2 Velocity thresholds for registration of probes. An example of how aphid feeding behaviour was measured using a resolution of
275 pixels per mm2. Subject states can be defined as ‘moving’ or ‘not moving’ by means of two thresholds: the start velocity at which the subject
begins to move, and the stop velocity at which the state changes from moving to not moving. Probe starts were recorded if the velocity of the
aphid’s centre point dropped below 0.02 mm/s for at least 10 seconds (α). Probe stops were recorded if the velocity of M. persicae aphids
exceeded 0. 3 mm/s for at least 2 seconds (β), or 0.35 mm/s for at least 2 seconds in the case of winged N. ribisnigri aphids. To avoid premature
probe endings due to short movements during probing (event γ), probe stops were only recorded when velocity increased above 0. 1 mm/s for
more than 2 seconds. Figure adjusted from the EthoVision XT Reference Manual (version 8) [44].
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deliver a side-view on the arena for manual scoring of
probes (Additional file 2). Among a total of 139 probes
of 16 different M. persicae aphids scored by hand, 88%
was detected with video tracking (Figure 3a). Undetected
and false positive probes involved only short events
(<3 min). Of the detected probes, 19% was either under-
rated (multiple ‘true’ probes were considered as one
probe), or overrated (one ‘true’ probe was translated into
multiple probes by the software). Underrated samples
were caused by undetected probe stops due to slow
movements below the velocity threshold. Overrated
samples were caused by false probe stops when, for ex-
ample, the aphid was immobile on the edge of the leaf
disc and the assigned position continuously switched be-
tween an “on the leaf disc” and “off the leaf disc” status
(Figure 3b). Three times this incident occurred, leading
to 17 redundant probes of which 10 were filtered out
automatically (see Methods, section Software settings).
Other reasons for premature probe stops were abdominal
movements during probing related to e.g. reproduction or
honeydew excretion. The longer probes lasted, the higher
the risk was of encountering such incidents. Indeed auto-
matically tracked probes were in general biased to end 73
to 12 seconds too early (Figure 3c), and the total duration
of probing was underestimated (on average 46 min ±
2.5 min standard error, versus 50 min ± 1.9, P = 0.01,
Mann–Whitney U test, total observation duration:
55 min). Nevertheless, the recorded number and duration
of probes were highly correlated to human observations
(Figure 4, average r2 = 0.7 with 275 pixels per mm2). Other
parameters, such as distance moved, were also highly
correlated with feeding behaviour in general, but were less
informative with regard to long probes (Figure 4l). Al-
though automated video tracking did not achieve a preci-
sion as high as manual scoring, it enabled observing
multiple arenas simultaneously. In the above described
tests, we used 275 pixels per mm2, equal to a coverage of
20 arenas with our 768 × 576 pixels camera. To determine
whether the capacity could be increased, we repeated the
experiment with only 155 pixels per mm2, equal to a
coverage of 35 arenas, but found that reduced resolution
resulted in decreased correlations with human observa-
tions (average r2 < 0.5).

Benchmarking against EPG recording with Arabidopsis
To validate whether automated video tracking delivered
a reliable proxy for plant resistance, feeding behaviour of
M. persicae was measured during 8 hours continuous re-
cording on two natural accessions of Arabidopsis, Co-2
and Sanna-2 (Additional file 3). These accessions were
selected from a population of hundreds of accessions
based on preliminary video tracking data. Automated
video tracking showed that M. persicae aphids walked
larger distances on Co-2 and reduced the mean duration
of long probes (Table 1). EPG recordings on intact
plants confirmed shorter durations of (sustained)
phloem ingestion, and additionally revealed more short
probes, non-probing behaviour and a delayed phloem
uptake on Co-2 (Table 1). This behaviour is an indica-
tion of both epidermis/mesophyll-located and phloem-
located resistance in Co-2 against M. persicae. All aphids
ingested phloem, but quantitative differences in feeding



Figure 3 Accuracy of automated tracking in comparison to human observations. M. persicae feeding behaviour was measured on Arabidopsis
leaf discs by automated video tracking and human observations simultaneously. (a) Out of 139 probes of 16 aphids scored by hand, 88% was detected
by automated video tracking. Probes were considered a match when their duration overlapped at least partially. Some of the detected probes were
matched by too few (underrated) or too many (overrated) probes. For these situations, the amount of missed or redundant probes is shown. 17 Probes
went undetected and 20 false probes were recorded. Mean duration per probe is shown above the bars. (b) Screenshots of the top-view video used
for automated tracking. The lower image (σ) shows an aphid positioned on the edge of the leaf disc for more than 20 min, causing overrated probe
counts by the software due to continuous switching between an “on the leaf disc” and “off the leaf disc” status. (c) Differences between software and
human observations per matched probe. 95% Confidence Intervals are shown above the histograms. Negative values correspond to too early probe
starts, too early probe endings, resp. too short duration of probes compared to the human observations. In case of overrated probe counts, the probe
with the most similar duration as the manually scored probe was included. The outlier caused by the example in (b) is annotated with σ.
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behaviour between aphids on Co-2 and on Sanna-2 were
already apparent in the first hour (Figure 5). A reproduc-
tion assay on intact plants confirmed that Co-2 was
indeed more resistant than Sanna-2, although the resist-
ance was not absolute. Depending on plant age, aphids
either started reproduction later or produced fewer off-
spring (Figure 6). Although we had been able to cor-
rectly identify a quantitative difference in resistance with
automated video tracking, the effects were smaller than
in EPG recordings on intact plants. To verify whether
the plant line effects in the video tracking assay were at-
tenuated due to the use of excised plant tissue, the EPG
experiment was repeated with leaf discs. Particularly for
the resistant accession, aphid feeding behaviour was dif-
ferent and involved more phloem uptake and fewer short
probes on leaf discs compared to intact plants (Additional
file 1: Table S2). The only significant difference between
the accessions that remained was a reduced duration of
phloem uptake events on Co-2 (Table 1). In addition, con-
tribution of salivation to the phloem phase, required to
suppress (callose-mediated) sieve-plate occlusion [45], was
equal on leaf discs but higher on intact plants of Co-2
(Figure 7). This indicates that the resistance mechanisms
in intact plants were partially lost in leaf discs.

Benchmarking against EPG recording with lettuce
Apart from a study system with partial resistance, an ex-
ample of near-complete resistance was tested with the
video tracking platform. The behaviour of black-currant
lettuce aphids, N. ribisnigri, biotype Nr:0 was recorded
on two near-isogenic lettuce cultivars, the resistant
‘Corbana’ and susceptible ‘Terlana’. Previous studies showed



Figure 4 (See legend on next page.)
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Figure 4 Correlation between automated video tracking and human observations. M. persicae behaviour was measured by automated video
tracking (x-axes) and human observations simultaneously (y-axes). Three categories of probes were distinguished: All probes, Long probes (>15 min),
and Short probes (<3 min). The duration (min) and number of probes measured by human observations were compared to: (a,d,g,j,m) the duration
(min) and number of probes (all, long, and short probes) measured by video tracking, (b,e,h,k,n) the total time not moving (min), and (c,f,i,l,o) the
distance moved by the aphids (cm) (*P < 0.05; **P < 0.01; ***P < 0.001, Pe = Pearson correlation test, Pl = Pearson correlation test on log transformed
data, S = Spearman correlation test, dashed lines represent a hypothetical r2 = 1, n = 16 recordings of 1 aphid for 55 min, 275 pixels per mm2).

Table 1 Feeding behaviour of M. persicae on two Arabidopsis accessions and N. ribisnigri on two lettuce cultivars

Arabidopsis – M. persicae Lettuce – N. ribisnigri

Co-2 R Sanna-2 S Corbana R Terlana S

EPG intact plants

Total duration non-penetration 139 ± 15 60.2 ± 8.1 Ts*** 121 ± 16 29.2 ± 5.8 Tl***

Total duration phloem feeding 110 ± 13 296 ± 31 M*** 2.34 ± 1.68 399 ± 17 M***

Total duration phloem feeding (>10 min) 27.7 ± 7.9 259 ± 32 M*** 0.00 ± 0.00 399 ± 17 M***

Total duration other penetration activities 231 ± 15.8 124 ± 28 M** 357 ± 16 51.5 ± 14 T***

Number of non-penetrations 57.7 ± 6.2 22.4 ± 3.1 M*** 27.8 ± 7.58 7.58 ± 1.33 T***

Number of short probes (<3 min) 49.8 ± 5.8 18.4 ± 2.4 M*** 13.7 ± 2.0 4.53 ± 1.17 M***

Number of phloem feeding events 6.37 ± 0.55 4.28 ± 0.70 T* 0.11 ± 0.07 1.16 ± 0.12 M***

Mean duration of phloem feeding events 17.6 ± 1.4 117 ± 26 M*** 22.2 ± 6.16 379 ± 26 M*

Latency to first phloem feeding event 188 ± 25 111 ± 26 M* 228 ± 94 106 ± 17 M

Contribution salivation to phloem phase (%) 13.3 ± 2.2 2.45 ± 1.3 M*** 98.7 ± 1.0 1.15 ± 0.3 M***

EPG leaf discs

Total duration non-penetration 164 ± 48 173 ± 59 M - -

Total duration phloem feeding 220 ± 42 201 ± 48 T - -

Total duration phloem feeding (>10 min) 158 ± 46 177 ± 47 T - -

Total duration other penetration activities 95.3 ± 25.7 106 ± 17 T - -

Number of non-penetrations 19.1 ± 5.7 14.4 ± 3.0 Ts - -

Number of short probes (<3 min) 16.6 ± 4.8 8.63 ± 2.0 Ts - -

Number of phloem feeding events 8.11 ± 1.53 2.63 ± 0.84 M* - -

Mean duration of phloem feeding events 34.2 ± 10.8 99.2 ± 31.7 Ts* - -

Latency to first phloem feeding event 144 ± 51 250 ± 53 T - -

Contribution salivation to phloem phase (%) 3.03 ± 0.6 3.63 ± 2.2 M - -

Video leaf discs

Total duration non-probing 61.5 ± 9.7 42.6 ± 9.4 T 243 ± 27 148 ± 25 T*

Total duration long probes (>25 min) 338 ± 20 377 ± 17 T 153 ± 26 283 ± 25 T***

Total duration sust. probes (>35 min) 276 ± 27 353 ± 19 M* 132 ± 24 260 ± 25 T***

Total duration other probes (<= 25 min) 80.6 ± 12.4 60.5 ± 9.9 T 84.1 ± 7.0 48.4 ± 9.3 M***

Number of non-penetrations 33.2 ± 3.9 22.1 ± 3.8 T 31.1 ± 3.1 23.0 ± 2.6 T

Number of short probes (<3 min) 20.3 ± 3.1 12.4 ± 3.4 T 22.4 ± 3.1 15.6 ± 2.3 M

Number of long probes (> = 25 min) 5.95 ± 0.36 4.71 ± 0.36 M* 2.19 ± 0.33 3.25 ± 0.30 T*

Mean duration of long probes (> = 25 min) 62.8 ± 7.0 90.0 ± 9.8 M* 72.4 ± 9.5 99.8 ± 11.2 M*

Latency to first long probe (> = 25 min) 18.5 ± 5.8 27.1 ± 7.1 M 142 ± 27 65.1 ± 14.2 M*

Total duration not moving (min) 445 ± 7.3 465 ± 3.5 M 257 ± 27 350 ± 25 T*

Total distance moved (cm) 46.9 ± 4.6 34.0 ± 4.6 T* 204 ± 47 103 ± 23 T

Max velocity (mm/s) 0.72 ± 0.12 0.53 ± 0.05 T 2.78 ± 0.54 1.88 ± 0.20 M

Within each EPG and video tracking experiment it was tested whether aphid behaviour differed between the two plant lines. The mean duration and latency were
only calculated if the corresponding events did occur (all samples of M. persicae; N. ribsinigri: EPG n = 2 Corbana and n = 20 Terlana, video tracking n = 21 Corbana
and n = 26 Terlana).
Means ± standard error, *P < 0.05; **P < 0.01; ***P < 0.001, T = Student’s t-test, Ts = Student’s t-test on square root transformed data, Tl = Student’s t-test on log
transformed data, M =Mann–Whitney U test, R = resistant plant line, S = susceptible plant line, time is represented in min.
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Figure 5 Behavioural parameters of M. persicae on two natural Arabidopsis accessions, Co-2 (resistant) and Sanna-2 (susceptible).
(a) Percentage of the time spent on long probes (>25 min), and (b) distance moved (cm) were measured by automated video tracking.
Percentage of the time spent on phloem feeding (waveform 5) were measured by (c) EPGs on intact plants, and (d) EPGs on leaf discs
(Mann–Whitney U test, *P < 0.05; **P < 0.01; ***P < 0.001, video tracking: Co-2 n = 20, Sanna-2 n = 17, EPG recording intact plants: n = 19, EPG
recording leaf discs: Co-2 n = 9, Sanna-2 n = 8, error bars represent standard error).
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that the Nr gene is responsible for near-complete resist-
ance in Corbana against this biotype of aphids, mainly due
to a phloem-located mechanism [34,46]. Our video track-
ing observations on leaf discs were compared to EPG re-
cording data by ten Broeke et al. [47]. Seven out of nine
Figure 6 Reproduction of M. persicae on two Arabidopsis accessions.
or a 3.5-week-old plant (assay 2). (a) Total number of aphids per plant 2 we
the aphid (Mann–Whitney U test, *P < 0.05, ***P < 0.001, assay 1: Co-2 n = 19,
standard error).
video tracking variables confirmed that cultivar Corbana
was more resistant than cultivar Terlana (Table 1).
Aphids on Corbana spent less time on long probes and
more time on shorter probes and other activities. In
addition, aphids increased their walking activity over
One neonate aphid was introduced to a 2.5-week-old plant (assay 1)
eks after infestation. (b) Days until the first nymph was produced by
Sanna-2 n = 15, assay 2: Co-2 n = 14, Sanna-2 n = 13, error bars represent



Figure 7 Contribution of salivation to phloem ingestion.
Percentage of time spent salivating in the phloem compared to the
total phloem phase (salivation + ingestion) of M. persicae aphids on
Arabidopsis accessions Co-2 (resistant) and Sanna-2 (susceptible)
(Mann–Whitney U test, *P < 0.05; **P < 0.01; ***P < 0.001, left bars:
EPG recording intact plants: n = 19, right bars: EPG recording leaf
discs: Co-2 n = 9, Sanna-2 n = 8, error bars represent standard error).
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time on both cultivars, but generally covered larger dis-
tances on Corbana leaf discs (mixed linear model: time
effect: P = 0.00, cultivar effect: P = 0.03, time × cultivar
interaction: P = 0.77, Figure 8). Yet, the resistance effect
was less pronounced in video tracking compared to EPG
Figure 8 Behavioural parameters of N. ribisnigri on two lettuce cultiva
the time spent on long probes (>25 min), and (b) distance moved (cm) were
the time spent on phloem feeding (waveform 5), and (d) percentage of time
were measured by EPGs on intact plants (Mann–Whitney U test per time bin,
n = 28, EPG recording: n = 19).
recording on intact plants: only 11% of the aphids in
EPG recordings showed phloem ingestion on Corbana
plants, while 78% of the aphids in the video assay per-
formed long probes on Corbana. These long probing
events could include other activities, such as water in-
gestion from xylem vessels, since EPGs showed that
on Corbana plants more aphids penetrated xylem sieve
elements (12 aphids on Corbana versus 2 aphids on
Terlana).

Throughput
Using simulated data with a similar plant line effect as
the data sets from the plant-aphid assays described here,
we assessed the required sample size and recording dur-
ation for automated video tracking (Table 2). With 20
replicates of 8-hour observations, significant resistance
was detected in more than 80% of the cases for the
Arabidopsis plant line effect on M. persicae (2 response
variables tested per simulated data set, Bonferroni cor-
rection: P < 0.025). The near-complete resistance of
Corbana lettuce against N. ribisnigri biotype Nr:0 was
detected in more than 80% of the cases with 15 repli-
cates of 4 hours of video observations. Subtle differences
in resistance in Arabidopsis were more difficult to detect
when video observations were shorter than 8 hours
(Table 2). On the other hand, reducing the video dur-
ation to the first 4 hours improved the detection of
near-complete resistance, as with N. ribisnigri biotype
rs, Corbana (resistant) and Terlana (susceptible). (a) Percentage of
measured by automated video tracking on leaf discs. (c) Percentage of
spent on other probes (pathway, phloem salivation and xylem feeding)
*P < 0.05; **P < 0.01; ***P < 0.001, video tracking: Corbana n = 27, Terlana



Table 2 Required video duration and number of replicates
for identifying a significant effect

Plant-aphid system Duration Replicates Detection rate

Arabidopsis - M. persicae 8 h 20 > 80%

6 h 25 > 80%

Lettuce – N. ribisnigri 8 h 20 > 80%

4 h 15 > 80%

Student’s t-tests have been applied to subsamples of two simulated data sets
with a similar mean and standard deviation as two response variables from
the video tracking assays. The percentage of tests with a significant outcome
in at least one of the two variables is represented as the detection rate
(Bonferroni correction: P < 0.025).
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Nr:0 on the Corbana lettuce cultivar. Apparently, in this
case, the precision of video tracking decreased over time.
While the EPG recording with lettuce did not reveal an
increase in aphid activities in the xylem or mesophyll
over time (Figure 8), the last stretch of the video obser-
vation was likely confounded by sessile behaviour other
than probing. The risk of falsely rejecting the null hy-
pothesis was limited to 1% (M. persicae on Arabidopsis
accession Col-0). Overall, video tracking required similar
observation durations as EPG recording, but a larger
sample size to detect significant plant effects (Table 3).
The required amount of replicates was, however, com-
pensated by screening many samples simultaneously and
automated data annotation.

Discussion
Leaf discs
The effect sizes measured in video tracking with leaf
discs were substantially smaller compared to EPG re-
cording on intact plants. EPG recording on leaf discs
confirmed that the application of excised plant tissue
partially impaired plant resistance [47,48], possibly due
to the interrupted supply of ions and metabolites in the
phloem, or due to the interference by jasmonic acid and
ethylene mediated wound responses [49]. Furthermore,
aphids can be disturbed by the decrease in pressure in
the sieve elements of excised plant tissue, although they
Table 3 Comparison of automated video tracking and
EPG recording characteristics

EPG Video

Plant material Intact plants Leaf discs

Min. observation duration 4-8 h 4-8 h

Min. number of replicates
(identification rate ±80%)

3-5 15-20

Maximum sample size per set up ± 8 ± 100

Preparation time per sample ± 5 min ± 2 min

Annotation of electrical
patterns/video images

± 15 min Automated

Minimum duration of observations and minimum sample sizes were estimated
with simulations. Preparation time per replicate reflects a rough estimation of
time required for an experienced person to prepare one arena, resp. plant-aphid
individual, for a recording.
are well capable of active uptake of sap [50,51]. The in-
crease of coagulating proteins and cellular debris in the
phloem after plant wounding may plug sieve plates and
the aphid’s food canal in the stylets [28,52,53]. To pre-
vent such potential clogging of sieve elements, aphids
might increase the injection of watery saliva into the
phloem or shorten their feeding events, but neither of
these effects were observed consistently. To maintain
turgor better the use of leaves still connected to intact
plants would be favourable, but this is currently not
feasible in view of poor detection of aphids in more
complex environments. Arenas designed to hold entire
detached leaves or seedlings on agar could, however, be
a feasible alternative to leaf discs.

Application
High-throughput phenotyping techniques of sucking in-
sect species are urgently needed in view of functional
genomics studies aiming to find subtle allelic differences
in plant populations measuring many hundreds of
plants. Conventional methods, like EPG and population
studies, are less scalable for this purpose and carry much
higher investments in terms of time (labour, duration)
and costs (equipment, greenhouses). In this study, auto-
mated video tracking was used to study aphid feeding
behaviour, but it could as well be applied to track the be-
haviour of other piercing-sucking insects. We recom-
mend to validate the velocity thresholds for each species
first, by checking several video files by hand. As shown
here with two aphid species, size and velocity can differ
and will affect the accuracy of probe estimations. When
studying plants with thick or dark leaves, increased reso-
lution, better (macro) lenses, and lateral light sources in-
stead of backlight can help to improve the detection of
insects. We worked with EthoVision XT video tracking
and analysis software, but other programs or program-
ming environments, such as MatLab and ImageJ, could
as well serve as robust video tracking tools [37,40,54].

Conclusions
The aim of this study was to develop a high-throughput
method to screen large plant populations for resistance
to aphids and other piercing-sucking insects. For the
first time it is shown that automated video tracking of
aphid body movement can be used to estimate how
often the insects are penetrating plant tissue and are
reaching the vascular bundle. The use of leaf discs in-
stead of intact plants enhanced the throughput of the
video tracking platform, but EPG recording illustrated
that resistance effects were partially lost in leaf discs.
Nevertheless, we could identify both intermediate and
extreme levels of resistance with video tracking. In Ara-
bidopsis accession Co-2, we found a quantitative resist-
ance level. This was confirmed in additional bioassays,
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suggesting the involvement of constitutive or rapidly ac-
tivated resistance mechanisms in both epidermis/meso-
phyll and phloem, resulting in a small detrimental effect
on the aphid population. The video tracking platform
also confirmed the near-complete resistance of the let-
tuce cultivar Corbana to N. ribisnigri biotype Nr:0. Al-
though video tracking requires more replicates to
identify resistant plants than the conventional EPG tech-
nique, it can screen many samples simultaneously in a
confined space. In addition, computerized data acquisi-
tion reduces laborious exercises, such as annotation of
electrical patterns or counting of aphid populations, and
only little plant material is required which can be advanta-
geous when studying segregating populations with only
one plant per genotype. These features make automated
video tracking a valuable phenotyping method for screen-
ing large plant populations for resistance to piercing-
sucking insects that are serious pests in our crops.

Methods
Plants and insects
Arabidopsis, Arabidopsis thaliana (L.) Heynh., plants
were grown for 4–5 weeks in pots (5 cm diameter) with
pasteurized potting soil (4 h at 80°C; Lentse potgrond,
Lent, The Netherlands) in a climate room at 21 ± 1°C,
50-70% relative humidity, an 8/16 h day/night cycle, and
a light intensity of 200 μmol m−2 s−1. Four natural acces-
sions of Arabidopsis were used throughout this study:
Col-0 (CS76113), Van-0 (CS76297), Co-2 (CS28163) and
Sanna-2 (CS76223). Seeds were acquired from the European
Arabidopsis Stock Centre and propagated by the Laboratory
of Genetics, Wageningen University.
Lettuce, Lactuca sativa (L.), cultivars Corbana (resistant)

and Terlana (susceptible) were grown for 3 to 4 weeks in a
greenhouse compartment at a temperature of 20 ± 3°C
during the day and 18 ± 3°C during the night, 50-70% rela-
tive humidity and a 14/10 h day/night cycle using artificial
lighting. Seeds were acquired from Enza Zaden bv. Myzus
persicae (Sulzer) aphids were reared in a climate room on
radish plants at 19°C, 50-70% relative humidity and a 16/
8 h day/night cycle. Nasonovia ribisnigri (Mosely) biotype
Nr:0 aphids were reared on the susceptible lettuce cultivar
Terlana in a greenhouse compartment at a temperature of
20 ± 3°C during the day and 18 ± 3°C during the night, 50-
70% relative humidity, and a 14/10 h day/night cycle.

Video tracking platform
Aphid behaviour was recorded with an analogue, mono-
chrome camera (Ikegami, model: I CD-49E, type: REV,
768 × 576 pixels) with a varifocal lens (Computar
H3Z4512 CS-IR, 4.5-12.5 mm F1.2) mounted above the
arenas (Figure 1). An arena consisted of a well in a 96-well
microtitre plate, having a 6.5 mm inner diameter (Sarstedt,
sterile flat bottom suspension cells. No. 831835500),
containing a leaf disc with the abaxial side up on a sub-
strate of 1% agar (technical agar no.3, Oxoid). One aphid
was introduced per arena and cling film was tightly
wrapped around the plate to prevent aphids from escap-
ing. The microtitre plate was placed on a platform, 1 cm
above a backlight unit (FL tubes, 5000 K). A fan was at-
tached between the platform and backlight unit to prevent
water condensation inside the arenas. Room temperature
was controlled at 21-22°C.

Software settings
EthoVision XT 8.5 video tracking and analysis software
(Noldus Information Technology bv, Wageningen, The
Netherlands) was used for automated video tracking of
aphid feeding behaviour in multiple arenas simultan-
eously [41,55]. Subject detection was achieved with grey
scaling (Additional file 1: Table S1). Arenas contained
two zones: the leaf disc (zone 1) and the space surround-
ing the leaf disc (zone 2) (Additional file 1: Figure S1).
Zone 1 had a diameter of approximately 5 mm, exclud-
ing the outer edges of the leaf disc to prevent aphids on
the arena wall to be falsely assigned to the leaf disc. Be-
cause zone 1 and zone 2 required different grey scale
thresholds, optimal thresholds for zone 1, the leaf disc,
were chosen. Consequently, only behavioural data ac-
quired in zone 1 were used throughout this study. Vel-
ocity and time thresholds appropriate to starting and
ending a probe were fine-tuned using simultaneous ob-
servations of the top-view camera (275 pixels per mm2)
and a side-view camera attached to a stereo microscope
(20-40 × magnification), capturing close-up recording of
proboscis and antennae movements of M. persicae
aphids (Additional file 2). A probe start was automatic-
ally recorded when the aphid was positioned on the leaf
disc and its velocity dropped below 0.02 mm/s and did
not exceed 0.3 mm/s for at least 10 seconds (Figure 2,
Additional file 1: Figure S2). A probe stop was recorded
when aphid velocity exceeded 0.3 mm/s for the relatively
small wingless M. persicae or 0.35 mm/s for the larger
winged N. ribisnigri and did not decrease below 0.1 mm/s
for at least 2 seconds. Confounding movements during
probing were generally characterized by a repetitive
pattern of short movements. The 2 seconds time delay
prevented that these movements resulted in false
probe stops. Zone-transition problems, which occurred
when aphids were positioned exactly on the edge of
zone 1 and zone 2, were filtered from the data set
after acquisition in EthoVision XT, with the statistical
computing program R (Additional file 4). These inci-
dences, characterized by a train of consecutive short
probes in the output, were filtered out by excluding
probes with a duration of less than 3 seconds that
were preceded by a very short non-probe bout of
maximally 15 seconds. These thresholds were selected
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by hand using some examples of zone transition prob-
lems in this study.

Video recording versus human observations
To validate automated tracking of probes with manual
scoring, we used a camera mounted on a stereo micro-
scope (20-40×) with a side-view on a single arena (n =
16) (Additional file 2). Each replicate consisted of a
55 min continuous recording of one arena with a single
adult M. persicae aphid and an Arabidopsis leaf disc, by
both the top-view and side-view camera. Aphids were
starved between 30 minutes and three hours before the
experiment. Recordings with the top-view camera were
performed at two distances: capturing 20 arenas with
275 pixels per mm2, and capturing 35 arenas with
155 pixels per mm2. Leaf discs of 6 mm in diameter
were cut just below the leaf apex of 4–5 week old
Col-0 and Van-0 plants. The Observer® XT 10 soft-
ware (Noldus Information Technology bv, Wageningen,
The Netherlands) was used for manual scoring of probes.
Probe starts were manually recorded when body move-
ment stopped, the proboscis was touching the leaf and
antennae moved backwards. If the aphid’s proboscis
was obscured, body arrestment on the leaf disc with
subsequent backward movement of antennae was defined
as a probe start [56,57]. Probe endings were manually
recorded when antennae moved upward and the aphid
removed its proboscis from the leaf, or, when the latter
was not visible, when the antennae moved upwards
followed by locomotion. Apart from probe estimations,
we also tracked the “total time not moving” across the
whole observation, using a start velocity of 0.3 mm/s
and a stop velocity of 0.02 mm/s. Velocities were aver-
aged across 5 frames, using a sample rate of 5 frames
per second.

Video tracking assays
In each recording twenty arenas were tracked simultan-
eously for 8 hours, with a frame rate of 25 s−1, and a
resolution of 275 pixels per mm2 (Additional file 3). All
arenas consisted of a different plant and aphid individual
and within each recording the 2 involved plant lines
were equally represented. For Arabidopsis accessions
Co-2 and Sanna-2, automated video tracking was per-
formed with 7 to 8 day old wingless M. persicae aphids
(Co-2 n = 20, Sanna-2 n = 17). Leaf discs of 6 mm in
diameter were made just below the apex of intermedi-
ately aged leaves. Aphid survival was checked the day
after recording. Subject detection was checked after data
acquisition on 6 time points across the video. Three
samples with no or low quality detection were excluded
from the analysis. Video tracking of winged N. ribisnigri
biotype Nr:0 on lettuce cultivars Terlana and Corbana
was performed with 4 mm leaf discs (Corbana n = 27,
Terlana n = 28). In view of the large contour of winged
N. ribisnigri aphids, we used arenas with leaf discs of
4 mm diameter and a 3–4 mm leaf edge-to-wall distance
in order to have a clear distinction between aphids on
the leaf disc and aphids on agar or the arena wall. Leaf
discs were made near the leaf base of the third oldest
leaf, next to the mid vein. None of the aphids had died
the day after recording. Five samples with no or low
quality detection were excluded from the analysis. The
response variable “duration not moving” was measured
using a start velocity of 0.3 mm/s and a stop velocity of
0.02 mm/s. Velocities were averaged across 5 frames,
using a sample rate of 5 frames per second.

EPG recording
Feeding behaviour of the green peach aphid, M. persicae,
was analysed with EPG recording on two natural acces-
sions of Arabidopsis, Co-2 and Sanna-2, during 8-hour
observations. EPG recording was made on both intact
plants (Co-2 n = 19, Sanna-2 n = 18) and leaf discs (Co-2
n = 9, Sanna-2 n = 8), using direct currents (DC) accord-
ing to the methodology of ten Broeke et al. [34]. An
electrode was inserted in the potting soil or agar respect-
ively, and a thin gold wire (1.5 cm length for intact
plants, 1 cm length for leaf discs) was gently attached to
the dorsum of 8 to 11 day old wingless aphids with silver
glue. The electrical circuit was completed when the
aphid’s piercing-sucking mouthparts penetrated the
plant cuticle and the electrical signals, correlated to sty-
let activities, were recorded instantly [25]. Each replicate
consisted of a different aphid and plant individual,
employing one leaf disc per plant. Leaf discs of 9 mm in
diameter were processed just below the apex of inter-
mediately aged Arabidopsis leaves and placed abaxial
side up in a Petri dish on a 1% agar substrate. A trans-
parent plastic sheet covered the agar surrounding the
leaf disc to prevent aphids to get stuck or make probes
in the agar. Aphids that did not start probing within the
first 3 hours of the observation were excluded from the
analysis. EPG recording of winged N. ribisnigri biotype
Nr:0 on lettuce cultivars Corbana and Terlana has been
made in a previous study by ten Broeke et al. [47] (8-
hour recording, n = 19).

Aphid population development
One M. persicae neonate (0 to 24 h old) was transferred
to each Arabidopsis plant in a climate chamber (21 ± 1°C,
50-70% relative humidity, an 8/16 h day/night cycle, light
intensity of 200 μmol m−2 s−1). In the first assay 2.5-week-
old plants were infested, in the second assay 3.5-week-old
plants. A soap-diluted water barrier prevented aphids
from moving between plants. Six, seven, and eight days
after introduction the presence of the aphid and its off-
spring was checked. None of the aphids developed wings.
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14 Days after infestation the number of aphids was
counted per plant. Plants without an adult aphid 8 days
after introduction, and plants without any adults or neo-
nates 14 days after introduction were excluded from the
analysis (assay 1: Co-2 n = 19, Sanna-2 n = 15; assay 2: Co-
2 n = 14, Sanna-2 n = 13).

Simulations
In simulations, 104 random draws were taken from a
normal distribution with the mean and standard devi-
ation of a response variable of the Arabidopsis-M. persi-
cae and lettuce-N. ribisnigri data sets (Additional file 1:
Table S3). For video observations data was simulated
with two probing variables: the mean duration of long
probes and the total duration of sustained probes. For
EPGs the total duration of phloem ingestion was simu-
lated. Random draws were excluded when values were
below zero, below the minimum duration of the probe
category, or above the maximum recording duration.
The generated data sets were subsampled with 1000
iterations without replacement for several replicate levels
(n = 10, 15, 20, 25, 30, 35, 40). Student’s t-tests were exe-
cuted for each iteration and the percentage of significant
p-values per replicate level was calculated. Video track-
ing simulation tests were defined significant if they had a
P-value below α = 0.025 for at least one of the two prob-
ing variables (Bonferroni correction: α = 0.05/2). For
EPG simulations one variable and P-values below α =
0.05 already delivered maximum detection rates. This
process was performed on complete data sets of EPG
and video recording (8 h observations) and on data sets
rescaled to shorter durations (6 and 4 hour observa-
tions). The proportion of tests where the null hypothesis
is incorrectly rejected, was calculated with simulations
based on a data set of 8-hour video recording of M. per-
sicae on Arabidopsis accession Col-0 (data set n = 53,
replicate levels n = 15 and n = 20, two variables, P <
0.025, Additional file 1: Table S3).

Statistical analysis
An R script was written to calculate response variables
of video tracking, such as the total number and total
duration of short and long probes in each observation
and for each hour (Additional file 4). For EPG recording,
the start time and duration of waveforms were analysed
with the EPG PROBE 3.0 software (EPG-Systems,
Wageningen, The Netherlands). Further calculations and
analyses of EPG data were performed with the statistical
computing program R. The duration of phloem inges-
tion events in EPG recording were calculated as the sum
of three subsequent waveforms: (a) inter- and intracellu-
lar penetrations followed by (b) phloem salivation and
(c) phloem ingestion. Bar graphs were produced with
the R package sciplot version 1.1-0 (Morales 2012) [58].
Data distributions and homogeneity of variances were
tested with a Shapiro test and a Levene’s test. In case
data transformations (square root, log, logit, arcsine) did
not result in a distribution that approaches a normal dis-
tribution, non-parametric tests were applied. Human ob-
servations were compared to video tracking parameters
with a paired t-test or, when data were not normally dis-
tributed with a Wilcoxon signed ranks matched pairs
test. Correlations were tested with a Pearson correlation
test or, when data were not normally distributed, with a
Spearman correlation test. For benchmarking of video
tracking against EPGs with susceptible and resistant
Arabidopsis and lettuce lines and for the reproduction
assay, response variables were tested with a Student’s t-
test, or when the data were not normally distributed
with a Mann–Whitney U test. Walking activity of aphids
was tested across 8 time bins of 1 hour. The distance
moved was not normally distributed and, therefore,
transformed to ranks ranging from the lowest to highest
value within the complete data set. A mixed linear
model was applied on the ranks, using plant line, time
bin, and plant line x time bin interaction as fixed effects
and plant/aphid individual as a random effect.
Additional files

Additional file 1: Figure S1. Arena settings. Figure S2. Trial Control
Settings. Table S1. Subject detection settings for M. persicae. Table S2.
Absolute differences between EPG recording and automated video
tracking. Table S3. Video tracking variables used to generate simulations.

Additional file 2: Movie of aphid feeding behaviour measured by
manual annotations and automated video tracking simultaneously.
Events were estimated where the M. persicae aphid penetrated the
Arabidopsis leaf disc with its piercing-sucking mouth parts. Manual scoring
of probes was achieved with a side-view camera mounted on a stereo
microscope and The Observer XT software. Automated video tracking was
performed with a top view on the arena (275 pixels/mm) and EthoVision XT
software (Noldus Information Technology bv, Wageningen, The Netherlands).
EthoVision XT recorded a probe when the aphid’s centre point was located
on the leaf disc and did not move. Other motion parameters, such as the
distance moved (cm) and velocity (cm/s), were also acquired with
automated tracking. The movie is displayed at double speed.

Additional file 3: Movie of automated video tracking of 20 aphids
simultaneously. M. persicae aphids were tracked on Arabidopsis leaf
discs using EthoVision XT video tracking software (Noldus Information
Technology bv, Wageningen, The Netherlands). The aphid’s centre point
(red) was automatically detected and tracks of the previous 30 seconds
are visualised in red. Arenas are numbered from 1 (top left) to 20
(bottom right). The movie is displayed at 16× speed.

Additional file 4: R script for feature extraction from EthoVision XT
output.

Abbreviation
EPG: Electrical Penetration Graph.
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