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METHODOLOGY

Mid‑infrared spectroscopy combined 
with chemometrics to detect Sclerotinia stem 
rot on oilseed rape (Brassica napus L.) leaves
Chu Zhang1, Xuping Feng1, Jian Wang2, Fei Liu1*, Yong He1* and Weijun Zhou2

Abstract 

Background:  Detection of plant diseases in a fast and simple way is crucial for timely disease control. Conventionally, 
plant diseases are accurately identified by DNA, RNA or serology based methods which are time consuming, complex 
and expensive. Mid-infrared spectroscopy is a promising technique that simplifies the detection procedure for the 
disease. Mid-infrared spectroscopy was used to identify the spectral differences between healthy and infected oilseed 
rape leaves. Two different sample sets from two experiments were used to explore and validate the feasibility of using 
mid-infrared spectroscopy in detecting Sclerotinia stem rot (SSR) on oilseed rape leaves.

Results:  The average mid-infrared spectra showed differences between healthy and infected leaves, and the dif-
ferences varied among different sample sets. Optimal wavenumbers for the 2 sample sets selected by the second 
derivative spectra were similar, indicating the efficacy of selecting optimal wavenumbers. Chemometric methods 
were further used to quantitatively detect the oilseed rape leaves infected by SSR, including the partial least squares-
discriminant analysis, support vector machine and extreme learning machine. The discriminant models using the full 
spectra and the optimal wavenumbers of the 2 sample sets were effective for classification accuracies over 80%. The 
discriminant results for the 2 sample sets varied due to variations in the samples.

Conclusion:  The use of two sample sets proved and validated the feasibility of using mid-infrared spectroscopy and 
chemometric methods for detecting SSR on oilseed rape leaves. The similarities among the selected optimal wave-
numbers in different sample sets made it feasible to simplify the models and build practical models. Mid-infrared 
spectroscopy is a reliable and promising technique for SSR control. This study helps in developing practical applica-
tion of using mid-infrared spectroscopy combined with chemometrics to detect plant disease.

Keywords:  Mid-infrared spectroscopy, Second derivative spectra, Sclerotinia stem rot, Oilseed rape, Sample set 
validation
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Background
Oilseed rape (Brassica napus L.) is one of the most 
important sources of edible oil and biodiesel. The growth 
of oilseed rape, a widely planted oil-bearing crop, is 
affected by many factors, including seed, soil, water sup-
ply, nutritional elements, weather conditions and dis-
eases. Diseases are major threats to oilseed rape, resulting 
in yield and quality loss.

Sclerotinia stem rot (SSR) is a major disease affecting 
the oilseed rape growth and causing severe yield loss. The 
ascospores of SSR are produced by the apothecia in the 
soil, or the seeds are discharged into the air. Some of the 
ascospores are dispersed more widely from other fields 
into the surrounding crops. The spread of ascospores 
makes it difficult to control the disease completely before 
its onset. The detection of SSRs at an early stage provides 
an alternative for disease control.

The early detection of SSR on oilseed rapes is a prior-
ity for SSR control on oilseed rape plants. Traditional 
methods, such as polymerase chain reaction (PCR) 
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[1], enzyme-linked immunosorbent assay (ELISA) [2], 
nucleic acid hybridization [3] and serological techniques 
[4], rely on the identification of spores by microscopy or 
culture-based techniques to detect plant diseases. These 
traditional methods applied in the detection of plant dis-
eases are accurate and standard. However, these methods 
also have some limitations such as being time-consum-
ing, requiring special operation skills, generating reagent 
waste and requiring complex sample preparation, which 
makes these methods unsuitable for large-scale field 
detection. Thus, new techniques for cheap, fast and accu-
rate identification of plant diseases should be developed.

Spectroscopy techniques, such as visible/near-infrared 
spectroscopy [5, 6], mid-infrared spectroscopy [7–9], 
Raman spectroscopy [10] and fluorescence spectroscopy 
[11] have been studied to detect plant diseases. Mid-
infrared spectroscopy provides the information about the 
fundamental vibrational bands of the functional groups 
in the samples. The plants affected by diseases experi-
ence internal physiological changes, which in turn results 
in changes in their mid-infrared spectra. Mid-infrared 
spectroscopy has been used as an effective technique for 
detecting plant diseases. Sankaran et  al. [7] used mid-
infrared spectroscopy to detect nitrogen deficiency and 
Huanglongbing of citrus leaves. Hawkins et  al. [8] used 
Fourier transform infrared-attenuated total reflection 
spectroscopy for the detection of Huanglongbing in cit-
rus leaves. Hawkins et al. [9] also used the Fourier trans-
form infrared-attenuated total reflection spectroscopy 
to detect Huanglongbing, citrus leaf rugose virus, citrus 
tristeza virus, citrus psorosis virus, Xanthomonas axono-
podis and nutritional deficiency.

Moreover, the use of mid-infrared spectroscopy in 
plant disease detection mainly focuses on the spectral 
differences or the discriminant results, and the feasibil-
ity of using mid-infrared spectroscopy for plant disease 
detection has been proven. However, there is a wide gap 
between the feasibility of this technique and its practical 
application is great. The rapid acquisition of spectra and 
simple sample preparation makes it possible to develop 
mid-infrared spectroscopy as a practical method for the 
rapid detection of plant diseases. The primary purpose of 
developing a practical application of mid-infrared spec-
troscopy depends on the calibration models. Robust and 
accurate models using informative wavenumbers with 
minimum colinearity and redundancy are required.

The objective of this study was to explore and validate 
the use and capacity of mid-infrared spectroscopy for 
detecting SSRs on oilseed rape leaves. The specific objec-
tives were: (1) to evaluate the influence of different sam-
ples sets on mid-infrared spectroscopy, (2) to select and 

compare optimal wavenumbers in different sample sets, 
and (3) to develop and compare the optimal classification 
models in different sample sets.

Methods
Sample preparation
The seeds of the oilseed rape (Brassica napus L., cv. 
ZS758) were used in our study. The seeds were sown 
into the seedbed, and 200 oilseed rape plants were trans-
planted into the experimental pots after 30  days. Forty 
days after transplant, the oilseed rape leaves were suit-
able for Sclerotinia sclerotiorum infection. Sclerotinia 
sclerotiorum was cultured on a potato dextrose agar. The 
oilseed rape plants were kept in a controlled environ-
ment at a temperature of 20  °C and 80% humidity. Two 
experiments were conducted. For the first experiment, 
the oilseed rape leaves were inoculated with Sclerotinia 
sclerotiorum. Seventy-two hours later, when the dis-
ease symptoms on the leaves became visible, 60 infected 
leaves and 60 healthy leaves were collected and placed 
in an icebox to keep the leaves fresh. After the measure-
ment of physiological parameters, the remaining leaves 
were dried in an oven at a temperature of 75 °C for 48 h. 
The dried leaves were then ground into a powder, sieved 
through a 100-mesh sieve, and stored in plastic bags. 
Seven days later, the second experiment (similar to the 
first) was conducted.

Mid‑infrared spectra acquisition
The mid-infrared spectra of samples were acquired by 
a Jasco FT/IR-4100 spectrometer (Japan) in the spec-
tral range of 400–4000  cm−1. Before spectra collection, 
the potassium bromide (KBr) powders were dried in an 
oven at a temperature of 105 °C for 4 h. Then, 10 mg of 
each sample was mixed with 490 mg KBr powders, and 
the mixture was ground and mixed thoroughly. The mix-
ture was then placed into a tablet machine for tabletting, 
and the sample tablets were used for transmittance mid-
infrared spectral data collection. For each sample, 32 
scans were applied with a resolution of 8 cm−1, and the 
average of the 32 spectra was used as the transmittance 
spectrum of the sample.

Multivariate data analysis
Spectra preprocessing
The acquired mid-infrared spectra contained noises. An 
effective reduction in noises is significant for further 
analysis. Wavelet transform (WT) is an efficient denois-
ing method in the spectral analysis [12]. WT with mother 
wavelet Daubechies was applied in this study to reduce 
the noises.
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Principal component analysis
Principal component analysis (PCA) is a generally used 
method for feature extraction and qualitative analysis of 
the samples. PCA linearly transforms the original data 
into new orthogonal variables (called principal compo-
nents, PCs). The first few PCs contains the maximum 
feature information, which could be used to observe the 
distribution of samples and identify their differences [13].

Classification models
To evaluate the performance of using mid-infrared spec-
troscopy for identifying the infected and healthy leaves 
of oilseed rape, we used the partial least square-discri-
minant analysis (PLS-DA) [14], support vector machine 
(SVM) [15] and extreme learning machine (ELM) [16] to 
establish the classification models.

PLS-DA is a widely used supervised pattern recogni-
tion method in spectral data analysis. PLS-DA is con-
ducted in the manner of PLS regression (PLSR), with 
the integral category value as Y variables. PLSR linearly 
transforms the original data into new variables (called 
latent variables, LV), and the first few LVs carry the most 
useful information. The outputs of PLSR and PLS-DA are 
real numbers with decimals. Thus, the threshold value is 
needed to determine the category of the samples. Herein, 
the threshold value was set as 0.5.

SVM is also a widely used supervised pattern recogni-
tion method in spectral data analysis. The general con-
cept of SVM is to transform the original data from the 
low dimension space to the high dimension space, and 
constructs a hyperplane to maximize the separation of 
the different sample classes. SVM could address linear 
and non-linear issues efficiently. The selection of the ker-
nel function is important in SVM. In this study, radial 
basis function (RBF) was selected as the kernel function.

ELM is a feedforward neural network with a single hid-
den layer. ELM has shown advantages such as fast learn-
ing speed and good generalization ability. In ELM, only 
the number of neurons in the hidden layer should be set. 
The determination of the number of neurons in the hid-
den layer is critical in ELM. In this study, the number of 
neurons in the hidden layer was determined by a step 
by step search within a predefined range. The number 
of neurons corresponding to the best performance was 
selected.

Optimal wavenumber selection
The acquired mid-infrared spectra contained a large 
number of wavenumber variables, which may suffer from 
the risk of non-informative variables and variable collin-
earity. With a large number of wavenumber variables, the 
calibration models may become unstable, computation 
consuming, complex and difficult to interpret.

Wavenumber (wavelength) selection in spectral anal-
ysis for multivariate analysis is an important step in 
selecting the informative and noncollinear wavenum-
ber variables. The wavenumber (wavelength) selection 
may improve the model performance while significantly 
reducing the number of variables, resulting in stable, sim-
ple and accurate models.

Second derivative spectrum (2nd spectrum) is a man-
ual selection method based on the spectral profile of the 
samples [17]. The second derivative is generally used as 
an efficient preprocessing method in spectral analysis. 
Compared with the raw spectra, the 2nd spectra could 
improve spectral resolution, identify overlapping peaks 
and reduce the background information. Thus, the varia-
bles related to the chemical compositions were enhanced 
and highlighted as peaks and valleys within the 2nd spec-
tra. Therefore, the peaks and valleys with differences 
between different sample classes were selected as the 
optimal wavenumbers.

Software and model evaluation
In this study, the second derivative preprocessing, PCA 
and PLS-DA were conducted on the Unscrambler® 10.1 
(CAMO AS, Oslo, Norway). The WT preprocessing, 
SVM and ELM models were conducted on MATLAB 
(R2014b) software (The Math Works, Inc., Natik, MA, 
USA). The model performances were evaluated by the 
classification accuracy in the calibration set and the pre-
diction set.

Results and discussion
Mid‑infrared spectra
Due to the instrument and experiment conditions, the 
head and tail of the collected mid-infrared spectra con-
tained obvious noises. Thus, only the spectra in the range 
of 900–3800  cm−1 were studied. Figure  1a, b show the 
raw spectra of the sample set 1 and 2, and noise could be 
observed in the two sets. WT was applied on raw spectra 
to reduce the noise. For sample set 1, WT using Daube-
chies 6 with a decomposition level of 5 was applied. For 
sample set 2, WT using Daubechies 5 with a decompo-
sition level of 5 was applied. Figure 1c, d show the pre-
processed spectra of the sample set 1 and sample set 2. 
Obvious denoising could be found in Fig. 1. The general 
spectral features of sample sets 1 and 2 were similar.

Figure  2a, b show the average spectra of healthy and 
infected leaves of sample sets 1 and 2. As detailed in 
Fig. 2a, the average transmittance spectra of healthy and 
infected leaves of sample set 1 showed differences in 
their transmittance value, and larger differences could be 
observed in the ranges of 900–1500 and 1800–2750 cm−1. 
As shown in Fig.  2b, the average transmittance spectra 
of healthy and infected leaves of sample set 2 showed 
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differences in the transmittance value, and larger differ-
ences could be observed in the range of 900–1500 cm−1. 
The larger differences between the healthy and infected 
leaves of the two types of samples were observed in the 
ranges of 900–1500 and 1800–2750  cm−1, the same as 
sample set 1.

PCA analysis
The samples of the sample sets 1 and 2 were randomly 
divided into the calibration and prediction sets at a ratio 
of 2:1. The healthy leaves were assigned the category 
value 1, and the infected leaves were assigned the cate-
gory value 2.

PCA was performed on the preprocessed spectra of the 
calibration set of the sample sets 1 and 2 to visualize the 

distribution of healthy and infected samples. For sample 
set 1, PC1, PC2 and PC3 explained 71.021, 21.269 and 
3.642% of the total variance, respectively. The first 3 PCs 
explained 95.931% of the total variance. The score scatter 
plots of PC1 and PC2, PC1 and PC3, and PC2 and PC3 
are shown in Fig. 3a, c, e. Figure 3a, e demonstrated that 
the healthy samples could be easily differentiated from 
the infected samples.

For the sample set 2, PC1, PC2 and PC3 explained 
81.619, 10.533 and 3.523% of the total variance, and the 
first 3 PCs explained 95.675% of the total variance. The 
scores scatter plots of PC1 and PC2, PC1 and PC3, and 
PC2 and PC3 are shown in Fig. 3b, d, f. Figure 3b, f indi-
cate that the healthy samples could be differentiated from 
the infected samples with a few overlaps.

Fig. 1  Raw and WT preprocessed spectra of sample set 1 and 2: raw spectra of sample set 1 (a), WT preprocessed spectra of sample set 1 (c), raw 
spectra of sample set 2 (b), WT preprocessed spectra of sample set 2 (d). The differences of raw and preprocessed spectra could be observed
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PCA of sample set 1 and 2 indicated that healthy and 
infected leaves could be classified. The distribution of 
healthy and infected samples in the corresponding score 
scatter plot of the two sample sets were similar, and due 
to different sample sets, the separation differed. The 
distribution of healthy samples in the score scatter plot 
was observed to disperse more widely than the infected 
samples.

Discriminant models using full mid‑infrared spectra
PCA provided visual distribution trends of samples, and 
the discriminant models were further needed for quanti-
tative classification.

PLS-DA, SVM and ELM models were built by using the 
full mid-infrared spectra of the 2 sample sets to classify 
the healthy and infected leaves. A PLS-DA model was 
built using leave-one-out cross validation, and the num-
ber of optimal LVs was determined. SVM used RBF as 
the kernel function, and the optimal penalty coefficient 
(C) and the kernel function parameter gamma (g) were 
obtained by a grid-search procedure in the range of 2−8 
to 28. The number of neurons in the hidden layer of ELM 
models were determined by comparing the performances 
of the ELM models by using different numbers of neu-
rons from 1 to 80 with a step of 1. The ELM models with 
optimal performances were selected. The results of the 
discriminant models are shown in Table 1.

For the sample set 1, all discriminant models demon-
strated good performances, with classification accuracies 
of 100% in the calibration set and over 80% in the pre-
diction set. ELM showed the best results, with a clas-
sification accuracy of 92.5%. For the sample set 2, all 

discriminant models demonstrated good performances, 
with classification accuracies over 90% in both the cali-
bration and the prediction sets. PLS-DA models showed 
best results, with classification accuracies of 100% in the 
calibration and prediction sets.

The performances of the discriminant models in a sam-
ple set were different, and the discriminant results of a 
discriminant model between the 2 sample sets were also 
different. All discriminant models showed good perfor-
mances, the sample sets affected the classification per-
formances, and the selection of suitable discriminant 
models for practical application was imperative.

The discriminant results of the calibration sets of the 
two sample sets matched with the PCA analysis, and the 
general discriminant results of the calibration set of the 
sample set 1 performed slightly better than the calibra-
tion set of the sample set 2. Contrarily, the general pre-
diction results of the sample set 2 were slightly better 
than those of sample set 1. The results were obtained 
due to the random division of the samples into the 
calibration and the prediction sets. The overall results 
indicated that it was feasible to detect SSR on oilseed 
rape leaves by using mid-infrared spectroscopy, and 
its practical application in detecting plant diseases was 
promising.

Optimal wavenumber selection
In this study, the mid-infrared spectra were acquired 
with a spectral resolution of 8 cm−1. In the spectral range 
of 900–3800  cm−1, there were 1504 wavenumber varia-
bles of the spectra. The selection of the informative wave-
number variables was important for better models.

Fig. 2  Average spectra of healthy and infected leaves of sample set 1 (a), and average spectra of healthy and infected leaves of sample set 2 (b). 
The differences of healthy and infected leaves of two sample sets could be observed
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Fig. 3  Scores scatter plot of PC1 versus PC2 (a), PC1 versus PC3 (c) and PC2 versus PC3 (e) of sample set 1, and scores scatter plot of PC1 versus 
PC2 (b), PC1 versus PC3 (d) and PC2 versus PC3 (f) of sample set 2. The plots were used to explore the separability between healthy and infected 
samples qualitatively
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The second derivative with 7 smoothing points by 
the Savitzky–Golay algorithm was applied to the aver-
age spectra of the healthy and infected leaves of sample 
sets 1 and 2. The 2nd spectra were used to select opti-
mal wavenumbers. Figure 4 show the 2nd spectra and the 
corresponding selected optimal wavenumbers of sample 
sets 1 and 2. The selected wavenumbers are also shown 
in Table 2.

Figure  4 and Table  3 demonstrate that the 2nd spec-
tra of the sample sets 1 and 2 were quite similar, and the 
maximum optimal wavenumbers selected by the 2nd 
spectra of the 2 sample sets were similar or the same. 

Some differences were also observed due to the varia-
tions among the different sample sets and the instrument 
condition. The selected optimal wavenumbers matched 
the spectra regions with differences of the average spec-
tra shown in Fig. 2.

The optimal wavenumbers selected by the 2nd spec-
tra of the 2 sample sets showed repeatability, indicat-
ing the efficiency for the optimal wavenumber selection 
by 2nd spectra. However, the number of samples used 
for optimal wavenumber selection were small, which 
was common in spectral analysis. More samples were 
needed to obtain the optimal wavenumbers for practical 

Table 1  Results of discriminant models using full mid-infrared transmittance spectra of sample sets 1 and 2

a  Par means the parameters of the models, the number of LVs for PLS-DA, (C, g) for SVM and number of neurons for ELM
b  Cal means the calibration set
c  Pre means the prediction set

Models Sample set 1 Sample set 2

Para Calb (%) Prec (%) Par Cal (%) Pre (%)

PLS-DA 4 100 85 10 100 100

SVM (1.7411, 0.0118) 100 80 (84.4485, 0.0039) 100 92.5

ELM 22 100 92.5 60 92.5 90

Fig. 4  Optimal wavenumbers selected by 2nd spectra of sample set 1 (a), and optimal wavenumbers selected by 2nd spectra of sample set 2 (b). 
The marked peaks were corresponded to peaks with greater differences, which could be selected and used to discriminant

Table 2  Optimal wavenumbers selected by the 2nd spectra of sample sets 1 and 2

Number Wavenumber (cm−1)

Sample set 1 28 906.3795, 916.0218, 935.3065, 946.8773, 973.8758, 1018.2305, 1070.2992, 1083.7985, 1133.9386, 1159.0087, 1180.2218, 
240.0043, 1317.1429, 1409.7094, 1479.1342, 1517.7035, 1716.3356, 2341.1589, 2350.8013, 2389.3706, 3546.4507, 
3639.0171, 3650.5879, 3662.1587, 3671.801, 3700.728, 3747.0112, 3762.439

Sample set 2 31 906.3795, 916.0218, 937.2349, 948.8057, 1008.5882, 1049.0861, 1070.2992, 1085.7269,1105.0116, 1132.0101, 1180.2218, 
240.0043, 1317.1429, 1409.7094, 1440.5648, 1481.0626, 1517.7035, 1533.1312, 1685.4801, 1716.3356, 745.2626, 1764.5472, 
2362.3721, 2834.8464, 2852.2026, 2875.3442, 3629.3748, 3639.0171, 3652.5164, 3662.1587, 3721.9412
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applications. The selection of optimal wavenumbers in 
the 2 sample sets indicated the possibility of selecting the 
widely accepted optimal wavenumbers by the 2nd spec-
tra for practical application.

The selected peaks in the 900–1200  cm−1 region 
were attributed to the C–O stretching bands mainly 
from the carbohydrates [18], whereas those in the 
1500–1700  cm−1 region were attributed to the amide 
bands of proteins [18]. The selected peaks in the 
1200–1500  cm−1 region were assigned to the C–H 
bending modes [19]; the peak at 1716.336  cm−1 was 
assigned to the amide I of protein [20]; the peak at 
1745.263  cm−1 was assigned to the COOR bond [17]; 
the peak at 1764.547  cm−1 was attributed to the sym-
metric C=O stretching of the ester group [21]; the peak 
at 2350  cm−1 was assigned to the asymmetric C=O 
bonds [22]. Moreover, peaks in the 2800–3000  cm−1 
region were attributed to the lipid [23], and those in 
the 3000–3800 cm−1 region were attributed to the O–H 
stretching vibrations [24].

Discriminant models using optimal wavenumbers
To evaluate the performance of the selected optimal 
wavelengths in SSR detection, PLS-DA, SVM and ELM 
models were built. The modelling procedure was the 
same with the full spectra models. The results of the dis-
criminant models are illustrated in Table 3.

For the sample set 1, all discriminant models showed 
good performances, with classification accuracies of 
100% in the calibration set and over 80% in the prediction 
set. ELM models performed the best with a classification 
accuracy of 95% in the prediction set.

For the sample set 2, all discriminant models demon-
strated satisfactory performances, with classification 
accuracies over 95% in both the calibration and the pre-
diction sets. PLS-DA models performed best with a clas-
sification accuracy of 100% in both the calibration and 
the prediction sets.

Notably, the performances of the discriminant models 
using the optimal wavenumbers were different. Neverthe-
less, all discriminant models showed good performances.

The results of optimal wavenumber selection and the 
calibration models using the selected optimal wavenum-
bers of the 2 sample sets suggested the efficiency and the 

reliability of the optimal wavenumber selection, indicating 
a great potential for practical application.

Comparison of the full spectra models and optimal 
wavenumber models
As presented in Tables  1 and 3, the discriminant models 
using the full spectra and the selected optimal wavenum-
bers all showed good performances. For the sample set 1, 
the discriminant models using the optimal wavenumbers 
showed similar results as the discriminant models using 
full spectra. However, the number of wavenumber variables 
was reduced from 1504 to 28, resulting in a reduction of 
98.138%. These results indicated that optimal wavenumbers 
selected by the 2nd spectra could significantly reduce the 
number of wavenumber variables in the mid-infrared spec-
tra, and the selected optimal wavenumbers were capable of 
keeping the model performances for sample set 1. For sam-
ple set 2, the discriminant models using the optimal wave-
numbers showed similar results as the discriminant models 
using full spectra. Nonetheless, the wavenumber variables 
were reduced from 1504 to 31, resulting in a reduction of 
99.939%. The results indicated that the optimal wavenum-
bers selected by the 2nd spectra could significantly reduce 
the number of wavenumber variables in the mid-infrared 
spectra, and the selected optimal wavenumbers were capa-
ble of keeping the model performances for sample set 2.

Considering that the optimal wavenumbers selected 
by the 2nd spectra for the 2 sample sets were similar, 
and the models using the optimal wavenumbers of the 
2 sample sets showed good performances, mid-infrared 
spectroscopy combined with optimal wavenumber selec-
tion by the 2nd spectra was proven to be an efficient and 
promising technique for SSR detection of oilseed rapes. 
However, beyond the exploration and validation of using 
the mid-infrared spectroscopy combined with chemo-
metrics for detecting plant diseases, the results of this 
study also indicated that mid-infrared spectroscopy was 
an efficient, reliable and promising technique with practi-
cal applications, and not just the feasibility of exploration.

Conclusion
Two sample sets of SSR infected oilseed rape leaves and 
their corresponding mid-infrared transmittance spectral 
information were studied to detect SSR on oilseed rape 

Table 3  The results of the discriminant models using optimal wavenumbers from sample sets 1 and 2

Models Sample set 1 Sample set 2

Par Cal (%) Pre (%) Par Cal (%) Pre (%)

PLS-DA 6 100 82.5 9 100 100

SVM (5.2780, 1) 100 82.5 (48.5029, 0.0359) 95 95

ELM 62 100 95 76 100 95
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leaves. The differences in the mid-infrared spectra of 
the healthy and infected leaves indicated the differences 
in their physiological constituents in the corresponding 
samples. The discriminant results by different models 
indicated the feasibility of using mid-infrared spectra for 
detecting SSR on oilseed rape leaves. The results of dis-
criminant models (including PLS-DA, SVM and ELM) 
and the optimal wavenumber selection method (2nd 
spectra), showed the effectiveness of mid-infrared spec-
troscopy combined with chemometrics in detecting SSR 
on oilseed rape leaves. The quite similar optimal wave-
numbers selected by the 2nd spectra demonstrated the 
effectiveness of wavenumbers selection. The results of 
the 2 sample sets proved and validated that mid-infrared 
spectroscopy was a promising and reliable technique 
for SSR detection. Mid-infrared spectroscopy could be 
an efficient method for disease detection for real-world 
disease control, with a reliable and accurate selection of 
optimal calibration models and optimal wavenumbers.
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