Skip to main content
Fig. 3 | Plant Methods

Fig. 3

From: A heat-shock inducible system for flexible gene expression in cereals

Fig. 3

Heat shock induces gene expression in a duration-dependent manner. a Heat shock (HS) at 38 °C for 2 h is sufficient to induce expression of NAM-B1 in wheat at the two-leaf stage, while no significant expression is seen in untreated (NHS) plants. Wheat plants were sampled and RNA extracted 2 weeks after heat shock treatment. b No eGFP expression (ii, green) is observed in leaf tissue of untreated (No HS) 1-week old barley seedlings but is visible in all cells following a 30 min heat shock treatment (c). Both the fourth leaf primordia (d) and the second leaf primordia (e) of barley seedlings show mCHERRY expression (i) but no eGFP expression (ii) before heat shock. After 5 min of heat shock, all cells in the fourth leaf primordia (f) show eGFP while sectorial expression of eGFP is observed in the third leaf primordia (g). No expression of eGFP is observed in the second leaf primordia after 5 min of heat shock (h). However, after 15 min of heat shock, eGFP is expressed in all cells of the meristem and second leaf primordia (i). All barley plants were imaged 3 days after treatment. In each pair of images, the reporter gene mCHERRY is shown in panel i (magenta), and eGFP is shown in panel ii (green). The reporter gene mCHERRY (magenta) is present in all samples. Scale bars are 100 µm. The statistical comparison in a was carried out using the Student’s T-test, where N is 3 or 4 for each condition; ns, p > 0.1, ·, p < 0.1, *p < 0.05, **p < 0.001. Gene expression in a was determined using qRT-PCR and is reported relative to the housekeeping gene TaActin (REActin)

Back to article page