
PLANT METHODS

Hirotsu et al. Plant Methods 2010, 6:12
http://www.plantmethods.com/content/6/1/12

Open AccessM E T H O D O L O G Y
MethodologyProtocol: a simple gel-free method for SNP 
genotyping using allele-specific primers in rice and 
other plant species
Naoki Hirotsu1,2, Naomi Murakami1, Takayuki Kashiwagi1,3, Kazuhiro Ujiie1 and Ken Ishimaru*1

Abstract
Background: Genotype analysis using multiple single nucleotide polymorphisms (SNPs) is a useful but labor-intensive 
or high-cost procedure in plant research. Here we describe an alternative genotyping method that is suited to multi-
sample or multi-locus SNP genotyping and does not require electrophoresis or specialized equipment.

Results: We have developed a simple method for multi-sample or multi-locus SNP genotyping using allele-specific 
primers (ASP). More specifically, we (1) improved the design of allele-specific primers, (2) established a method to 
detect PCR products optically without electrophoresis, and (3) standardized PCR conditions for parallel genomic assay 
using various allele-specific primers. As an illustration of multi-sample SNP genotyping using ASP, we mapped the 
locus for lodging resistance in a typhoon (lrt5). Additionally, we successfully tested multi-locus ASP-PCR analysis using 
96 SNPs located throughout the genomes of rice (Oryza sativa) cultivars 'Koshihikari' and 'Kasalath', and demonstrated 
its applicability to other diverse cultivars/subspecies, including wild rice (O. rufipogon).

Conclusion: Our ASP methodology allows characterization of SNPs genotypes without electrophoresis, expensive 
probes or specialized equipment, and is highly versatile due to the flexibility in the design of primers. The method 
could be established easily in any molecular biology laboratory, and is applicable to diverse organisms.

Introduction
Plant biologists frequently have to analyze the genotype
of multiple polymorphic loci. For multi-sample or multi-
locus genotyping, many researchers employ labor-inten-
sive methods, such as cleaved amplified polymorphic
sequences (CAPS) [1], restriction fragment length poly-
morphisms (RFLP) [2], and simple sequence repeats
(SSR) [3]. The main difficulty in multiple genotyping
using such genetic markers is that it requires much time
and labor, since these analyses need multi-step sample
processing including electrophoresis. Moreover, there are
only few of the appropriate polymorphisms in some
genome regions [4]. To fill in gaps between markers, sin-
gle nucleotide polymorphisms (SNPs) are available for
genotyping.

Advances in genome analysis have made it possible to
utilize SNPs in Arabidopsis thaliana [5], Glycine max [6],

and Zea mays [7]. In rice (Oryza sativa), the genome
sequence of the ssp. japonica cultivar 'Nipponbare' [8]
and the draft sequence of the ssp. indica cultivar '93-11'
[9] have been determined, and genome-wide SNP maps
of japonica and indica have been published [4,10-12]. Yu
et al. [9] identified, on average, one SNP per 170 bp
throughout the genome in rice. These highly abundant
SNPs will greatly facilitate high-resolution genome-wide
genotyping [13]. Based on information provided by Nasu
et al. [10] and Monna et al. [12], a database containing
SNPs of six japonica and two indica cultivars was
released (Rice SNPs Database http://www.pgcdna.co.jp/
snps/index.html) by the Plant Genome Center Co. Ltd.
(Tsukuba, Japan).

The allele-specific primer PCR (ASP-PCR) method was
developed for allele analysis of clinically significant muta-
tions [14]. Allele-specific PCR primers, designed so that
their 3' terminal nucleotides correspond to an SNP, match
perfectly with one allele (the specific allele) but have a 3'
mismatch with other alleles (the nonspecific alleles).
ASPs preferentially trigger amplification of the specific
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allele [15], and the presence of the SNP can be detected as
PCR amplification after electrophoresis. Although each
of the ASP-PCR markers is a dominant marker, pairs of
ASP for both alleles can be used as codominant markers.
To facilitate highly reliable discrimination between two
alleles, the addition of artificial mismatches at the third
base from 3'end of the primers might be beneficial [15-
17]. Their reliability was demonstrated in Arabidopsis
thaliana [18] and wheat [19]. However, these methods
require electrophoresis for detection, and the insufficient
information of the mismatch base for new primer design
is available. Thus, the application of ASP-PCR has been
restricted so far. To meet the needs of multi-sample or
multi-locus SNP genotyping, the ASP-PCR method
clearly requires improvement.

In this study, we introduce such improvements of the
ASP-PCR method. First, to discriminate SNP alleles
through the presence or absence of amplification, high
amplification specificity was enforced. Second, for multi-
sample SNP genotyping, a detection method not requir-
ing electrophoresis was developed. Third, for genotyping
multi-locus SNPs in a single PCR operation, we standard-
ized allele-specific PCR conditions among ASP-PCR
markers. Finally, we demonstrated the usefulness of the
ASP-PCR methodology for multi-sample or multi-locus
SNP genotyping.

Materials
Plant materials and SNP information
The SNPs between two rice cultivars 'Koshihikari' (japon-
ica) and 'Kasalath' (indica) were used in this study. The
SNPs information of 'Koshihikari' and 'Kasalath' were
provided by the PGC SNPs Database System http://
www.pgcdna.co.jp/snps/. The marker names with 'S' are
SNPs in intergenic region [10,12] and 'T' are SNPs in cod-
ing region [20]. The physical map loci of SNP markers
were determined using NCBI blast http://
www.ncbi.nlm.nih.gov/BLAST/. Genomic DNA was iso-
lated from leaf blades by the cetyl trimethyl ammonium
bromide (CTAB) method [21].

Equipment
Standard laboratory equipment including a thermal
cycler and an UV transilluminator is required for allele-
specific primer PCR. A real-time thermal cycler is
optionally desirable for quantitative analysis of SYBR
green I fluorescence. All our PCR were performed on
iCycler thermal cycling instrument (Bio-rad, Hercules,
CA), and SYBR Green I fluorescence was detected using a
UV transilluminator (TFML-30E, UVP, CA) or a TP800
Thermal Cycler Dice (Takara Bio Inc., Shiga, Japan).

Protocols
Primer design
SNP assays are performed by pairs of PCR amplifications,
one with 'Koshihikari' allele specific primer and the other
with 'Kasalath' allele specific primer; the reverse primer is
non-allele specific and identical in 'Koshihikari' and
'Kasalath' allele specific PCRs. The allele-specific forward
primer should be designed so that their 3' terminal nucle-
otides correspond to an SNP. To improve the specificity
of allele-specific amplification, single nucleotide artificial
mismatches (A-G transition as well as A-T, A-C, and G-T
transversions) should be introduced at the third nucle-
otide from the 3' end of the primers.

Demonstration of ASP-PCR
Fig. 1A, B shows an example of allele-specific amplifica-
tion for SNP marker S0285 (chr. 5, 44.7 cM). 'Koshihikari'
allele-specific primers (lane 1 and 2) and 'Kasalath' allele-
specific primers (lane 3 and 4) were used for allele-spe-
cific PCR with 'Koshihikari' genomic DNA (lane 1 and 3)
and 'Kasalath' genomic DNA (lane 2 and 4). Amplification
was detected using ethidium bromide (EtBr) after elec-
trophoresis. 'Koshihikari' allele-specific primers acted
only on 'Koshihikari' genomic DNA, and 'Kasalath' allele-
specific primers worked only in the presence of 'Kasalath'
genomic DNA.

Optical detection of allele-specific amplification
To abolish the need for electrophoresis as an analytical
step, SYBR Green I, which intercalates into double-
stranded DNA [22], was added to the solution containing
the PCR products. Ethidium bromide has been used for
the detection of double-stranded DNA, but this com-
pound exhibits high intrinsic fluorescence and does not
allow for specific double-stranded DNA analysis [23].
SYBR Green I has low intrinsic fluorescence and high
selectivity for double-stranded DNA [22], and thus helps
to avoid a purification step to remove the non-bound dye.
The intensity of fluorescence was monitored at various
temperatures using a real-time thermal cycler (Fig. 1C).
Fluorescence intensity was strongly temperature-depen-
dent. Differential melting behavior of non-specific
agglomerates and the amplification product lead to a sig-
nificantly increased signal/noise ratio (> 6) in the range
between 60°C and 80°C, ensuring reliable detection of the
specific PCR product. Thus, allele-specific amplification
was unambiguously detected by SYBR Green I using both
UV transilluminator and real-time thermal cycler (Fig.
1B, C).

Common protocol for ASP-PCR
1. Add the following components to a nuclease-free
microcentrifuge tube:
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http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/


Hirotsu et al. Plant Methods 2010, 6:12
http://www.plantmethods.com/content/6/1/12

Page 3 of 10

Figure 1 Allele-specific amplification and detection of the PCR products. (A) Schematic representation of the allele-specific primer PCR method. 
'Koshihikari' (Ksh) allele specific primer forms a perfect match at the 3' end (SNP) with Ksh DNA sequence (1) but forms a mismatch with Kal DNA (2). 
'Kasalath' (Kal) allele specific primer similarly forms a 3' end match with Kal DNA (4) and 3' end mismatch with Ksh DNA (3). Both allele specific primer 
has an artificial mismatch at third base from 3' end (blue circle) according to the result from Table 1. (B) Allele-specific amplification of SNP marker 
S0285 detected EtBr after gel electrophoresis. Fluorescence of same samples were detected with a UV transilluminator at room temperature (25°C) or 
immediately after heating to 80°C using SYBR Green I. Ksh allele-specific primers (lane 1 and 2) and Kal allele-specific primers (lane 3 and 4) were used 
for PCR of Ksh genomic DNA (lane 1 and 3) and Kal genomic DNA (lane 2 and 4). The specificity of the reaction is evident. (C) The effect of temperature 
on SYBR Green I fluorescence. The green line indicates the fluorescence intensity of the sample in which amplification had occurred, and the blue line 
shows the amplification-independent background fluorescence. The ratio of both (signal/noise ratio) is shown in red. (D) The relationship between 
the number of SNPs and samples in a single PCR operation using 96-well plate. In a single PCR operation, 48 samples SNP genotype could be examined 
(multi-sample, Fig. 2), or 48 locus SNPs of one sample could be examined (multi-locus, Fig. 3)
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12.3 μl nuclease-free water
2 μl 10 × PCR buffer
1.6 μl 2.5 mM dNTP mix
0.5 μl forward primer (10 μM)
0.5 μl reverse primer (10 μM)
1 μl sample DNA (ca. 200 ng).
0.1 μl Hot Goldstar DNA polymerase (catalogue No.
ME-0073, Eurogentec, Seraing, Belgium)

2. Place reactions in a thermal cycler heat block and
incubate 10 min denaturation at 95°C; 30 cycles of 30 s
denaturation at 95°C, 30 s annealing at 58°C, 45 s exten-
sion at 72°C; and 4 min final extension at 72°C.

3. Add 2 μl 10 × SYBR Green I (catalogue No. 50513,
Lonza, Basel, Switzerland) to the PCR product, and
detect the fluorescence at 75°C.

NOTE: The DNA polymerase and buffer system strongly
influence the allele-specificity. The primers used in this
study were optimized for Hot Goldstar DNA polymerase.
We confirmed that some primers could be used in other
polymerase (eg. SYBR Premix Ex Taq, catalogue No.
RR041A, Takara, Tokyo, Japan).

Application of ASP-PCR
In 96-well PCR plate, SNP genotyping in 48 samples can
be examined in a single PCR operation (multi-sample).
On the other hand, the number of SNPs can be increased
by reducing the number of samples (multi-locus). We
applied ASP-PCR to multi-sample SNP genotyping by
mapping quantitative trait locus (QTL) for lodging resis-
tance in a typhoon (lrt5) [24] region (Application 1) and
multi-locus SNP genotyping by generating genome-wide
graphical maps for 11 rice lines (Application 2).

Application 1 (Multi-sample SNP genotyping)
As an example of multi-sample SNP genotyping, we
mapped lrt5 region previously mapped within 28.6 cM
region on chromosome 5 using a cross between 'Koshi-
hikari' and 'Kasalath' [24]. We used 96 F2 segregating
plants from crosses between japonica 'Koshihikari' and
'S1', a NIL line containing 'Kasalath' chromosome seg-
ment at the lrt5 region. For mapping lrt5, we developed
five ASP-PCR markers in lrt5 region (See additional file 1:
Allele-specific PCR primers used to map the lrt5). These
markers have different annealing temperatures individu-
ally.
Sub-protocol for multi-sample SNP genotyping
1. Prepare a PCR master mix by scaling the volumes listed
below to the desired number of amplification reactions.
Include 10% overage to cover pipetting errors.

• Add the following components to a nuclease-free
microcentrifuge tube:

12.3 μl nuclease-free water
2 μl 10 × PCR buffer
1.6 μl 2.5 mM dNTP mix

0.5 μl forward primer (10 μM)
0.5 μl reverse primer (10 μM)
0.1 μl Hot Goldstar DNA polymerase

• Mix gently and centrifuge to bring solution to the
bottom of the tube.

2. Aliquot 19 μl of the PCR master mix into 96-well
PCR plate and add 1 μl sample DNA (ca. 200 ng).

3. Place reactions in a thermal cycler heat block and
incubate 10 min denaturation at 95°C; 30 cycles of 30 s
denaturation at 95°C, 30 s annealing at X°C, 45 s exten-
sion at 72°C; and 4 min final extension at 72°C.

NOTE: The annealing temperature is changed to the
temperature described in additional file 1.

4. Add 2 μl 10 × SYBR Green I to the PCR product, and
acquire the fluorescence value using a real-time thermal
cycler at 75°C.

5. Determine the genotypes using Microsoft Excel mac-
ros which are programmed to identify the genotype
according to the threshold of fluorescence intensity (to
obtain these macro files, please contact to 

kenshi@nias.affrc.go.jp
).
According to sub-protocol for multi-sample SNP geno-

typing, we first analyzed S1919 and S1975 markers. Eight
plants did not show PCR amplification due to germina-
tion error. The genotype of each SNP was determined by
the presence or absence of fluorescence; homozygotes of
the 'Koshihkari' and 'Kasalath' alleles and heterozygotes
were clearly discriminated (Fig. 2A). Seventeen plants
that showed recombination events could be detected (Fig
2B). The phenotype, either 'Koshihikari' or 'Kasalath', of
12 homozygous F3 plants derived from each F2 individual
was determined. The chlorophyll contents in the first leaf
below the flag leaf were used as an indicator of the lodg-
ing resistance during a typhoon; relative chlorophyll con-
tents were determined as described in Ishimaru et al.
[24]. The genotypes and phenotypes of F3 lines homozy-
gote with respect to the lrt5 locus were investigated (Fig.
2C). Thus, we could narrow the lrt5 region down to 4.6
cM between markers L1008 and S0068 in one selection
using 96 plants of an F2 population (Fig. 2).

Application 2 (Multi-locus SNP genotyping)
As an example of multi-locus SNP genotyping, we made a
set of 96 ASP-PCR markers (ASP array). We tested vari-
ous ASP markers using 'Koshihikari' and 'Kasalath'
genomic DNA, and the primers which ensure the allele
specific amplification were collected and arrayed on two
96-well PCR plates according to chromosomal order. The
96 markers were separated on average by a distance of 3.9
Mbp (see Additional file 2: The list of ASP based on SNPs
between 'Koshihikari' and 'Kasalath'.). The PCR condition
was standardized among the ASP markers, and this
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Figure 2 An example of multi-sample SNP genotyping. To demonstrate multi-sample SNP genotyping, we mapped the lrt5 region using an F2 

population. (A) Scatter plots showing genotyping results for the S1919 (left) and S0575 (right) markers. The X- and Y-axis represent fluorescence in-
tensity value of 'Koshihikari' and 'Kasalath' allele-specific amplification, respectively. (B) The fluorescence data of 'Koshihikari' (upper tier in each field) 
and 'Kasalath' (lower tier) that correspond to the data in (A) are shown in the upper two panels in the 96-well format. Red, blue and yellow indicate 
'Koshihikari' homozygotes, 'Kasalath' homozygotes, and heterozygotes of the allele, respectively. In the lower panel, recombination events between 
the markers S1919 and S0575 are indicated in red. Recombination was determined from the genotypes indicated in the upper two panels. (C) Genetic 
map of the lrt5 region, derived from the genotypes of 17 recombinants as analyzed using three additional ASP-PCR markers. White and black bars 
represents 'Koshihikari' and 'Kasalath' alleles, respectively. Number of recombinants are given in parenthesis.
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enabled genome-wide SNP mapping in a single PCR
operation.
Sub-protocol for multi-locus SNP genotyping
1. Prepare a PCR master mix by scaling the volumes listed
below to the desired number of amplification reactions.
Include 10% overage to cover pipetting errors.

• Add the following components to a nuclease-free
microcentrifuge tube:

12.3 μl nuclease-free water
2 μl 10 × PCR buffer
1.6 μl 2.5 mM dNTP mix
1 μl sample DNA (ca. 200 ng)
0.1 μl Hot Goldstar DNA polymerase

• Mix gently and centrifuge to bring solution to the
bottom of the tube.

2. Aliquot 19 μl of the PCR master mix into 96-well
PCR plate and add 1 μl forward and reverse primer mix
(10 μM).

NOTE: The forward and reverse primers are mixed and
the set of ASP primers are arranged in 96-well plate for-
mat beforehand.

3. Place reactions in a thermal cycler heat block and
incubate 10 min denaturation at 95°C; 30 cycles of 30 s
denaturation at 95°C, 30 s annealing at 58°C, 45 s exten-
sion at 72°C; and 4 min final extension at 72°C.

4. Add 2 μl 10 × SYBR Green I to the PCR product, and
acquire the fluorescence value using a real-time thermal
cycler at 75°C.

5. Draw the graphical genotypes using Microsoft Excel
macros based on genotype data and physical position of
each SNP (to obtain these macro files, please contact to 

kenshi@nias.affrc.go.jp
).
According to sub-protocol for multi-locus SNP geno-

typing, we tested ASP array in 11 rice and wild rice lines:
two japonica cultivars ('Akihikari' and 'Koshihikari'),
three indica cultivars ('Kasalath', 'Habataki' and 'Nona
Bokra') provided by the Rice Genome Resource Center
http://www.rgrc.dna.affrc.go.jp/index.html of the
National Institute of Agrobiological Science (Tsukuba,
Japan) and six accessions of O. rufipogon ('W0106',
'W0120', 'W1294', 'W1866', 'W1921' and 'W2003') listed
in the core collection of wild rice provided by the
National Institute of Genetics (Shizuoka, Japan) sup-
ported by the National Bioresource Project, MEXT,
Japan. The genome-wide graphical genotype maps of 11
lines were arranged in a neighbor-joining tree (Fig. 3; see
also Additional file 3: Ninety-six SNPs genotypes of 11
plants analyzed by ASP array). The neighbor-joining tree
was created with ClustalX [25] and NJplot [26] with boot-
strap values > 500 (1,000 replicates). Among 96 SNPs in
these rice cultivars and accessions, more than 90% of
SNPs could be identified as either 'Koshihikari' or 'Kasal-
ath' alleles, except for 'W1921'.

Comments
Effects of base mismatches on allele specificity
To improve the specificity of allele-specific amplification,
single nucleotide artificial mismatches were introduced at
the third nucleotide from the 3' end of the primers. The
effects of base pair mismatches were tested using isolated
genomic DNA and 10 different allele-specific primers for
each artificial mismatch. After PCR amplification, the
products were detected using EtBr after agarose gel elec-
trophoresis, and the number of primers which shows sin-
gle-band specific amplification to 'Koshihikari' or
'Kasalath' genomic DNA were counted (Table 1). At the
third nucleotide from the 3' end matching bases (rows)
were replaced in the primers by the bases shown in col-
umns, primers without mismatches showed no allele
specificity (underlined in Table 1). Hayashi et al. (2004)
[17] proposed that base pair mismatches created through
T-G or C-A transversions at third base from 3' end could
increase the allele-specificity. We confirmed that these
mismatched base pairs were useful for allele-specific
amplification, and identified another possible mismatch
base pair, A-T transversion and A-G transition. Thus, A-
G transition as well as A-T, A-C, and G-T transversions
were useful base pair mismatches to improve allele-spe-
cific amplification. Primer sequences (GC content) are
determinant of melting temperature (Tm) which critical
importance in designing the PCR condition. By introduc-
ing such artificial mismatches, Tm of allele-specific prim-
ers can be adjusted to standardized PCR conditions.

Flexibility of the ASP-PCR
ASP-PCR methods developed in this study is a simple
method for multi-sample or multi-locus SNP genotyping.
The method could be established easily in any molecular
biology laboratory. New primer sets can be designed spe-
cifically to meet the requirements of various research
purposes. For example, recombination events between
two ASP markers could be easily detected (Fig. 2). The
large-scale selection using ASP markers will greatly facili-
tate the mapping of genes or marker-assisted selection.
On the other hand, multi-locus SNP mapping is enabled
using sets of 96 ASP markers (Fig. 3). The multi-locus
mapping will be useful in the high-resolution mapping
after detection of various QTLs [27,28]. The ASP markers
can be switched in and out by individual researchers,
unlike a printed array. This flexibility is a major advantage
of the ASP-PCR method.

Applicability of ASP to diverse varieties
To demonstrate the applicability of ASP, we performed
multi-locus genotyping in five cultivars of O. sativa and
six accessions of O. rufipogon. O. rufipogon is the wild
progenitor of O. sativa, japonica and indica cultivars are
thought to have been domesticated from O. rufipogon

http://www.rgrc.dna.affrc.go.jp/index.html
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Figure 3 An example of multi-locus SNP genotyping. Graphical genotypes of 11 lines arranged in a neighbor-joining tree created on the basis of 
the 96-SNPs genotype. Numbers on branches represent bootstrap values with 1,000 replicates. The bars shown in red, blue and yellow on chromo-
somes represent homozygous 'Koshihikari' alleles, homozygous 'Kasalath' alleles and heterozygous alleles, respectively, while black bars indicate mark-
er that could not be determined. Chromosome numbers shown in identical color in different plant lines indicate chromosomes sharing the same SNP 
pattern.
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independently [29]. Thus, the genetic variations of O.
sativa might have their basis in the variations of O. rufi-
pogon. We analyzed six accessions of O. rufipogon which
are listed as the core collection (Rank 1) of wild rice [30],
and two O. sativa ssp. indica, 'Habataki' and 'Nona Bokra',
which are widely used as genetic resources for the genetic
improvement of japonica rice. In these cultivars and
accessions (except for 'W1921'), more than 90% of the
alleles could be determined as either 'Koshihikari' or
'Kasalath' alleles through ASP array analysis (Fig. 3; see
also Additional file 3). The average genotype call rate of
93.6% was achieved across 11 lines.

Intriguingly, in some O. rufipogon and O. sativa, some
chromosomes shared identical SNP combinations, as
indicated by the color-coded chromosome numbers in
Fig. 3. For example, SNP genotypes on chromosome No.
12 was identical in 'Habataki', 'W1866' and 'W1294'. Due
to the limited resolution of our markers, it is unclear
whether the continuous chromosome regions are shared
in some lines or not. Monna et al. (2006) [12] suggested
that the genome of cultivated rice consists of a mosaic of
various chromosomal segments derived from various
accessions of wild rice. Further high-resolution mapping
using the ASP array method in collections covering a
wider range of genetic variation of O. sativa, as provided
e.g. by the Rice Diversity Research Set of germplasm
(RDRS) [31], may support the clarification of the domes-
tication process of rice. The ASP array method will help
to accelerate the genetic diversity analysis.

Validity of SNP genotypes determined by ASP array 
analysis
The varieties of domesticated rice and wild rice might
carry mutations in priming sites that could affect allele-
specificity. To test for the presence of such unanticipated

changes in priming sites and to validate the applicability
of the ASP methodology, we sequenced the priming sites
of unintentionally and randomly chosen 12 allele-specific
PCR markers located at the distal end of 12 chromosomes
in six accessions of O. rufipogon (see Additional file 4:
The DNA sequences of upper priming site of 12 allele-
specific PCR markers). We identified five unanticipated
additional SNPs in a total of 72 sequences. Although
some accessions have unanticipated SNPs at the upper
priming site, there was 100% concordance between the
SNP genotypes identified by ASP-PCR analysis and DNA
sequence, except for two samples that could not be
sequenced. These results indicated that ASP analysis
enabled SNP determination in the presence of additional
SNPs in priming sites.

A comparison of existing methods and advantages of our 
method
Various methods for SNP analysis are available (reviewed
in Shi [32]; Syvänen [33]), including TaqMan [34], oligo-
nucleotide arrays [35], a fluorescence polarization
method [36], pyrosequencing [37], and MassArray [38].
These methods enable high-throughput SNP analysis
without electrophoresis. However, all these methods
require significant initial investments for expensive
probes, micro-chips, or special instrumentation. In Taq-
man array and oligonucleotide array, the markers cannot
be replaced or added after establishment of the system. A
gel-free SNP genotyping method with allele-specific
PCR, BAMPER, has also been reported [39]. This
method has flexibility and is cost-effective, it requires
purified double strand PCR product and multi-step sam-
ple processing. SNP analysis generally has problems such
as significant initial investments, inflexibility or labor-
intensive.

Table 1: Effect of artificial base mismatches on the specificity of allele-specific PCR.

Mismatching base

A T G C

Matching base A 0% 50% 60% 60%

(0/10) (5/10) (6/10) (6/10)

T 60% 0% 90% 10%

(6/10) (0/10) (9/10) (1/10)

G 50% 90% 0% 40%

(5/10) (9/10) (0/10) (4/10)

C 60% 40% 40% 0%

(6/10) (4/10) (4/10) (0/10)
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In our ASP-PCR method, these problems are solved.
Our ASP methodology allows gel-free SNP genotyping
without expensive probes or specialized equipment. This
method is highly versatile due to the simplicity and flexi-
bility, and the method could be established easily in any
molecular biology laboratory.

Conclusion
We developed a simple and flexible method for SNP
genotyping by improving the design of allele-specific
PCR primers, establishing a method for the detection of
PCR products without electrophoresis, and optimizing
conditions for allele-specific PCR. We developed a total
of 101 ASP markers, which could be applied to diverse
cultivars. The novel ASP-PCR technique introduced here
will greatly facilitate the SNP typing and gene mapping.
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