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Abstract 

Background:  Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of 
plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large 
number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-
based high-throughput phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot 
research, while enabling the rapid assessment of tens-of-thousands of field plots. The objective of this study was to 
complete a baseline assessment of the utility of UAS in assessment field trials as commonly implemented in wheat 
breeding programs. We developed a semi-automated image-processing pipeline to extract plot level data from UAS 
imagery. The image dataset was processed using a photogrammetric pipeline based on image orientation and radio‑
metric calibration to produce orthomosaic images. We also examined the relationships between vegetation indices 
(VIs) extracted from high spatial resolution multispectral imagery collected with two different UAS systems (eBee Ag 
carrying MultiSpec 4C camera, and IRIS+ quadcopter carrying modified NIR Canon S100) and ground truth spectral 
data from hand-held spectroradiometer.

Results:  We found good correlation between the VIs obtained from UAS platforms and ground-truth measurements 
and observed high broad-sense heritability for VIs. We determined radiometric calibration methods developed for 
satellite imagery significantly improved the precision of VIs from the UAS. We observed VIs extracted from calibrated 
images of Canon S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the Mul‑
tiSpec 4C camera (r = 0.64). Their correlation to spectroradiometer readings was as high as or higher than repeated 
measurements with the spectroradiometer per se.

Conclusion:  The approaches described here for UAS imaging and extraction of proximal sensing data enable collec‑
tion of HTP measurements on the scale and with the precision needed for powerful selection tools in plant breeding. 
Low-cost UAS platforms have great potential for use as a selection tool in plant breeding programs. In the scope of 
tools development, the pipeline developed in this study can be effectively employed for other UAS and also other 
crops planted in breeding nurseries.

Keywords:  Unmanned aerial vehicles/systems (UAV/UAS), Wheat, High-throughput phenotyping, Remote sensing, 
GNDVI, Plot extraction
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Background
In a world of finite resources, climate variability, and 
increasing populations, food security has become a criti-
cal challenge. The rates of genetic improvement are below 
what is needed to meet projected demand for staple 
crops such as wheat [1]. The grand challenge remains in 
connecting genetic variants to observed phenotypes fol-
lowed by predicting phenotypes in new genetic combina-
tions. Extraordinary advances over the last 5–10 years in 
sequencing and genotyping technology have driven down 
the cost and are providing an abundance of genomic data, 
but this only comprise half of the equation to understand 
the function of plant genomes and predicting plant phe-
notypes [2, 3]. High throughput phenotyping (HTP) plat-
forms could provide the keys to connecting the genotype 
to phenotype by both increasing the capacity and preci-
sion and reducing the time to evaluate huge plant popu-
lations. To get to the point of predicting the real-world 
performance of plants, HTP platforms must innovate and 
advance to the level of quantitatively assessing millions of 
plant phenotypes. To contribute to this piece of the chal-
lenge, we describe here a semi-automated HTP analysis 
pipeline using a low cost unmanned aerial system (UAS) 
platform, which will increase the capacity of breeders to 
assess large numbers of lines in field trials.

A plant phenotype is a set of structural, morphological, 
physiological, and performance-related traits of a given 
genotype in a defined environment [4]. The phenotype 
results from the interactions between a plant’s genes and 
environmental (abiotic and biotic) factors. Plant pheno-
typing involves a wide range of plant measurements such 
as growth development, canopy architecture, physiology, 
disease and pest response and yield. In this context, HTP 
is an assessment of plant phenotypes on a scale and with 
a level of speed and precision not attainable with tradi-
tional methods [5], many of which include visual scor-
ing and manual measurements. To be useful to breeding 
programs, HTP methods must be amenable to plot sizes, 
experimental designs and field conditions in these pro-
grams. This entails evaluating a large number of lines 
within a short time span, methods that are lower cost and 
less labor intensive than current techniques, and accu-
rately assessing and making selections in large popula-
tions consisting of thousands to tens-of-thousands of 
plots. To rapidly characterize the growth responses of 
genetically different plants in the field and relate these 
responses to individual genes, use of information tech-
nologies such as proximal or remote sensing and efficient 
computational tools are necessary.

In recent years, there has been increased interest in 
ground-based and aerial HTP platforms, particularly for 
applications in breeding and germplasm evaluation activ-
ities [6–8]. Ground-based phenotyping platforms include 

modified vehicles deploying proximal sensing sensors [9–
12]. Measurements made at a short distance with tractors 
and hand-held sensors that do not necessarily involve 
measurements of reflected radiation, are classified as 
proximal sensing. Proximal, or close-range sensing, is 
expected to provide higher resolution for phenotyping 
studies as well as allowing collection of data with mul-
tiple view-angles, illumination control and known dis-
tance from the plants to the sensors [13]. However, these 
ground-based platforms do have limitations mainly on 
the scale at which they can be used, limitations on port-
ability and time required to make the measurements in 
different field locations.

As a complement to ground-based platforms, aerial-
based phenotyping platforms enable the rapid characteri-
zation of many plots, overcoming one of the limitations 
associated with ground-based phenotyping platforms. 
There is a growing body of literature showing how these 
approaches in remote and proximal sensing enhance the 
precision and accuracy of automated high-throughput 
field based phenotyping techniques [14–16]. One of the 
emerging technologies in aerial based platforms is UAS, 
which have undergone a remarkable development in 
recent years and are now powerful sensor-bearing plat-
forms for various agricultural and environmental appli-
cations [17–21]. UAS can cover an entire experiment in 
a very short time, giving a rapid assessment of all of the 
plots while minimizing the effect of environmental con-
ditions that change rapidly such as wind speed, cloud 
cover, and solar radiation. UAS enables measuring with 
high spatial and temporal resolution capable of generat-
ing useful information for plant breeding programs.

Different types of imaging systems for remote sens-
ing of crops are being used on UAS platforms. Some of 
the cameras used are RGB, multispectral, hyperspectral, 
thermal cameras, and low cost consumer grade cameras 
modified to capture near infrared (NIR) [2, 9, 21–23]. 
Consumer grade digital cameras are widely used as the 
sensor of choice due to their low cost, small size and 
weight, low power requirements, and their potential to 
store thousands of images. However, consumer grade 
cameras often have the challenge of not being radiomet-
rically calibrated. In this study, we evaluated the possibil-
ity of using traditional radiometric calibration methods 
developed for satellite imagery to address this issue.

Radiometric calibration accounts for both variations 
from photos within an observation day along with changes 
between different dates of image. The result of radiomet-
ric calibration is a more generalized and, most impor-
tantly, repeatable, method for different image processing 
techniques (such as derivation of VIs, change detection, 
and crop growth mapping) applied to the orthomosaic 
image instead of each individual image in a dataset. There 
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are well-established radiometric calibration approaches 
for satellite imagery. However, these approaches are not 
necessarily applicable in UAS workflows due to several 
factors such as conditions of data acquisition during the 
exact time of image capture using these platforms.

Empirical line method is a technique often applied to 
perform atmospheric correction to convert at-sensor 
radiance measurements to surface reflectance for satellite 
imagery. This technique can be modified to apply radio-
metric calibration and convert digital numbers (DNs) 
to reflectance values [24]. The method is based on the 
relationship between DNs and surface reflectance val-
ues measured from calibration targets located within the 
image using a field spectroradiometer. The extracted DNs 
from the imagery are then compared with the field-meas-
ured reflectance values to calculate a prediction equation 
that can be used to convert DNs to reflectance values for 
each band [25].

Advances in platform design, production, standardiza-
tion of image geo-referencing, mosaicking, and informa-
tion extraction workflow are needed to implement HTP 
with UAS as a routine tool in plant breeding and genet-
ics. Additionally, developing efficient and easy-to-use 
pipelines to process HTP data and disseminate associ-
ated algorithms are necessary when dealing with big data. 
The primary objective of this research was to develop 
and validate a pipeline for processing data captured by 
consumer grade digital cameras using a low cost UAS to 
evaluate small plot field-based research typical of plant 
breeding programs.

Methods
Study area
The study was conducted at Norman E Borlaug Experi-
ment Station at Ciudad Obregon, Sonora, Mexico (Fig. 1). 
The experiment consisted of 1092 advanced wheat lines 
distributed in 39 trials, each trial consisting of 30 entries. 
Each trial was arranged as an alpha lattice with three rep-
lications. The experimental units were 2.8 m × 1.6 m in 
size consisting of paired rows at 0.15 m spacing, planted 
on two raised beds spaced 0.8  m apart. The trials were 
planted later than optimal on February 24, 2015 to simu-
late heat stress with temperatures expected to be above 
optimum for the entire growing season (the local rec-
ommended planting date is November 15 to December 
15). Irrigation and nutrient levels in the heat trials were 
maintained at optimal levels, as well as weed, insect and 
disease control. Grain yield was obtained by using a plot 
combine harvester.

Platforms and cameras
We evaluated two unmanned aerial vehicles (UAV); the 
IRIS+ (3D Robotics, Inc, Berkeley, CA 94710, USA) 

and eBee Ag (senseFly Ltd., 1033 Cheseaux-Lausanne, 
Switzerland).

The IRIS+ is a low cost quadcopter UAV with a maxi-
mum payload of 400 g. The open-source Pixhawk autopi-
lot system was programmed for autonomous navigation 
for the IRIS+ based on ground coordinates and the ‘sur-
vey’ option of Mission Planner (Pixhawk sponsored by 
3D Robotics, www.planner.ardupilot.com). The IRIS+ is 
equipped with an uBlox GPS with integrated magnetom-
eter. A Canon S100 modified by MaxMax (LDP LLC, 
Carlstadt, NJ 07072, USA, www.maxmax.com) to Blue–
Green–NIR (400–760 nm) was mounted to the UAV with 
a gimbal designed by Kansas State University. The gimbal 
compensates for the UAV movement (pitch and roll) dur-
ing the flight to allow for nadir image collection.

The eBee Ag, designed as a fixed wing UAV for applica-
tion in precision agriculture has a payload of 150 g. This 
UAV was equipped with MultiSpec 4C camera developed 
by Airinov (Airinov, 75018 Paris, France, www.airinov.fr/
en/uav-sensor/agrosensor/) and customized for the eBee 
Ag. It contains four distinct bands with no spectral over-
lap (530–810 nm): green, red, red-edge, and near infrared 
bands, and is controlled by the eBee Ag autopilot during 
the flight.

For ‘ground-truth’ validation, spectral measurements 
were taken using ASD VNIR handheld point-based spec-
troradiometer (ASD Inc., Boulder, CO, http://www.asdi.
com/) with a wavelength range of 325–1075 nm, a wave-
length accuracy of ±1  nm and a spectral resolution of 
<3 nm at 700 nm with a fiber optics of 25° (aperture) full 
conical angle. The instrument digitizes spectral values to 
16 bits. Table 1 summarizes the specification for the cam-
eras and sensor used in this study.

Fig. 1  Location of the study area with late sown heat stress wheat 
trials in 2015 on the Norman E Borlaug Experiment Station at Ciudad 
Obregon, Sonora

http://www.planner.ardupilot.com
http://www.maxmax.com
http://www.airinov.fr/en/uav-sensor/agrosensor/
http://www.airinov.fr/en/uav-sensor/agrosensor/
http://www.asdi.com/
http://www.asdi.com/
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Ground control points
In order to geo-reference the aerial images, at the begin-
ning of the season ten ground control points (GCPs) were 
distributed across the field. The GCPs were 25 cm × 25 cm 
square white metal sheets mounted on a 50 cm post. The 
GCPs were white to provide easy identification for the 
image processing software. The GCP coordinates were 
measured with a Trimble R4 RTK GPS, with a horizontal 
accuracy of 0.025  m and a vertical accuracy of 0.035  m. 
These targets were maintained throughout the crop sea-
son to enable more accurate geo-referencing of UAS aerial 
imagery and overlay of measurements from multiple dates.

Reflectance calibration panel
For radiometric calibration, spectra of easily recognizable 
objects (e.g. gray scale calibration board) are needed. A 
black–gray–white grayscale board with known reflectance 
values was built and placed in the field during flights for 
further image calibration. This grayscale calibration panel 
met the requirements for further radiometric calibration 
including (1) the panel was spectrally homogenous, (2) 
it was near Lambertian and horizontal, (3) it covered an 
area many times larger than the pixel size of the Canon 
S100, and (4) covered a range of reflectance values [25].

The calibration panel used in this study had 6 levels of 
gray from 0 % being white and 100 % being black, printed 
on matte vinyl. This made it possible to choose several dark 
and bright regions in the images to provide a more accu-
rate regression for further radiometric calibration analy-
sis. Photos of the calibration panel were taken in the field 
before a UAS flight using the same Canon S100 NIR cam-
era mounted on the IRIS+. Using an ASD spectroradiome-
ter on a sunny day, the spectral reflectance was measured of 
the panel at a fixed altitude of 0.50 m from different angles.

Field data collection
At the study site, image time series were acquired using 
IRIS+ and Canon S100 camera during the growing 
season as evenly spaced as possible, depending on the 

weather condition; April 10, April 22, April 28, May 6, 
and May 18, 2015.

Field data measurements for the experiment in this 
study included (1) IRIS+ carrying modified NIR Canon 
S100, and (2) eBee Ag carrying MultiSpec 4C camera, 
and (3) spectral reflectance measurements using hand-
held ASD spectroradiometer collected on May 6, 2015 
when the trials were at mid grain filling. We took all 
field measurements within 1  h around solar noon to 
minimize variation in illumination and solar zenith 
angle [26]. This limited the number of plots we could 
measure using handheld spectroradiometer to 280 
plots. Four spectra per plot were taken with the beam 
of the fiber optics placed at 0.50 m over the top of the 
canopy with a sample area of 0.04 m2. Due to this very 
small sampling area, great care was taken in data collec-
tion to make sure the measured spectral responses were 
only from the crops.

Both the eBee and IRIS+ were able to image a much 
larger area in the same time frame. Each system was 
flown using a generated autopilot path that covered the 
2  ha experiment area with an average of 75  % overlap 
between images (Table 2).

For the IRIS+ with Canon S100, all images were taken 
in RAW format (.CR2) to avoid loss of image informa-
tion. The Canon S100 settings were TV mode, which 
allowed setting of a constant shutter speed. The aperture 
was set to be auto-controlled by the camera to maintain a 
good exposure level, and ISO speed was set to Auto with 
a maximum value of 400 to minimize noise in the images. 
Focus range was manually set to infinity. We used CHDK 
(www.chdk.wkia.com) to automate Canon S100’s func-
tionality by running intervalometer scripts off an SD card 
in order to take pictures automatically at intervals dur-
ing flight. The CHDK script allowed the UAS autopilot 
system to send electronic pulses to trigger the camera 
shutter. The camera trigger was set at the correspond-
ing distance interval during the mission planning for the 
desired image overlap.

Table 1  Sensor specification

Sensor Platform  
(UAV)

Sensor resolution  
(MP)

Focal length  
(mm)

Full width at half maximum 
(FWHM)

Peak wavelength

Canon S100 IRIS+ 12.1 5.2 Blue: 400–495
Green: 490–550
NIR: 680–760

Blue: 460
Green: 525
NIR: 710

MultiSpec 4C eBee Ag 1.2 (four sensors) 3.6 Green: 530–570
Red: 640–680
Rededge: 730–740
NIR: 770–810

Green: 550
Red: 660
Rededge: 735
NIR: 790

Spectral resolution Wavelength accuracy Wavelength range

ASD spectroradiometer <3 nm at 700 nm ±1 nm 325–1075 nm

http://www.chdk.wkia.com
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The eBee MultiSpec 4C camera had a predefined set-
ting by Sensefly; ISO and shutter speed was set to auto-
matic, maximum aperture was set to f/1.8 and focal 
distance was fixed at 4 mm.

Developing an image processing pipeline for HTP
In this research, a UAS-based semi-automated data 
analyses pipeline was developed to enable HTP analysis 
of large breeding nurseries. Data analysis was primarily 
conducted using Python scripts [27, 28]. The dataset used 
to develop the image processing pipeline was collected on 
May 6, 2015 with the IRIS+ flights carrying the modified 
NIR Canon S100 camera. In order to analyze hundreds of 
images taken by a UAS that represent the entire experi-
ment area, we developed a semi-automated data analysis 
pipeline. The developed pipeline completed the following 
steps: (1) image pre-processing, (2) georeferencing and 
orthomosaic generation, (3) image radiometric calibra-
tion, (4) calculation of different VIs and (5) plot-level data 
extraction from the VI maps. The overall workflow of the 

developed pipeline is presented in Fig. 2, and a detailed 
description of each segment is provided.

The RAW images of Canon S100 (.CR2 format) were 
pre-processed using Digital Photo Professional (DPP) 
software developed by Canon (http://www.canon.co.uk/
support/camera_software/). This software to convert 
RAW to Tiff also included lens distortion correction, 
chromatic aberration, and gamma correction. For white 
balance adjustment, we used the pictures of grayscale cal-
ibration panel taken during the flights. After pre-process-
ing the images were exported as a tri-band 16 bit linear 
TIFF image.

Image stitching and orthomosaic generation
We then generated a geo-referenced orthomosaic image 
using the TIFF images. There are several software pack-
ages for mosaicking UAS aerial imagery, all based around 
the scale-invariant feature transform algorithm (SIFT) 
algorithm for feature matching between images [29]. 
While there are slight differences between packages each 

Table 2  Flight information using IRIS+ (multirotor) and eBee Ag (fixed wing) UASs, on May 6, 2015, at CIMMYT, Cd Obr-
egon, Mexico

a  RAW images of Canon S100 were converted to 16 bits TIFF imagery after pre-processing in Canon Digital Photo Professional software (DPP)

Camera Platform (UAS) Flight speed 
(m/s)

Altitude (m) Percent overlap No. of images Image format Spatial resolution 
(cm)

Side 
(%)

Forward 
(%)

Modified Canon 
S100

IRIS+ 2 30 75 75 144 RAW (16 bits 
TIFF)a

0.8

MultiSPEC 4C eBee Ag 10 48 75 75 40 10 bits TIFF 5

Fig. 2  Image processing workflow for the low cost UAS imaging system. The developed pipeline steps are as follows: image pre-processing using 
DPP software, Orthomosaic Generation using Python scripting in PhotoScan, image radiometric correction using empirical line method commonly 
used for satellite imagery, extraction of wheat plot boundary, and calculation of different VI’s. Asterisk designates steps done using Python script

http://www.canon.co.uk/support/camera_software/
http://www.canon.co.uk/support/camera_software/
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performs the same operation namely loading photos; 
aligning photos; importing GCP positions; building dense 
point cloud; building digital elevation model (DEM); and 
finally generating the orthomosaic image. We used the 
commercial Agisoft PhotoScan package (Agisoft LLC, St. 
Petersburg, Russia, 191144) to automate the orthomosaic 
generation within a custom Python script. The procedure 
of generating the orthomosaic using PhotoScan com-
prises five main stages (1) camera alignment, (2) import-
ing GCPs and geo-referencing, (3) building dense point 
cloud, (4) building DEM and (5) generating orthomosaic 
[30].

For alignment, PhotoScan finds the camera position 
and orientation for each photo and builds a sparse point 
cloud model; the software uses the SIFT algorithm to find 
matching points of detected features across the photos. 
PhotoScan offers two options for pair selection: generic 
and reference. In generic pre-selection mode the over-
lapping pairs of photos are selected by matching photos 
using the lower accuracy setting. On the other hand, 
in reference mode the overlapping pairs of photos are 
selected based on the measured camera locations. We 
examined both methods to generate the orthomosaic and 
compared the results.

With aerial photogrammetry the location informa-
tion delivered with cameras is inadequate and the data 
does not align properly with other geo-referenced data. 
In order to do further spatial and temporal analysis with 
aerial imagery, we performed geo-referencing using 
GCPs. We used ten GCPs evenly distributed around the 
orthomosaic image. Geo-referencing with GCPs is the 
step that still requires manual input.

The main source of error in georeferencing is per-
forming the linear transformation matrix on the model. 
In order to remove the possible non-linear deformation 
components of the model, and minimizing the sum of re-
projection error and reference coordinate misalignment, 
PhotoScan offers an optimization of the estimated point 
cloud and camera parameters based on the known refer-
ence coordinates [30].

After alignment optimization, the next step is generat-
ing dense point clouds. Based on the estimated camera 
positions PhotoScan calculates depth information for 
each camera to be combined into a single dense point 
cloud [30]. PhotoScan allows creating a raster DEM file 
from a dense point cloud, a sparse point cloud or a mesh 
to represent the model surface as a regular grid of height 
values. Although most accurate results are calculated 
based on dense point cloud data.

The final step is orthomosaic generation. An orthomo-
saic can be created based on either mesh or DEM data. 
Mesh surface type can be chosen for models that are not 
referenced. The blending mode has two options (mosaic 

and average) to select how pixel values from different 
photos will be combined in the final texture layer. Aver-
age blending computes the average brightness values 
from all overlapping images to help reduce the effect of 
the bidirectional reflectance distribution function that is 
strong within low altitude wide-angle photography [31]. 
Blending pixel values using mosaic mode does not mix 
image details of overlapping photos, but uses only images 
where the pixel in question is located within the short-
est distance from the image center. We compared these 
two methods by creating orthomosaic images using both 
mosaic and average mode.

Radiometric calibration
After the orthomosaic was completed, we then performed 
radiometric calibration to improve the accuracy of sur-
face spectral reflectance obtained using digital cameras. 
We applied empirical line correction to each orthomosaic 
within the data set using field measurements taken with 
the ASD. The relationship between image raw DNs and 
their corresponding reflectance values is not completely 
linear for all the bands for Canon S100 camera and most 
digital cameras (Fig. 3). To relate remote sensing data to 
field-based measurements we used a modified empiri-
cal line method [32]. We used the grayscale calibration 
board combined with reflectance measurements from the 
ASD spectroradiometer to find the relationship between 
DNs extracted form Canon S100 and surface reflectance 
values measured from grayscale calibration board using 
a field spectroradiometer. We then calculated the predic-
tion equations for each band separately to convert DNs 
to reflectance values.

Fig. 3  Empirical observation of non-linear relationship between 
percent gray values of the calibration panel and their corresponding 
mean reflectance values at the spectral region of Canon S100 wave‑
bands (B: 400–495, G: 490–550, NIR: 680–760)
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We calculated the mean pixel value of the calibration 
panel extracted from images for each band separately, 
and plotted against the mean band equivalent reflectance 
(BER) of field spectra [33, 34]. We found a linear rela-
tion between the natural logarithm of image raw DN val-
ues and their corresponding BER, although the relation 
between image raw DNs and their corresponding BER 
was not completely linear for all bands of Canon S100 
(Fig. 3). We derived the correction coefficient needed to 
fit uncalibrated UAS multispectral imagery to field-meas-
ured reflectance spectra. Using the correction coefficient 
for each band, we then performed this correction on the 
entire image.

With the corrected orthomosaic, a map showing the 
vegetation indices can be generated. The most used VIs 
derivable from a three-band multispectral sensor are: 
normalized difference vegetation index (NDVI), and 
green normalized difference vegetation index (GNDVI) 
(Table 4). NDVI is calculated from reflectance measure-
ments in the red and NIR portion of the spectrum and its 
values range from −1.0 to 1.0. GNDVI is computed simi-
larly to the NDVI, where the green band is used instead 
of the red band and its value ranges from 0 to 1.0. Like 
NDVI, this index is also related to the proportion of pho-
tosynthetically absorbed radiation and is linearly corre-
lated with leaf area index (LAI) and biomass [22, 35, 36].

Field plot extraction
In order to get useful information about each wheat plot 
in the field, we need to extract plot level data from the 
orthomosaic VI image. Individual wheat plot boundaries 
need to be extracted and defined separately from images 
with an assigned plot ID that defines their genomic 
type. We examined three approaches for extracting plot 
boundaries from the orthomosaic image: a simple grid 
based plot extraction, field-map based plot extraction, 
and image classification/segmentation.

To apply a simple grid superimposed on top of the 
orthomosaic image we used the Fishnet function using 
Arcpy scripting in ArcGIS. This function creates a net of 
adjacent rectangular cells. The output is polygon features 
defining plot boundaries. Creating a fishnet requires 
two basic pieces of information: the spatial extent of 
the desired net, and the number of rows and columns. 
The number of rows and ranges (columns) and height 
and width of each cell in the fishnet can be defined by 
the user. The user can also define the extent of the grid 
by supplying both the minimum and maximum x- and 
y-coordinates.

The next method we evaluated in this study is a field-
map based method. Experimental or field data are usually 
stored in a spreadsheet. To accomplish this, we refor-
matted the field map in order to represent the plots in 

the field; the first row of the excel sheet is the length (or 
width, depending on how plots are located in the field) 
of the plots, and the first column is the width (or length). 
Each cell in the excel sheet is the plot ID and other infor-
mation regarding that particular plot available in the field 
map.

In this approach, first we created a KML file from the 
field map (.CSV) using Python [27], we generated poly-
gon shapefiles with known size for each plot from KML 
file, and assigned plot ID to each plot using the field map. 
To define the geographic extent of the field, the python 
script has inputs for the coordinate of two points in 
the field: the start point of the first plot on the top right 
and the end point of the last plot on the bottom left. 
The script starts from the top right and builds the first 
polygon using the defined plot size, and skips the gap 
between plots and generates the next one until it gets to 
the last plot on the bottom left. In this approach the plot 
IDs are assigned automatically and simultaneously from 
the field map excel sheet. The most important advantage 
of this approach is that it can be generalized to other crop 
types as long as the field map is provided and the plots 
are planted in regular distance and have a consistent size 
within a trial.

The third method is to extract wheat plot boundaries 
from the orthomosaic image directly. To examine this 
method, we used the April 10 data set instead of May 6. 
The reason for choosing this set of data was that in this 
dataset we had the most distinguished features (e.g. veg-
etation vs. bare soil) in the image compared to the image 
data taken on May 6. We classified the GNDVI image 
created from the orthomosaic image into four classes: 
“Wheat”, “Shadow”, “Soil”, and a class named “Others” 
for all the GCP targets in the field. The class “shadow” 
stands for the shadow projected on the soil surface. In 
this supervised classification, we defined training samples 
and signature files for each defined class. After classifying 
the image, we merged the “Shadow”, “Soil” and “Others” 
classes together and ended up with two classes: “Wheat”, 
and “Non-wheat”. The classified image often needs fur-
ther processing to clean up the random noise and small 
isolated regions to improve the quality of the output. 
With a simple segmentation, we extracted wheat plot 
polygons from the image.

This method works best with high-resolution imagery 
taken at the beginning of the growing season when all 
the classes are clearly distinguishable from each other on 
the image. Otherwise time consuming post-processing is 
needed in order to separate the mixed classes.

To analyze the result of VI extraction from the ortho-
mosaic, we used the zonal statistics plugin in the open 
source software QGIS. We calculated several values of 
the pixels of orthomosaic (such as the average VI values, 
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Min, Max, standard deviation, majority, minority and 
also the median of VI values for each plot and the total 
count of the pixels that are within a plot boundary), using 
the polygonal vector layer of plot boundaries generated 
by one of the methods above. We then merged the data 
from the field map spreadsheet (plot ID, entry numbers, 
trial name, number of rep, number of block, row and col-
umn, and other information on planting) with the gener-
ated plots statistics.

Accuracy evaluation of different types of aerial imagery 
sensors and platforms
To evaluate the accuracy and reliability of our low cost 
UAS and consumer grade camera, we calculated cor-
relations between calibrated DN values from the ortho-
mosaic images of Canon S100 and MultiSpec 4C camera 
and band equivalent reflectance (BER) of field spectra. 
For ground-truth evaluation we used the ASD Fieldspec-
tro 2 spectroradiometer to measure spectral reference 
of 280 sample plots after running the UAS within the 
time window of 1 h around noon. The ASD spectroradi-
ometer measures a wavelength range of 325–1075  nm, 
a wavelength accuracy of ±1  nm and a spectral resolu-
tion of <3  nm at 700  nm (Table  1). Using the ASD, the 
top of canopy reflectance was measured approximately 
0.5  m above the plants. To account for the very small 
field of view of this sensor, we constantly monitored the 
spectral response curves to avoid measuring mixed pixels 
in our samplings and we averaged four reflectance read-
ings within each sample plots. Reflectance measurements 
were calibrated at every 15 plots using a white (99  % 
reflectance) Spectralon calibration panel.

To evaluate the accuracy of each platform, we calcu-
lated the correlations between different VIs extracted 
from Canon S100 and VIs extracted from MultiSpec 4C 
compared to the BER of field spectra. We calculated BER 
for each camera separately by taking the average of all the 
spectroradiometer bands that are within the full width at 
half maximum (FWHM) of each instrument (Table  1). 
The Pearson correlation between the average VI values of 
the sample plots and field spectra for each platform was 
calculated. The resulting correlation coefficients were 
tested using a two-tail test of significance at the p ≤ 0.05 
level. Accuracy assessment was based on computing the 
root mean square error (RMSE) for GNDVI image by 
comparing the pixel values of the reflectance image to the 
corresponding BER of field spectra at the sample sites not 
selected to generate the regression equations.

Broad‑sense heritability
Broad-sense heritability, commonly known as repeat-
ability, is an index used by plant breeders and geneti-
cists to measure precision of a trial [37–39]. The ratio of 

the genetic variance to the total phenotypic variance is 
broad-sense heritability (H2), which varies between 0 and 
1. A heritability of 0 indicates there is no genetic varia-
tion contributing to phenotypic variation, and H2 of 1 if 
the entire phenotypic variation is due to genetic variation 
and no environmental noise. For the purpose of compar-
ing phenotyping tools and approaches, broad-sense her-
itability calculated for measurements on a given set of 
plots under field conditions at the same point in time, is 
a direct assessment of measurement error as the genetics 
and environmental conditions are constant.

In order to assess the accuracy of the different HTP 
platforms, we calculated broad-sense heritability on an 
entry-mean basis for each individual trial and phenotypic 
sampling date on May 6, 2015. To calculate heritability 
we performed a two steps process where we first calcu-
lated the plot average and then fit a mixed model for rep-
lication, block and entry as random effects. Heritability 
was calculated from Eq. 1 [40].

where σ 2
genotypic is genotypic variance and σ 2

error is error 
variance.

Results and discussion
Developing an image processing pipeline for HTP
To evaluate the potential of UAS for plant breeding pro-
grams, we deployed a low cost, consumer grade UAS and 
imaging system at multiple times throughout the growing 
season. Using the aerial imagery collected on May 6, we 
built a robust pipeline scripted in Python that facilitated 
image analysis and allowed a semi-automated image 
analysis algorithm to run with minimum user support. 
The only requirement for manual input in the process-
ing pipeline is to validate the GCP positions. This pipe-
line was tested on eight temporal datasets collected from 
IRIS+ flights over heat trials during the growing season.

The individual parameters selected during orthomosaic 
generation and plot extraction can have a large impact 
on the quality of the orthomosaic and subsequent data 
analysis. Because of the multiple parameter settings that 
users could choose, we investigated how changing vari-
ous parameters would affect the data quality. To obtain 
more accurate camera position estimates, we selected 
higher accuracy at the alignment step. For pair selection 
mode, we chose reference since in this mode the overlap-
ping pairs of photos are selected based on the estimated 
camera locations (i.e. from the GPS log of the control 
system). For the upper limit of feature points on every 
image to be taken into account during alignment stage, 
we accepted the default value of 40,000. We imported 

(1)H2
=

σ 2
genotypic

σ 2
phenotypic

=

σ 2
genotypic

σ 2
genotypic +

σ 2
error

replication
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positions for all of the ten GCPs available on the field 
to geo-reference the aerial images. The GCPs were also 
used in the self-calibrating bundle adjustment to ensure 
correct geo-location and to avoid any systematic error or 
block deformation. To improve georeferencing accuracy, 
we performed alignment optimization.

Finally, to generate orthomosaic, we tested the two 
methods of blending: mosaic and average. We found 
the orthomosaic generated by the mosaic method gives 
more quality for the orthomosaic and texture atlas than 
the average mode. On the other hand, mosaic blend-
ing mode generated artifacts in the image since it uses 
fewer images by selecting pixels with the shortest dis-
tance from the image center (Fig.  4). We examined the 
correlation between orthomosaic generated from these 
two approaches and the ground truth data and found the 
averaging method has slightly higher correlation of 0.68 
compared to mosaic method with the correlation of 0.65.

The 16 bit orthomosaic TIFF image was generated 
semi-automatically using python scripting in PhotoS-
can software with a resolution of 0.8  cm, matching the 
ground sampling distance (GSD) of the camera. Due to 
the short flight times (less than 20  min) and low flying 
altitude (30 meters above ground level), we assume there 
is no need for atmospheric corrections [28].

To convert DNs to reflectance values, a modified 
empirical approach was implemented using pixel values 
of IRIS+ aerial imagery and field-based reflectance meas-
urements from handheld spectroradiometer. Calibration 
Eqs.  (2, 3, and 4) calculated from non-linear relation-
ship between average field spectra and relative spectra 
response of each band separately were determined as:

As breeding trials are regularly containing thousands 
or tens of thousands of plots, an automated or semi-
automated approach to generating and overlaying plot 
boundaries is needed.

Simple‑grid based method
We first implemented a simple overlay grid (Fig.  5a) 
using QGIS open source software. This method, 
although fast and easy, is not accurate for plot assign-
ing as it does not account for within plot gaps (for 
plots planted in beds), gaps between plots and also 
gaps between each range of wheat plots. It simply 
generates polygons attached to each other and not 
spaced as needed to correctly capture the actual plot 

Fig. 4  An example of artifact in the orthomosaic generated by 
Mosaic blending method from IRIS+ aerial imagery. The yellow arrows 
point to two locations in the orthomosaic where artifacts from merg‑
ing different original images are evident

(2)
ReflectanceBlue = − exp(− log(4.495970e−01

+ (3.191189e−05) ∗ DNBlue))

(r2 = 0.98, P < 0.001)

(3)
ReflectanceGreen = − exp(− log(4.705485e−01

+ (3.735676e−05) ∗ DNGreen))

(r2 = 0.97, P < 0.001)

(4)
ReflectanceNIR = − exp(− log(1.197440e+00

+ (4.712299e−05) ∗ DNNIR))

(r2 = 0.94, P < 0.001)

We applied each calibration equation to their corre-
sponding band image and converted the image raw DNs 
into reflectance values.

Wheat plot boundary extraction results
We evaluated multiple approaches for defining and over-
laying plot coordinate boundaries for the large field trials. 

boundaries (Fig. 5a). In the example below, it can also 
be noticed that a boundary polygon may cover part of 
the neighbor wheat plot, which is due to the assump-
tion of a fixed plot boundary size in this method. 
To account for the gap between plots, beds and also 
between ranges of plots, we developed a field map 
based method.



Page 10 of 15Haghighattalab et al. Plant Methods  (2016) 12:35 

Field‑map based method
To accurately reflect the actual field planting and plot 
size, we developed a script to overlay defined plot sizes 
with known spacing. We reformatted the field map using 
the information in the spreadsheet such as: plot ID, and 
plot’s location based on the block number, column and 
row’s number, and also knowing the plots were planted 
on beds with a plot size of 2.8 m length and 1.6 m wide. 
This method allows us to eliminate border effect by 
changing the plot size to 2.3 m by 1.5 m. In the reformat-
ted field map spreadsheet, the first row of the excel sheet 
is the length of the plots (1.5 m) and the length of the gap 
between plots in beds (0.15  m) and gaps between each 
bed (0.8 m). The first column is the width of wheat plots 
(2.3  m) and the width of the gaps between each range 
(0.5 m). The cells in the reformatted spreadsheet are filled 
with the plot’s information including plot ID, trial name, 
and planting date. From this plot level information, we 
overlay plots of the defined size with plot-to-plot spacing 
that accurately reflects the field configuration (Fig. 5b).

Image classification plot extraction
To examine an image classification based plot extraction 
method, we first generated GNDVI from the orthomo-
saic image generated from the April 10 aerial imagery 
rather than the May 6 dataset analyzed in the rest of this 

study. The reason for choosing this set of data was that 
in this dataset from earlier in the season had the sharp-
est contrast between plots and the surrounding soil. We 
then applied a Maximum Likelihood Classification to 
the GNDVI image. We converted the classified image 
into polygons to obtain plot shape polygons (Fig.  5c). 
This approach is more reliable if the early season aerial 
imagery is provided. The drawback with this approach is 
that it requires post-processing and cleanup of the final 
result if the classes are not quite distinguished and sepa-
rated from each other in the orthomosaic image. Fre-
quently, this approach did not separate plots properly 
and manual editing was required (Fig.  5c). As it can be 
seen in the Fig.  5c, the two plots slightly merged with 
each other and it caused the classification to classify 
them as one single plot. To have more accurate results 
from image classification method, the presence of early 
season imagery is needed, since this process can have 
more post-processing and cleanup if the wheat plots and 
the gaps between plots are not visually discrete from each 
other in the images.

Plot‑level GNDVI extraction results
After generating VI maps, we compared these three 
plot-level extraction techniques using GNDVI val-
ues extracted form canon S100 aerial imagery and the 

Fig. 5  Results of different plot extraction method overlay on a subset of plots from IRIS+ calibrated orthomosaic. a Simple-grid plots, b field-map 
based method, c image classification approach and an example of misclassification; this example confirms the need of post processing for image 
classification method
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corresponding values extracted from spectroradiometer 
in the field. The field-map based approach for plot poly-
gons generated the best correlation to spectroradiometer 
measurements, while the classification technique had 
the lowest correlation with ground-truth data (Table 3). 
The lower reliability of classification technique compared 
to field-map based, could be due to the absence of early 
season imagery. In generating plot boundaries using 
field-map based, we also considered a buffer around the 
polygons to avoid any possible mixed plants or border 
effects for a plot which likely improved performance. We 
then correlated plot level GNDVI calculated from the 
spectral reflectance for those same plots using different 
boundary plot extraction methods (Table  3). From the 
comparison of different plot extraction methods with 
correlation to spectral reflectance we found that the 
boundaries defined using the map-based algorithm were 
superior to both the simple grid and the classification-
based approach (Table 3).

Empirical line correction
Using Python scripting in QGIS, we generated differ-
ent VI maps from the calibrated orthomosaic image and 
extracted plot boundaries using the field-map based 
method. Using the zonal statistics plugin, we then calcu-
lated statistic values of each plot of wheat in the ortho-
mosaic. For each individual plot, the average VI value 
was used for further analysis and correlation. We tested 
the utility of applying an empirical line correction to 
improve the converting of digital numbers to reflectance 
values for the cameras. Using the same field-map based 
plot extraction, the correlation between raw GNDVI val-
ues extracted from the orthomosaic image and the BER 
increased from 0.68 to 0.76 after performing empirical 
line method as the radiometric calibration method.

Comparison of different vegetation indices
To test the accuracy of VI from the digital cameras by 
comparison to the ASD spectroradiometer, we calculated 
BER for Canon S100 by taking the average of all the spec-
troradiometer bands that are within the FWHM of this 
camera (Table 1). For example, to calculate BER GNDVI 
for Canon S100, we averaged the reflectance values 
between 490 and 550 nm as green band, and averaged all 
the values between 680 and 760 nm as NIR band.

Among all the calculated VIs for the Canon S100, 
GNDVI had the highest correlation with the spectrora-
diometer (Table 4; Fig. 6). Since the MultiSpec 4C cam-
era has 4 bands, NIR, red-edge, red and green, we were 
able to generate a red-edge normalized difference veg-
etation index (RENDVI) as well as other VIs. Using the 
developed pipeline, we extracted wheat plots from the 
generated orthomosaic for RENDVI by means of the 
field-map based method, which had also proved to be 
the best method of plot extraction for the MultiSpec 4C 
camera. The RENDVI plot values had higher correlation 
with spectroradiometer when compared to other VIs 
extracted from MultiSpec 4C camera (Fig. 7).  

We found the correlation between VIs extracted from 
spectroradiometer and calibrated Canon S100 was sig-
nificantly higher than the one with MultiSpec 4C cam-
era. This could be due to lower flight altitude, and slower 
movements of multi-rotor IRIS+ compare to fixed wing 
eBee Ag, which results in higher resolution imagery cap-
tured by IRIS+/Canon S100. The MultiSpec 4C camera 
is a narrow band multispectral camera that does not 
have any spectral overlap in its band response. The bet-
ter spectral performance could be negated by the lower 

Table 3  Correlation analysis between mean GNDVI values 
extracted from  raw Canon S100 digital number values, 
Calibrated Canon S100 digital number values and  corre-
sponding band equivalent reflectance (BER) GNDVI values 
from the spectroradiometer using different plot boundary 
extraction method

Raw digital numbers Calibrated digital 
numbers

Field-map based Field-
map 
based

Clas‑
sifica‑
tion

Sim‑
ple-
grid

Spectroradiometer 
BER

0.68 0.76 0.58 0.68

Table 4  Calculated vegetation indices for  each cameras, 
based on their spectral bands and correlation between veg-
etation index values extracted from UAS imagery and band 
equivalent reflectance values from Spectroradiometer

The values from Canon S100 values are before applying modified empirical line 
correction method

GNDVI values for Canon S100, and RENDVI for MultiSpec 4C have higher 
correlation with spectroradiometer compoare to other vegetation indices 
(shown in italics font)

Index Formula Correlation

Canon S100 MultiSpec 4C

NDVI NIR−Red
NIR+Red

– 0.33

GNDVI NIR−Green
NIR+Green

0.68 0.63

RENDVI NIR−Red_edge
NIR+Red_edge

– 0.64

ENDVI NIR+Green−2∗Blue
NIR+Green+2∗Blue

0.54 –

GIPVI NIR
NIR+Green

0.59 –
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Fig. 6  Linear relation between GNDVI from Canon S100 and BER GNDVI from spectroradiometer. Sample plot GNDVI values were extracted from 
calibrated orthomosaic of Canon S100 imagery, IRIS+ and band equivalent GNDVI for Canon S100 camera calculated from ASD spectroradiometer 
readings for 280 sample plots

Fig. 7  Scatterplot of the plot-level RENDVI from MultiSpec 4C imagery versus spectroradiometer. Plot-level RENDVI were extracted from ortho‑
mosaic generated from MultiSPEC 4C camera imagery using field-map based plot extraction method, and Band equivalent RENDVI for Spec 4C 
calculated from spectroradiometer reading for 280 sample plots
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resolution of the sensor, higher flight altitude, and faster 
travel speed of the fixed wing UAV. It was also clear that 
the modified empirical line correction also played a role 
in higher correlation of Canon S100 values with ground 
truth spectral measurements.

We also calculated the correlation between the spec-
tra readings using the handheld spectroradiometer. As 
we had four readings per plot, we were able to deter-
mine the repeatability within the spectroradiometer 
measurements. We averaged the first two measurements 
of and last two measurements for each plot indepen-
dently and calculated an overall correlation for 280 sam-
ple plots (Table  5). Based on this assessment, the UAS 
imaging had repeatability as good as, or better than the 
spectroradiometer.

Broad sense heritability
As the Canon S100 and MultiSpec 4C measurements were 
taken at the same time on the same day and on the same 
plots, the environmental variance and genetic variance can 
be considered as negligible. Therefore, the broad sense her-
itability values (H2) can be interpreted as a level of preci-
sion of sensor measurement, which is the only remaining 
significant source of error variance. Overall the heritability 
for VIs was high. We found VIs derived from the Canon 
S100 imagery had a higher heritability than the MultiSpec 
4C data for nine out of eleven trials (Table 6). The trials had 
lower, but still high, heritability for grain yield. There were 
some unexpected rains during the crop cycle followed by 
irrigation issues in the borders of the field, however, the 
heritability for yield was still above 0.60 which is a moder-
ate repeatability for breading trials under heat (Table 6).

Conclusion
We developed a semi-automated pipeline for data analy-
sis of a low cost UAS imagery. The raw images of a con-
sumer grade digital camera were pre-processed and used 
as the input of the image-processing pipeline. During the 
mosaicking step, we found that the averaging method had 
marginally higher correlation of 0.68 compared to mosaic 

method with the correlation of 0.65. Using a modified 
empirical line method, we radiometrically calibrated the 
DN values extracted from canon S100 and compared the 
calibrated digital values with the reflectance values of the 
spectroradiometer to evaluate the comparability of our 
data. Our results confirm that radiometric calibration is 
important for consumer grade cameras to convert the 
DN values to reflectance measurements and can improve 
the value of the image data.

We examined three different ways of wheat plot extrac-
tion: simple grid, field-map based, and image classifica-
tion. We found that the field-map based technique is 
more accurate and fastest compared to other techniques, 
and had a higher correlation to ground truth data. The 
advantage of this method is that it is applicable to any 
crop types as long as the field map is provided, and also 
this method is fully automated in Python.

We evaluated two types of UAS; (1) low cost: IRIS+ 
and (2) commercial grade agriculture-use: eBee Ag, each 
carrying different sensors with (1) low cost consumer 
grade camera: modified NIR Canon S100 on the IRIS+ 
and (2) a more specialized multispectral camera: Mul-
tiSpec 4C camera on the eBee. We compared their per-
formance with ground-truth reflectance data and found 
overall good performance to spectroradiometer meas-
urements. Based on correlation to the spectral readings 
and assessment of heritability, the Canon S100 had bet-
ter performance than the MultiSpec 4C mounted on the 
fixed wing, which was likely a result of higher resolution 
of the sensor, lower altitude and slower travel speed for 
the Canon S100 carried on the quadcopter IRIS+.

Table 5  Correlation between  repeated measurements 
from Handheld ASD for two different vegetation indices

Four measurements were taken on each of 280 plots. To determine repeatability, 
the first two measurements were averaged and correlated to the average of the 
second two measurements on a per plot basis across all plots. The VIs presented 
are band equivalent indices for the Canon S100 (green normalized difference 
vegetation index; GNDVI) and MultiSpec 4C (red-edge normalized difference 
vegetation index: RENDVI) used in this study

Correlation

Green normalized difference vegetation index; GNDVI 
(Canon S100)

0.62

Red-edge normalized difference vegetation index; RENDVI 
(MultiSpec 4C)

0.88

Table 6  Broad-sense heritability in 11 trials for vegetation 
indices and grain yield

The VIs derived from the Canon S100 had a higher heritability than the 
MultiSpec 4C for nine out of eleven trials (shown in italics font)

Trial name Broad-sense heritability (H2)

Vegetation indices Grain yield

Canon S100 
(GNDVI)

MultiSpec 4C 
(RENDVI)

EYTBWBLHT_01 0.89 0.84 0.66

EYTBWBLHT_02 0.90 0.90 0.91

EYTBWBLHT_03 0.84 0.90 0.78

EYTBWBLHT_04 0.87 0.70 0.75

EYTBWBLHT_05 0.81 0.80 0.82

EYTBWBLHT_06 0.73 0.66 0.80

EYTBWBLHT_07 0.83 0.70 0.85

EYTBWBLHT_08 0.64 0.61 0.86

EYTBWBLHT_09 0.78 0.64 0.87

EYTBWBLHT_10 0.66 0.57 0.65

EYTBWBLHT_11 0.72 0.57 0.74
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Our study provides strong evidence of the value of 
UAS for HTP applied to large wheat breeding nurser-
ies. Further work is needed to investigate the strength of 
the relationship between remotely sensed derived plant 
phenological traits and the wheat biophysical proper-
ties collected in the field such as plant height, biomass, 
and yield. With the overall vision of integrating multiple 
measurements extracted from UAS (plant height, ground 
cover, etc.) with plant growth simulations to maximize 
the biological utility of the estimated phenotypes new 
avenues will be opened to breeders for predicting yield. 
Moreover, the development of new sensors and imaging 
systems undoubtedly will continue to improve our ability 
to phenotype very large experiments or breeding nurs-
eries. When combined with genomic and physiological 
modeling, the rapid, low-cost evaluation of large field tri-
als in plant breeding with UAS platforms has the poten-
tial to greatly accelerate the breeding process through 
more accurate selections on larger populations.
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