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Abstract

Background: As a result of the growing body of protein phosphorylation sites data, the number of
phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein
phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to

predict protein phosphorylation sites in rice.

Results: In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos
and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several
methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted
voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters
selected by restricted grid search and conditional random search, performed the best at predicting
phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC) and Accuracy (ACC) reached to 0474 and
73.8%, respectively. Compared to the best individual element predictor (Disphos_default), PhosphoRice archieved a
significant increase in MCC of 0.071 (P < 0.01), and an increase in ACC of 4.6%.

Conclusions: PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to
the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is
available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.

Background

Protein phosphorylation is the most common form of
protein post-translational modification (PTM) [1-3].
Phosphorylation and dephosphorylation of proteins is a
universal mechanism for regulating protein function in
the eukaryote, prokaryote and archaea kingdoms. Given
the importance of protein phosphorylation in regulating
cellular signaling, large-scale identification of phos-
phorylated proteins has been carried out in yeast [4],
mice [5], humans [6], Arabidopsis [7,8], rice [9-12] and
Medicago [13]. As the data grow, the number and the
size of the available phosphoprotein databases are
increasing and are becoming more complex. The Phos-
pho.ELM database contains validated phosphorylation
sites that are mostly derived from mammals [14],
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Phosida contains large-scale data from Homo sapien and
Bacillus subtilis [15], PhosphoSite (http://www.phospho-
site.org/) is a curated site that focuses on vertebrate sys-
tems [16] and PhosPhAt is a phosphorylation site
database that is specific for Arabidopsis [17].

The growing data of protein phosphorylation sites have
stimulated the development of computational approaches
to predict these sites from protein sequences. Over the
past decade, a series of algorithms have been developed to
predict phosphorylation sites from amino acid sequences
[18]. A few well-maintained web sites that offer prediction
of protein phosphorylation sites have been made freely
available to the scientific community, including NetPhos
[19], NetPhosK [20], KinasePhos [21], KinasePhos 2.0 [22],
DISPHOS [23], Scansite [24], PPSP [25], GPS [26], Pre-
dPhospho [27], NetPhosYeast [28], GANNPhos [29] and
Musites [30]. However, the existing protein phosphoryla-
tion site prediction tools show a data sampling bias. The
predictors perform at a high accuracy only for individual
species [17]. Many existing prediction programs were
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primarily derived from mammalian data and exhibit poor
performance in predicting plant phosphorylation sites.
Therefore, based on the experimentally validated phos-
phorylation sites in a specific model organism, organism-
specific predictors have been developed. NetPhosYeast, a
yeast-specific predictor, outperforms existing generic pre-
dictors in the identification of phosphorylation sites in
yeast [28]. PhosPhAt, which predicts phosphorylated-Ser-
ine sites in Arabidopsis, is benchmarked to perform better
with Arabidopsis sequences than other generic predictors
[17]. To our knowledge, no existing methods have been
developed to specifically predict protein phosphorylation
sites in rice.

As Arabidopsis thaliana (L.) standing as a model of
dicotyledoneous species, rice (Oryza sativa L.) is a repre-
sentative model monocotyledoneous (monocot) species.
Moreover, rice shows an immense socio-economic
impact on human civilization. In the past decade, with
proteomic technologies and the availability of the gen-
ome sequences, rice proteomic research has been pro-
pelled towards a new height, which is crucial to better
understand monocot plants [31]. Therefore, rice (Oryza
Sativa L.) also serves as a cornerstone for the study of
functional genomics in cereal plants [31]. However, cur-
rent predictors perform poorly when individually used to
predict phosphorylation sites in rice phosphoproteins
[18]. In our previous research work, we constructed three
different phosphorylation sites datasets to test the perfor-
mance of different predictors. We found that the phos-
phorylation site predictors were complementary to some
extent [18]. Therefore, establishment of a meta-server by
maximizing complementary of individual predictors
might be a promising approach to develop an improved
prediction system. In this study, we developped a rice-
specific meta-predictor of protein phosphorylation sites
by integrating the newly individual predictors.

Results

Preprocessing performance assessment of element
predictors

All of the protein sequences in the dataset were run
through all 15 element predictors. Perl scripts were
developed to submit jobs to the servers with the speci-
fied prediction options and then to analyze the predic-
tion performance. As shown in Table 1, the element
predictors showed different performances in predicting
rice phosphorylation sites. The element predictor that
provided the best prediction performance was Disphos_-
default (ACC: 69.2%, MCC: 0.403).

Unweighted voting, unreduced weighted voting and
reduced weighted voting strategies

We combined the element predictors to construct meta-
predictors using unweighted voting, unreduced weighted
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Table 1 Prediction performance of the element predictors
on the test dataset

Element predictor Sn (%) Sp (%) ACC (%) MCC
KinasePhos2.0_80 816 512 65.5 0.341
KinasePhos_default 80.2 574 68.1 0.383
KinasePhos_90 77.0 62.3 69.2 0.395
KinasePhos_95 658 737 70.0 0396
KinasePhos_100 376 89.6 65.1 0321
Scansite_low 759 548 64.7 0313
Scansite_middle 38.1 86.6 63.8 0.285
Scansite_high 12.8 96.5 57.1 0.173
Prephospho 955 13.7 522 0.158
DISPHOS_default 80.6 59.1 69.2 0403
DISPHOS_ Arabidopsis 439 86.6 66.5 0341
DISPHOS_ Eukaryotes 417 87.5 66.0 0.331
NetPhosK_0.5 759 46.6 604 0.235
NetPhosK_0.7 170 879 54.5 0.070
NetPhos2.0 70.7 599 65.0 0307

Predicting performance assessed on the dataset of rice phosphorylation sites.

voting and reduced weighted voting strategies. In the
two-class phosphorylation site prediction problems, a
score threshold must be set. The threshold score was
set as half of the sum of all of the weights of the ele-
ment predictors to construct meta-predictor of
unweighted voting, unreduced weighted voting and
reduced weighted voting strategies [32]. In this paper,
the threshold scores (T) were less than half of the total
weight of the predictors.

As shown in Table 2, compared to that of the best
element predictors (ACC: 69.2%, MCC: 0.403), the
meta-predictors constructed by unweighted voting,
unreduced weighted voting and reduced weighted voting
strategies achieved an significant increase in MCC of
between 0.046 and 0.051. They all had a slight increase

Table 2 The prediction performance of meta-predictors
constructed by unweighted voting, unreduced weighted
voting and reduced weighted voting strategies

predictor ACC (%) MCC
Best element predictor 69.2 0403
(Disphos_default)
Unweighted voting 724 0449 (1.58E-03)*
Best unreduced weighted voting 725 0450 (1.18E-03) *
(with weights set by ACC)
Best unreduced weighted voting 728 0453 (54E-04) *
(with weights set by MCC)
Best reduced weighted voting 728 0.453 (6.0E-04) *
(with weights set by ACC)
Best reduced weighted voting 729 0454 (34E-04) *

(with weights set by MCC)

* P-values in Fisher's Z-transformation test (compared with the MCC of the
best element predictor) are shown in parentheses.
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in ACC of between 3.2% and 3.7%. The meta-predictor
of reduced weighted voting (with weights set by MCC)
showed the best prediction performance (MCC: 0.455)
in all the meta-predictors.

Restricted grid search and Conditional random search
We also ran a weighted voting strategy with parameters
selected by restricted grid search to construct meta-pre-
dictors for phosphorylation sites in rice. As shown in
Table 3, we found that the weighted voting strategy
with the parameters selected by restricted grid search
produced a satisfactory meta-predictor, which exhibited
outstanding prediction performance (ACC: 73.5%, MCC:
0.469). Compared to the best element predictor, they
improved MCC of 0.066 and ACC of 4.3%.

Following the restricted grid search, we developed a
conditional random search scheme to select the value of
the 16 parameters. We decided that the weight of any
element predictor would be allowed to fluctuate within
a certain range, which was between the last grid and the
next grid of parameter selected by the restricted grid
search (Table 3). For instance, the weight value of Net-
Phos2.0 was 1 for the restricted grid search, which last
grid value was 0 and next grid value was 3. Then, in
conditional random search, the weight value of Net-
PhosK_0.5 was set to fluctuate between 0 and 3 (Table
3). Using this strategy, we produced a conditional
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random search meta-predictor, which possessed the best
performance than that of all the individual predictors
and the meta-predictors described above (Table 3). Its
MCC were 0.071 significantly higher than that of the
best individual element predictor (Disphos_default),
while ACC was 4.6% higher than that of the best ele-
ment predictor. We named this optimal conditional ran-
dom search meta-predictor PhosphoRice.

Moreover, we generated the receiver operating char-
acteristic (ROC) curve according to the predicted
potentials of meta predictors. ROC is a plot of the
true-positive ratio (sensitivity) against the false-positive
ratio (1-specificity). The area under an ROC curve
(AUC) represents the trade-off between sensitivity and
specificity. The ROC curves of the prediction perfor-
mance of all the meta-predictors in comparison to that
of the best element predictor (Disphos_default) were
shown in Figure 1. All meta-predictors had higher
ROC areas than that of the best element predictor
(Table 4). Meanwhile, we calculated the area under-
neath ROC curve to compare the predicting perfor-
mance of PhosphoRice with that of Musite. Musite was
a Java-based standalone application for predicting both
general and kinase-specific protein phosphorylation
sites [30]. Table 5 showed that the performance of
PhosphoRice was significantly higher than that of
Musite (Table 5).

Table 3 The parameters in the weighted voting meta-predictors selected by a restricted grid search and a conditional

random search

Element Predictor

Parameter selected by Restricted Grid search Random number* Parameter selected by conditional random search

Predphospho
NetPhos2.0
NetPhosK_0.5
NetPhosK_0.7
KinasePhos_default
KinasePhos_90
KinasePhos_95
KinasePhos_100
DISPHOS_default
DISPHOS_ Eukaryotes
DISPHOS_Arabidopsis
KinasePhos2.0_80
Scansite_middle
Scansite_low

- W = O = = W O O = W O o — O

Scansite_high
T value 8

ACC (%) 735

MCC 0469 (2.60E-06)**

Random (1) 0
Random (3) 1.23
Random (1) 0
Random (1) 0
1+Random (4) 275
Random (3) 2.76
Random (1) 0.79
Random (1) 0
1+Random (4) 425
Random (3) 1.65
Random (3) 222
Random (1) 0.71
Random (3) 16
1+Random (4) 39
Random (3) 257
133
73.8

0474 (6.00E-07) **

* Random (3) means the weight could fluctuate from 0 to 3. For instance, by restricted grid search, the weight value of NetphoK 2.0 was 1, and the last grid
value and next grid value were 0 and 3, respectively. In a conditional random search, the weight of Netphos 2.0 was set as random (3). The weight value of
KinasePhos_default was 3, and the last grid value and next grid value were 1 and 5, respectively. Therefore, its weight was set as ‘1+random (4)’ in a conditional

random search.

** P-values in Fisher's Z-transformation test (compared with the MCC of the best element predictor) are shown in parentheses.
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Figure 1 Receiver operating characteristics curves of the prediction performance of meta predictors in comparison to that of the best
element predictor (Disphos_default). In the diagrams, improved classification performance is indicated for predictors with increased area
under the ROC. The areas under the ROC curve were showed in Table 4. A: ROC curve of unweight-voting predictor in comparison to
Disphos_default. B: ROC curve of restricted-grid predictor in comparison to Disphos_default. C: ROC curve of random-voting predictor in
comparison to Disphos_default. D: ROC curve of unreduced-weight-voting predictor in comparison to Disphos_default (by ACC). E: ROC curve of
unreduced- weight-voting predictor in comparison to Disphos_default (by MCC). F: ROC curve of reduced- weight-voting predictor in
comparison to Disphos_default (by ACC). G: ROC curve of reduced- weight-voting predictor in comparison to Disphos_default (by MCC). * By
ACC: the weights of meta-predictor were selected to result in the optimal ACC; By MCC: the weights of meta-predictor were selected to result in
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Table 4 Areas under the ROC curves for the best element
predictor, meta-predictors constructed by unweighted
voting, unreduced weighted voting, reduced weighted
voting and weighted voting strategies.

Predictor Area
Best element predictor 0.758
(Disphos_default)
Unweighted voting 0.788
Best unreduced weighted voting 0.791
(with weights set by ACQ)
Best unreduced weighted voting 0.792
(with weights set by MCC)
Best reduced weighted voting 0.791
(with weights set by ACC)
Best reduced weighted voting 0.791
(with weights set by MCQ)
Weighted voting 0.794
(By restricted grid search)
A combination of weight voting and random 0.796

Discussion

Prediction performance of element predictors

Before being integrated into the meta-predictors, the
existing phosphorylation site predictors used in this
study were tested and assessed on the rice phosphoryla-
tion site dataset. All of element predictors achieved an
ACC over 50.0%. However, their MCC was quite differ-
ence from each other, which was between 0.07 and
0.403. Different predictors may yield different perfor-
mance in phosphorylation sites prediction due to their
different types of algorithm and training dataset. The
result also showed that some of kinase family-specific
predictors could yield good performance under no

Table 5 The prediction performance of PhosphoRice in
comparison to that of Musite

Predictor ACC (%) MCC Area
PhosphoRice 724 0474 (0.044) * 0.796
Musite 738 0.446 0.793

* P-value in Fisher's Z-transformation test (compared with the MCC of Musite)
is shown in parenthes.
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kinase-specific condition, such as KinasePhos_95 (ACC:
70.0%, MCC: 0.396).

Prediction performance of unweighted voting, unreduced
weighted voting and reduced weighted voting meta-
predictors

In this paper, the prediction performance of unweighted
voting, unreduced weighted voting and reduced
weighted voting meta-predictors exceeded that of the
best element predictor (ACC: 69.2%, MCC: 0.403),
showing a significant increase in MCC (P < 0.01). The
good performance archieved by these meta-predictors
was due to element predictors’ complementing each
other. The reduced weighted voting strategies had been
applied to produce meta-predictors in protein subcellu-
lar localization prediction [33] and phosphorylation site
prediction for specific kinase family [32]. However, it
got different result. This strategy produced good meta-
predictors in the protein subcellular localization predic-
tion problem [33], but failed to yield meta-predictors
with expected performance in the prediction of phos-
phorylation sites for the CK2 kinase family [32]. Wan et
al. (2008) discussed that the stronger correlation among
the element predictors might play a role for the failure.
However, we argued that the selection of element pre-
dictors was vital to the prediction performance of meta-
predictors. The prediction performance of six element
predictors used in this study was evaluated in Que et al.
(2010). We found that the element predictors were com-
plementary to some extent.

Prediction performance of PhosphoRice

In this study, we applied a more general form of the
weighted voting strategy. First, we used a restricted grid
search to determine a range for the parameters. Second,
we set ranges of the parameters selected by the
restricted grid search to perform a conditional random
search. The restricted grid search was very efficient in
running time performance and in parameter selection. It
has been widely used to construct meta-predictors,
including a serine/threonine phosphorylation site predic-
tor [32] and a protein-protein interaction site predictor
[34]. Using the restricted grid search, we selected 9 non-
zero weight parameters for the final meta-predictors
(Table 3). However, a drawback of using a restricted
grid search is that it might find a local, rather than a
global, optimum. Therefore, based on the result of
restricted grid search, we ran an exhaustive search
approach, conditional random search, to determine the
16 parameters. The conditional random search produced
a good meta-predictor, whose rice phosphorylation site
prediction performance not only exceeded that of the
best element predictor, but also surpassed that of the
meta-predictors integrated with unweighted voting,
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unreduced weighted voting and reduced weighted voting
strategies. We can conclude here that a combined
restricted grid search and conditional random search
may be a good approach for determining the parameters
in weighted voting strategy.

Conclusion

To summarize, we created a meta-predictor, PhosphoR-
ice, using a weighted voting strategy, in which para-
meters were selected by restricted grid search and
conditional random search. It shows good performance
in predicting rice phosphorylation sites, as measured by
the MCC and ACC. Its MCC were 0.071 significantly
higher than that of the best individual element predictor
(Disphos_default), while ACC was 4.6% higher than that
of the best element predictor. We have also provided a
web service for the prediction of rice protein phosphory-
lation sites, which can be accessed at http://bioinfor-
matics.fafu.edu.cn/PhosphoRice.

Methods

Preprocessing of dataset

We collected rice phosphorylation sites from recent lit-
erature, including Nakagami et al. (2010), and the fea-
ture table of Swiss-Prot database. After removing the
redundant phosphorylation sites, the number of serine
(S), threonine (T) and tyrosine (Y) substrates were 4220,
605 and 141 respectively (Table 6). These phosphoryla-
tion sites were involved in 2162 proteins (Additional file
1). The 25-mer sequences (-12 ~ +12) of phosphoryla-
tion sites were extracted from the protein sequences
and constructed as dataset. Because all of the phosphor-
ylation sites in the positive dataset were experimentally
verified, they were regarded as (+) sites. The Ser, Thr
and Tyr residues that were not annotated as phosphory-
lation sites within the dataset were regarded as (-) sites
(i.e., non-phosphorylation sites). We balanced the posi-
tive and negative dataset and the sizes of positive dataset
and negative dataset are equal during cross-validation
processes (Table 6).

We used a standard 10-fold cross validation to opti-
mize the weight of all the individual predictors, and cal-
culated the ACC and MCC of each meta predictor. The
dataset was randomly partitioned into 10 subsets,
including one testing subset and nine training subsets.

Table 6 Number of phosphoserine, phosphothreonine
and phosphotyrosine sites in positive and negative
dataset

Dataset Number of phosphorylation sites Total
Serine Threonine Tyrosine

Positive dataset 4220 605 141 4966

Negative dataset 2954 1798 834 5586
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The weights are updated and the ACC and MCC were
recalculated. The new weights were kept only if the
ACC and MCC increased; otherwise the weights are
rolled back to the previous values. Using this strategy,
the meta-predictors were training by shifting the test
subset stepwise so that all data is used for training and
test when completed.

Selection of element predictors

Six phosphorylation site prediction programs, NetPhosK,
NetPhos2.0, KinasePhos, PrePhospho 1.0, Scansite and
DISPHOS, were selected as elemental predicting pro-
grams. NetPhosK, KinasePhos, PrePhospho 1.0 and
Scansite are kinase-family-specific phosphoryaltion site
predictor, while NetPhos2.0 and DISPHOS are not. All
of the element predictors were run under no kinase-spe-
cific condition. Their prediction performance was evalu-
ated in our last research work. Fifteen element
predictors derived from these programs were used to
form rice-specific meta-predictors of phosphorylation
sites (Additional file 2). The methods for obtaining
these 15 element predictors are described below.

Netphos and NetPhosK (http://www.cbs.dtu.dk/ser-
vices/NetPhosK/) use an artificial neural network algo-
rithm to predict phosphorylation sites. With the
NetPhosK prediction server, the option “prediction with-
out filtering” was selected to predict phosphorylation
sites. The threshold value was set as 0.5 and 0.7 to
determine whether or not a site is predicted as phos-
phorylated. The result at each threshold value was
selected to be an element predictor, they were named
NetPhosK_0.5 and NetPhosK_0.7.

DISPHOS (DISorder-enhanced PHOSphorylation site
predictor, http://core.ist.temple.edu/pred/) uses position-
specific amino acid composition and predicts structural
disorder information to distinguish phosphorylation and
non-phosphorylation sites. In this study, “default predic-
tor,” “Eukaryotes” or “A. thaliana“ was chosen to predict
phosphorylation sites in rice and were named Disphos_-
default, Disphos_Eukaryotes and Disphos_Arabidopsis,
respectively.

KinasePhos (http://kinasephos.mbc.nctu.edu.tw/index.
php) employs a Profile Hidden Markov Model (HMM)
to predict kinase family-specific phosphorylation sites.
In this study, KinasePhos was run with the option of
90%, 95%, 100% prediction specificity and ‘by default
HMM bit score’, whilst KinasePhos 2.0 with 80% predic-
tion specificity, respectively. These five selections
resulted in four separate element predictors termed
KinasePhos_90, KinasePhos_95, KinasePhos_100, Kina-
sePhos_default and KinasePhos 2.0_80.

Scansite (http://scansite.mit.edu/) uses scores calcu-
lated from position-specific score matrices (PSSM) to
search for motifs within proteins that are likely to be
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phosphorylated by specific protein kinases. In this work,
the setting of a high, medium or low stringency level
was selected and resulted in the production of three
separate element predictors named Scansite_high, Scan-
site_medium and Scansite_low, respectively.

PredPhospho (http://pred.ngri.re.kr/PredPhospho.htm)
predicts various kinase-specific phosphorylation sites by
training SVMs. In this study, the prediction was made
by considering all kinase groups and families.

Prediction and performance measures

It was difficult to compare the numerical scores pro-
duced by the individual element predictors due to their
differences in mathematical meaning [32]. In this study,
the value of the scores was ignored, and instead a binary
value was assigned (representing phosphorylated or not
phosphorylated) and then performance was compared
across prediction programs.

Four measurements-Sensitivity (Sx), Specificity (Sp),
Accuracy (ACC) and the Matthew’s Correlation Coeffi-
cient (MCC)-were employed to evaluate the perfor-
mance of the tested predictors (definitions below):

P
n= ,
TP + FN
TN
Sp = ,
TN + FP
TP + TN

T IP+FP+TN +FN’

and

(TP x TN) — (FN x FP)

MCC = .
V(TP + EN) x (TN + FP) x (TP + FP) x (TN + FN)

where TP, FP, FN, and TN denote true positives, false
positives, false negatives, and true negatives. Sn and Sp
illustrate the correct prediction ratios of positive and
negative datasets, respectively. Because MCC is much
less susceptible to the ratio of positive samples and
negative samples in the dataset, it is the most widely
used prediction measure for two-class prediction pro-
grams [32].

We used SPSS 16.0 to create operating characteristic
(ROC) curves to measure the performance of meta-pre-
dictors. For each possible threshold, the sensitivity and
specificity were evaluated, the ROC curve [sensitivity
versus (1-specificity) curve] was plotted, and the area
underneath this curve was calculated. In this study,
ROC curves were used to compare the predicting per-
formance of every meta-predictors with the best element
predictor, Disphos_default, respectively. The area under-
neath ROC curve was calculated to compare the pre-
dicting performance of PhophoRice with Musite, which
was a newly predictor.
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Unweighted voting, unreduced weighted voting and
reduced weighted voting strategies

The unweighted voting, unreduced weighted voting and
reduced weighted voting strategies were used to con-
struct meta-predictors according to the procedure out-
lined by Liu et al. (2007) and Wan et al.(2008).
Generally, if the following condition was satisfied, a lin-
ear voting-based two-class classifier would make a posi-
tive prediction:

N
2 [P-wj] =T (1)
i

Where N is the total number of element predictors (in
this experiment, N = 15), w; is the weight of the jth pre-
diction method and w; = 1 for all element predictors in
the unweighted voting strategy. P; is the prediction
made by the jth predictor; in a positive prediction, P; =
1, otherwise P; = 0. T is the threshold score.

For a simple weighting voting strategy, the threshold
T can be set as the half of the total weight of the pre-
dictors.

1 N
T= 2w (2)
i1

Restricted grid search

In Equation (1), proper weight parameters (w;) would
produce a classifier with good prediction performance.
In this study, there are 16 parameters, including 15 pos-
sible values for wj, and a value for T that needs to be
determined for the highest performance classifier. We
applied the restricted grid search method to select the
values of these 16 parameters, which has been widely
used in two-class classification problems [32,33]. There
were two critical restrictions of this method in our
study. First, we limited the weight of the element pre-
dictors to be one of the following values: 0, 1, 3, 5, 7, 9,
11, 13, and 15. Second, the sum of the weights of all 15
element predictors must be equal to 15 (Table 7). The
restricted grid search of the 16 parameters was con-
ducted on the dataset with 10-fold cross-validation.

Conditional random search

Conditional random fields were first introduced by Laff-
erty and colleagues in 2001 [35]. For the conditional
random search, the threshold T was set as a random
value of the total weight of the predictors.

N
T = rand Z w; 3)
j=1
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Table 7 Weight combinations, permutations and possible
weights sum values in the restricted grid search scheme

Weight combinations*  Number of corresponding weight**

15 x (1) Pis =15

1% (2+13 x (1) Pis X Pjy = 1365

1 X (D43 x (D+11x (1) Pjs x Pj, X P13 = 2730
1x @+11 x (1) Pls x Py, = 15015

X (45 % ()49 % (1) Pls x P1, x Pj5 = 2730
3% (249 x (1) Pls x Pj; = 1365

I X 33 x (49 x (1) P3s x Py, X Pj; = 60060
1% (6)+9 x (1) PS5 x Pg = 45045

1% (147 X (2) Pjs X P3, = 1365

3% ()45 x (+7 x (1) Pjs x Pjy X Py3 = 2730
1 X (35 x ()47 x (1) P3s x Pjy X P}, = 60060
1 X Q43 x 247 x (1) pis x Py x P}, = 90090
1 X (O3 x ()47 x (1) P3s x Ply X P§ = 270270
1% 8)+7 x (1) P x Py = 450450

5% (3) P35 =455

I X3 x ()45 x Q2 pyx Ply x P}, = 90090
1% (545 x (2) P35 X Py = 135135

I X (43 x 35 x (1) pls x P34 X Pj; = 60060
1 X 443 X 245 X 1 Pjs X P x Py = 675675
1 (743 x (45 x (1) P{s X Pg X P4 = 360360
1% (10045 x (1) Pi% x ps = 15015

3% (5) P35 = 3003

1% (343 x (4) Pjs x P}, = 225225

1% (6)+3 x 3) PS5 x Py = 420420

1% (943 % (2) Pys x P& = 75075

1x (1243 x (1) Pj2 x Py = 1365

1% (15) Pz =

Possible weighted 0,1,23,45,6,7,8910,11,12,13,14, 15

* Weight combinations are denoted as the sum of each weight value
multiplied by the number of weights taking the weight value, with the weight
value = 0 omitted.

** For instance, “15 X (1)"represents that 1 of the 15 weights takes the value
15, and the other 14 weights take the value 0; and “1 x (1)+3 X (1)+11 x (1)"
represents that 1 of the 15 weights takes the value 1, 1 weight takes the
value 3, 1 weight takes 11 and the remaining 12 weights take the value 0.
Each weight combination corresponds to one or more weight permutations.
For instance, for weight combination “15 x (1),” the weight value 15 can be
taken by each of the 15 weights; thus, it corresponds to P%S weight
permutations.

Randomized algorithms are often simple, beautiful and
efficient for selecting parameters. They produce a series
of unrelated and unpredictable digits or characters.
However, the computer cannot produce an absolute
random number; it can only have a “pseudorandom
number”. The conditional random search method can
be represented as follows:

a. the weight selected by restricted grid search;

b. random search range was set between the last grid
and the next grid of parameter selected by the
restricted grid search;
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c. runuing random search program;

d. training on the training set, test on the test set;

e. stopping at the parameter combination that
achieve higher MCC than that of restricted grid
search.

Additional material

Additional file 1: Rice phosphorylation sites data. Data file listing
Accession Number, full-length sequence, phosphorylated amino acid and
its site position.

Additional file 2: Summary of the 15 element predictors. Summary
file listing the name, references and URLs of the 15 element predictors
used to produce meta-predictors.
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