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METHODOLOGY

Medical Subject Heading (MeSH) 
annotations illuminate maize genetics 
and evolution
Timothy M. Beissinger1*   and Gota Morota2

Abstract 

Background:  High-density marker panels and/or whole-genome sequencing, coupled with advanced phenotyping 
pipelines and sophisticated statistical methods, have dramatically increased our ability to generate lists of candidate 
genes or regions that are putatively associated with phenotypes or processes of interest. However, the speed with 
which we can validate genes, or even make reasonable biological interpretations about the principles underlying 
them, has not kept pace. A promising approach that runs parallel to explicitly validating individual genes is analyz-
ing a set of genes together and assessing the biological similarities among them. This is often achieved via gene 
ontology analysis, a powerful tool that involves evaluating publicly available gene annotations. However, additional 
resources such as Medical Subject Headings (MeSH) can also be used to evaluate sets of genes to make biological 
interpretations.

Results:  In this manuscript, we describe utilizing MeSH terms to make biological interpretations in maize. MeSH 
terms are assigned to PubMed-indexed manuscripts by the National Library of Medicine, and can be directly mapped 
to genes to develop gene annotations. Once mapped, these terms can be evaluated for enrichment in sets of genes 
or similarity between gene sets to provide biological insights. Here, we implement MeSH analyses in five maize data-
sets to demonstrate how MeSH can be leveraged by the maize and broader crop-genomics community.

Conclusions:  We demonstrate that MeSH terms can be effectively leveraged to generate hypotheses and make bio-
logical interpretations in maize, and we provide a pipeline that enables the use of MeSH terms in other plant species.

Keywords:  MeSH, Maize, Gene ontology (GO), Overrepresentation analysis (ORA), Domestication, Ear number, Seed 
size, Inflorescence
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Background
Technological advances in sequencing and phenotyp-
ing have accelerated in recent decades, enabling high-
throughput studies aimed at associating genotypes 
and phenotypes. In many cases, the speed at which we 
can generate large sets of candidate associations from 
genome-wide association studies (GWAS) [1], selection 
mapping [2], and other approaches has surpassed our 
ability to draw meaningful biological conclusions from 

these candidates. However, as was recently described by 
Rausher and Delph [3], gene-identification is not always 
necessary to draw meaningful insights. Alternatively, it is 
often possible to look for recurrent patterns among dis-
tinct sets of candidate genes or regions in order to elu-
cidate meaning. Annotation-based tests for enrichment 
or similarity represent one avenue for unraveling mean-
ing from sets of candidates. In brief, these approaches 
involve identifying statistically enriched annotation 
terms among a list of candidate sites (usually genes or 
regions), or looking for similarity between terms corre-
sponding to two sets of candidate sites, and inferring that 
there may be a biological explanation for the enriched or 
similar terms.
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Commonly applied techniques often utilize gene 
ontology (GO) annotations [4], which provide putative 
descriptions of gene function [5, 6]. GO annotations are 
an important genomic tool to provide insight into biolog-
ical interpretations of gene sets. However, despite their 
well-proven utility, there is growing interest in additional 
annotation-based approaches that can be leveraged to 
complement, support, enhance, or add to the patterns 
identified by GO. Included among this assortment of 
strategies are KEGG annotations [7], Disease Ontology 
[8], and Medical Subject Headings (MeSH), which were 
introduced at the National Library of Medicine (NLM) 
more than 50 years ago [9].

MeSH terms are the NLM’s controlled terminology, 
primarily used to organize and index information and 
manuscripts found in common databases such as Pub-
Med [10]. By mapping from MeSH terms to manuscripts, 
and then to a list of candidate genes, a semantic pattern 
search for biological meaning can be conducted [11]. 
Recently, the MeSH Over-representation Analysis (ORA) 
Framework, a suite of software for conducting MeSH 
enrichment analyses using R [12] and Bioconductor [13], 
was developed [14]. MeSH analysis has proven useful for 
deducing meaning from sets of genes implicated across 
several agricultural animal species including in cattle, 
swine, horse and chicken [15, 16]. Here, we implement 
five MeSH analyses in maize, which collectively dem-
onstrate how MeSH can been used to enrich biological 
understanding in crop species.

In this study, which is meant to be both a primer for 
MeSH-based analysis in maize and other crop plants, as 
well as an investigation of patterns that can be deduced 
regarding maize genetics and evolution, we identify over-
represented MeSH terms among candidate genes identi-
fied from five distinct maize datasets: (1) regions under 
selection during maize domestication [17]; (2) regions 
under selection during maize improvement [17]; (3) 
regions under selection for seed size [18]; (4) regions 
under selection for ear number [19]; and (5) regions 
contributing to inflorescence traits [20]. After identify-
ing significant MeSH terms, we also assess and test for 
semantic similarity, or MeSH-based relatedness, among 

the genes identified in each of these datasets to identify 
relationships among the genetic underpinnings of these 
traits/selection regimes.

Methods
Code availability
To enable implementation of MeSH analyses by other 
researchers, all scripts used in this study are available 
as annotated additional files in R-markdown format 
(Additional files 1, 2, 3, 4, 5, 6, 7). Scripts were written 
in R [12] and utilize Bioconductor [13], the MeSH ORA 
Framework including the “meshr” for ORA and the 
“Mesh.Zma.e.g.db” maize-specific mapping table [14], 
and MeSHSim [21]. The mapping table provides the nec-
essary link between NCBI Entrez Gene IDs and NLM 
MeSH IDs. For maize, the mapping table was provided 
by gene2pubmed [22] with data licensed by PubMed. 
The GOstats R package [23] was used to implement GO 
ORA to generate a baseline that MeSH results could be 
compared to. Genome data was downloaded using the 
biomaRt R package [24]. Full analysis details are included 
within the reproducible scripts (Additional files 1, 2, 3, 4, 
5, 6, 7).

Datasets
We analyzed five publicly available datasets to identify 
enriched MeSH terms and look for semantic similarity 
between different traits and selection regimes. The data-
sets analyzed are described in Table 1. For the four data-
sets that involved contiguous regions (Domestication, 
improvement, seed size, and ear number), all genes that 
fell within the implicated regions were used for MeSH 
analysis. For the remaining dataset (inflorescence traits), 
which involved isolated SNPs identified through GWAS 
instead of genomic regions, all genes within 10 kb of the 
implicated SNPs were used for MeSH analysis. All gene 
models and gene locations were based on the maize ref-
erence genome version 2 [25].

Analyses
Each of the five datasets was first tested for any over-
represented MeSH terms and GO terms. MeSH ORA 

Table 1  Datasets used in this study, including reference information where full details can be found and a brief descrip-
tion of each

Dataset Reference Description

Domestication Hufford et al. [17] Regions selected during domestication from teosinte to maize

Improvement Hufford et al. [17] Regions selected during post-domestication maize improvement

Seed size Hirsch et al. [18] Regions artificially selected for seed size in a long-term selection experiment

Ear number Beissinger et al. [19] Regions artificially selected for ear number in a long-term selection experiment

Inflorescence traits Brown et al. [20] SNPs associated with inflorescence traits from a genome-wide association study
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was performed using the MeSH ORA Framework which 
includes the “meshr” and “MeSH.Zma.e.g.db” R-packages 
[14], the latter of which is a mapping table that connects 
gene Entrez Gene IDs to MeSH IDs. These packages can 
be installed using Bioconductor by running the com-
mand, “source(“https://bioconductor.org/biocLite.R”)”, 
followed by “biocLite(“meshr”)” and “biocLite(“MeSH.
Zma.e.g.db”)”. Further instructions to install and run 
these packages are provided in Additional files 1, 2, 3, 4 
and 5. Unfortunately, the majority of maize genes anno-
tated in the maize version 2 reference genome [25] do not 
have a corresponding Entrez Gene ID, and therefore are 
not useful for MeSH analyses. Of the 40,481 gene models 
available from Ensembl Plants [26], only 14,142 have cor-
responding Entrez IDs. The “meshHyperGTest” function 
was implemented to conduct a hypergeometric test. Spe-
cifically, to test the probability that a specific MeSH term 
is enriched in a particular set of genes, as compared to a 
background gene set, this function calculates

where N is the total number of background genes, k is the 
number of genes in the set being tested, M is the num-
ber of background genes corresponding to the particular 
MeSH term, and s is the number of genes in the test set 
that correspond to that MeSH term [14]. For this study, 
all Entrez genes in the maize reference genome version 2 
[25] were used as the background gene set. GO ORA was 
conducted using a similar approach, as demonstrated 
in the additional files. The necessary GOstats pack-
age, which requires a list of Entrez Gene IDs as input, is 
installed by running “biocLite(“GOstats”)”.

Next, semantic similarity between distinct experiments 
was evaluated using the MeSHSim R package [21] to elu-
cidate if there are underlying relationships between the 
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trait data-sets (seed size, ear number, or inflorescence 
traits) and the process data-sets (domestication, improve-
ment), as well as the relationships within the process and 
trait datasets. The “headingSetSim” function was used, 
and results were plotted with the corrplot R package [27].

Results
Overrepresentation analysis
MeSH ORA involves performing a hypergeometric test 
to determine which MeSH terms are enriched among the 
candidate set of genes compared to a set of background 
genes. All genes in the maize reference genome version 2 
[25] with Entrez Gene IDs were used as the background 
set. While GO terms are classified into the three groups 
“molecular function”, “cellular components”, and “bio-
logical processes”, MeSH classifications include several 
groups, many of which are geared more toward index-
ing biomedical manuscripts than biological processes. 
However, classifications including “chemicals and drugs”, 
“diseases”, “anatomy”, and “phenomena and processes”, 
all have the potential to contribute to the biological 
understanding of sets of genes. Counts of the number of 
overrepresented terms in three classification groups for 
MeSH and GO are provided in Table 2. The precise over-
represented terms in each of these categories for the five 
analyzed datasets are described in Additional files 1, 2, 3, 
4 and 5. For the purpose of demonstration, MeSH terms 
identified within the “anatomy” classification are pro-
vided as an example and described in detail in Table  3. 
Many of the enriched terms serve to provide additional 
evidence for reasonable a priori expectations, such as the 
observation that “flowers” and “seeds” are both enriched 
within the set of genes under selection during domesti-
cation. However, others introduce interesting questions 
that could serve to drive hypothesis generation for future 
studies. For instance, the only enriched term identi-
fied from the ear number dataset is “endosperm”, which 
one would not immediately assume to be related to ear 
number.

Table 2  Number of MeSH and GO terms identified within three classification groups for both MeSH and GO

Domestication Improvement Seed size Ear number Inflorescence traits

MeSH category

Chemicals and drugs 18 19 11 0 13

Anatomy 5 7 3 1 4

Phenomena and processes 30 8 18 1 11

GO category

Biological processes 52 48 59 28 72

Molecular function 27 37 20 17 33

Cellular components 12 15 14 6 8

https://bioconductor.org/biocLite.R
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Semantic similarity analysis
Another powerful use of MeSH is that it can be used to 
calculate the semantic similarity between distinct sets of 
MeSH terms. This type of analysis enables one to look 
for hidden relationships among sets of genes, poten-
tially uncovering biological meaning. For the five data-
sets we studied, we assessed whether there were pairwise 
relationships linking any of them. Figure  1 depicts the 
MeSH similarity between each set of candidate genes. 
Interestingly, the strongest relationship identified was 
between domestication genes and seed size genes, pos-
sibly suggesting that seed size traits were more strongly 
selected during domestication than were ear number or 
other inflorescence traits. Noteworthy relationships were 
also observed between domestication and improvement 
genes, as well as between seed size and improvement 
genes. It should be noted that ear number genes were not 
strongly related to any of the other gene sets, which may 
simply result from the fact that the ear number dataset 
included the fewest candidate genes. This possibility is 
elaborated upon further in the discussion.

Comparison of real data to a random set of genes
We conducted an analysis of 1500 randomly selected genes 
to determine the robustness of MeSH analyses in a sce-
nario where no biological meaning is present (Additional 
file 6). As is expected for any p value based method, a sub-
set of terms achieved significance. Spurious results were 
also observed in a parallel GO analysis (Additional file 6). 
In contrast to many of the real datasets we evaluated, there 
was no overwhelming theme tying the terms together. This 
subjective observation is supported by a semantic simi-
larity analysis between the random gene set and the real 
datasets, where lower similarities were generally observed 
(Additional file  7). Still, the observation that “significant” 
MeSH or GO terms can arise from a random set of genes 
suggests that caution should be exercised when attempt-
ing to make interpretations from any such study, as is dis-
cussed in detail by Pavlidis et al. [28]. Although we utilized 
a lenient p = 0.05 significance threshold here, in part for 
the purpose of demonstration, the use of a hypergeometric 

distribution for testing allows a more stringent significance 
threshold to be employed when needed.

Discussion
Our analysis of five existing datasets demonstrates how 
MeSH ORA and semantic-similarity analyses can be used 
to mine data and confirm and/or generate informative 
hypotheses. Like GO, MeSH-based approaches lever-
age curated annotations to provide biological insights. 
In fact, as we have shown, several of the enriched terms 
within the “anatomy” category are directly related to 
macro phenotypes, such as “seeds”, “shoots”, “flowers”, and 
“ears”. Whether applied to existing data, as we have dem-
onstrated here, or if used to infer meaning from a list of 
candidates generated from a novel mapping study, MeSH 
represents an additional tool for drawing inferences from 
large-scale sets of genomic data.

Biological implications
Among the findings gleaned from this analysis was the 
observation that while both “flowers” and “seeds” were 
enriched terms in the domestication set of genes, only 
“flowers” remained significant among improvement 
genes (Table  3). This result is consistent with the mor-
phological observation that the maize female inflores-
cence is dramatically different from that of teosinte [29], 
with one of the most immediately apparent differences 
being seed related; the teosinte outer glume forms a hard 
teosinte fruitcase that completely encapsulates each ker-
nel, while in maize the outer glume is barely present [30]. 
It has been shown that this trait is controlled by relatively 
few genes, with tga1 [31, 32] being of particular impor-
tance, and therefore our MeSH finding may suggest that 
after intense selection on seed traits during domestica-
tion, subsequent selection on further seed modifications 
during improvement has possibly been more subdued.

The hypothesis that domestication immediately 
impacted seed-related traits more than others is further 
supported by our semantic similarity analysis, where the 
most similar pair of gene-sets we tested corresponded 
to domestication and seed size (Fig.  1). Also, while the 

Table 3  MeSH terms enriched in each of the five datasets within the “anatomy” MeSH classification group

Domestication Improvement Seed size Ear number Inflorescence 
traits

MeSH terms

Chromosomes
Centromere
Flowers
Seeds
Cyto. vesicles

Xylem
Phloem
Chromosomes
golgi Apparatus
Cyto. vesicles
Ribosomes
Flowers

Cytosol
Shoots
Chromosomes

Endosperm Endo. reticu-
lum

Cell mem-
brane

Plant leaves
Thylakoids
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limited number of genes included in the ear-number 
dataset [19] seems to constrain the estimated similarity 
between ear-number genes and the other datasets, we do 
observe that ear-number genes are semantically more sim-
ilar to domestication genes than they are to improvement 
genes (Fig. 1). This again is consistent with morphological 
differences between maize and teosinte, with maize dem-
onstrating apical dominance while teosinte has a much 
more branched structure [33]. The observation of greater 
similarity between ear number genes and domestication 
genes than between ear number genes and improvement 
genes lends support to the existing supposition that single-
eared plants have likely been favorable throughout the era 
of post-domestication maize improvement due to the ease 
with which such plants can be hand harvested [34].

An observation that ran contrary to our expectation 
was that “shoots” was an enriched term among seed size 
genes, while “endosperm” was enriched within the set of 
ear number genes (Table 3). We are tempted to dismiss 
these findings as spurious, but both have plausible bio-
logical explanations. In the Krug selection population 
[18], where our seed size regions were identified, mass 
selection not only impacted seed size, but also affected 
seedling size, leaf width, stalk circumference, and cob 
weight [35], indicating that the set of genes selected for 
seed size also being implicated in shoot traits is not unex-
pected. Similarly, the ear number genes were identified 
from the Golden Glow selection experiment for ear num-
ber [36], where correlated changes in kernel size and ker-
nel number were also observed [34].
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Fig. 1  MeSH semantic similarity-based relatedness among sets of genes implicated in each of the five datasets studied. The size of each circle, 
degree of red shading, and value reported correspond to the relatedness between each pair of datasets
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Comparison of MeSH and GO overrepresentation analyses
Among the most obvious findings when comparing results 
from MeSH and GO for all five of the datasets is that the 
number of GO term associations dramatically surpasses 
the number identified by MeSH (Table 2). Within the sets 
of overrepresented terms (Additional files 1, 2, 3, 4, 5), 
there are cases of clearly overlapping GO and MeSH terms. 
For instance, in the improvement dataset, MeSH identified 
“Lipoxygenase” as the most significantly overrepresented 
term in the Chemicals and Drugs category, while GO iden-
tified the similar “linoleate 13S-lipoxygenase activity” term 
as highly significant in the Molecular Function category. 
However, there were instances where the MeSH analysis 
identified associations that were missed by GO. An exam-
ple of this is that from the inflorescence dataset “Hybrid 
Vigor” was an enriched term in the Phenomena and Pro-
cesses MeSH category, while no similar terms were identi-
fied by GO in any category. Although these examples are 
anecdotal, they are only a minor subset of the complete lists 
provided by this analysis and available for further scrutiny 
(Additional files 1, 2, 3, 4, 5). We mention the examples to 
demonstrate that MeSH and GO can either differ remark-
ably in their findings or, in some instances, particularly for 
highly significant terms, provide an independent confirma-
tion that the other method is on the right track.

The most meaningful difference between MeSH and 
GO analyses is the source from which the annotations 
are derived. While most GO annotations are assigned 
algorithmically [37] with little or no human input [38], 
MeSH annotations are derived from manually curated 
manuscript classifications. This difference seems to 
lead to the existence of MeSH terms that correspond 
to easily interpretable macro-scale phenotypes, but it 
introduces additional complications as well. For exam-
ple, the mention of a specific gene in a manuscript 
about hybrid-vigor may lead to a MeSH annotation of 
“hybrid-vigor” for that gene, even if no direct link was 
implied by the authors. However, this is a consideration 
that should always be at the forefront of ORA, regard-
less of the annotation scheme being used. To summa-
rize, since MeSH and GO analyses are based on wholly 
different annotation mechanisms, the two approaches 
have the potential complement one another nicely. It 
is not our intention to suggest that MeSH should sup-
plant GO, or even be viewed as a competitor to GO, 
since both platforms can provide distinct insights.

Current limitations
Despite the promising MeSH ORA and semantic similar-
ity results observed in this study, using MeSH to guide 
biological interpretations still has an assortment of 
limitations that should be considered during any study 
that involves MeSH. Firstly, for non-model organisms, 

including maize and other crops, relatively few genes 
have corresponding manuscripts that have been directly 
annotated with MeSH terms. Additionally, due to the 
nature of NCBI-based annotations, a requirement of 
current software is that all genes have Entrez Gene ID’s 
[39] to enable mapping from genes to MeSH terms, but 
Entrez Gene ID’s have only been assigned to a subset of 
maize genes. In fact, among the five datasets we analyzed, 
approximately two-thirds of the genes falling within the 
putatively functional regions did not have a correspond-
ing Entrez Gene ID. This is particularly troubling in light 
of our observations regarding the ear number gene set, 
which was the smallest list of genes considered. Only 195 
genes were contained within the selected regions (com-
pared to thousands for some of the other data sets), and 
only 62 of those had corresponding Entrez Gene IDs. 
With fewer genes included during ORA, the power to 
detect significant enrichment is reduced. Similarly, this 
dataset showed very weak similarity to the others, which 
we hypothesize is at least in part due to the limited num-
ber of included genes and corresponding MeSH terms.

Conclusions
Even considering the above limitations, we expect MeSH-
based analyses will improve over time. As additional 
mapping and functional manuscripts are published, the 
number of Entrez genes and the descriptive MeSH terms 
corresponding to each, in both model and non-model 
species, will increase. This increase will improve the 
magnitude and reliability of results gleaned from MeSH. 
Although improvements are expected with time, the five 
datasets studied here demonstrate how MeSH can cur-
rently be leveraged for making biological interpretations 
in maize as well as other crop and plant species.
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and GO analysis on maize domestication genes.

Additional file 2 R-Markdown file including script and results of MeSH 
and GO analysis on maize improvement genes.

Additional file 3 R-Markdown file including script and results of MeSH 
and GO analysis on maize genes under selection for an increase in maize 
seed size.

Additional file 4 R-Markdown file including script and results of MeSH 
and GO analysis on maize genes under selection for an increase in ear 
number per plant.

Additional file 5 R-Markdown file including script and results of MeSH 
and GO analysis on maize genes implicated in a GWAS study of maize 
inflorescence traits.

Additional file 6 R-Markdown file including script and results of MeSH 
and GO analysis on a random set of 1500 maize genes.

Additional file 7 R-Markdown file including script and results of MeSH 
semantic similarity analysis.
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