Skip to main content
Fig. 1 | Plant Methods

Fig. 1

From: DNA–protein interaction studies: a historical and comparative analysis

Fig. 1

Representation of the expected results of a filter binding assay visualised in a nitrocellulose membrane. While in the first two lanes, no signal is detected, since only one of the complex molecules is present, labelled nucleic acid (WT probe, first lane) and protein of interest (protein 1, second lane), in the third lane, the complex is formed and the signal is detected, since the protein, that is attached to nitrocellulose membrane, is linked to a labelled nucleic acid. In the forth lane, an unlabelled competitor probe deviates some proteins to the formation of a different complex, leading to the weakening of the signal. In the fifth lane, the substitution of the WT probe by a labelled mutated fragment (mt probe) enables the formation of the complex, in case the mutation affects the complex formation. Finally, the last lane represents the formation of a new complex involving the WT labelled probe and two different proteins, leading to a signal quite similar to the one observed in lane 3. Created with BioRender.com

Back to article page