Skip to main content

Table 1 Summary of published studies on the estimation of plant height and biomass of crops from RGB imagery acquired from unmanned aerial vehicles (UAVs)

From: Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system

Reference

Crop type

UAV

Sensors

Regression method

VIs/SfM

Canopy characteristic

Best accuracy

Bendig et al. [21]

Barley

MK-Oktokopter

Panasonic Lumix GX1 (RGB)

ER

–

Biomass

R2 = 0.82

PH

R2 = 0.92

Watanabe et al. [27]

Sorghum

USM-S1

Powershot ELPH 110HS

GPM

–

PH

r = 0.84

Schirrmann et al. [28]

Wheat

Hexacopter (P-Y6)

Sony Nex 7

LR

–

Biomass

r = 0.68

PCA

PH

r > 0.80

Iqbal et al. [22]

Poppy

Oktokopter

Canon 550D DSLR

LR

SfM

PH

R2 = 0.71

Volume

R2 = 0.71

Roth et al. [17]

Winter wheat

ARF Mikrokopter Okto XL

Canon EOS 100D

LR

None

Biomass

R2 = 0.74

PH

R2 = 0.80–0.84

CC

Bendig et al. [6]

Barley

MK-Oktokopter

Panasonic Lumix GX1 (RGB) + FieldSpec3

MLR

VIs + SfM

Biomass

R2 = 0.84

MNLR

Kim et al. [29]

Cabbage

DJI F550 Hexa-rotor

Powershot S110 RGB

MLR

–

PH

R2 > 0.90

Li et al. [7]

Maize

Rotor-wing UAV

Sony A6000

MSLR

VIs + SfM

Biomass

R2 = 0.78

RF

PH

R2 = 0.88

Holman et al. [30]

Wheat

DJI Wookong M

Sony Nex 7

–

SfM

PH

RMSE = 3.00 cm

Growth rate

Madec et al. [31]

Wheat

Hexacopter

Sony ILCE-6000

–

SfM

PH

RMSE = 3.50 cm

  1. CC Canopy cover, ER exponent regression, GPM genomic prediction modeling, LR linear regression, MLR multiple linear regression, MNLR multiple non-linear regression, MSLR multiple stepwise linear regression, PCA principal components analysis, PH plant height, RF random forest, SfM structure from motion, VIs vegetation indices