Skip to main content
Fig. 2 | Plant Methods

Fig. 2

From: A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation

Fig. 2

Determination of the optimum conditions for the FDIT method. a Effect of staining duration time on the fluorescence signal. Significant changes were found between 60/120 (min) and other samples (student’s t test p value <0.05), but not in between 60 and 120 (min) samples (student’s t test p value = 0.06). **Student’s t test p value <0.01, *student’s t test p value <0.05 compared with samples of 10–30 min. b Effect of washing times on the fluorescence signal. Significant changes were found between unwashed and washed samples, but not in washed samples with different washing times. *Student’s t test p value <0.05 compared with the sample without wash. n = 4. Bars stand for ± standard error. c Linear dynamic regression range of FDIT method. Phospho-fluorescence signals from different amounts of casein, OVA and BSA were collected and plotted with the mean of 4 biological repeats. d, e Pro-Q® Diamond and Coomassie brilliant blue R250 staining of OVA and BSA in the linear range. M stands for protein size marker and the number shows micrograms of samples loaded

Back to article page