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Abstract 

Background Dendrobium officinale is a medicinal plant with high commercial value. The Dendrobium officinale 
market in Yunnan is affected by the standardization of medicinal material quality control and the increase in market 
demand, mainly due to the inappropriate harvest time, which puts it under increasing resource pressure. In this study, 
considering the high polysaccharide content of Dendrobium leaves and its contribution to today’s medical indus-
try, (Fourier Transform Infrared Spectrometer) FTIR combined with chemometrics was used to combine the yields 
of both stem and leaf parts of Dendrobium officinale to identify the different harvesting periods and to predict the dry 
matter content for the selection of the optimal harvesting period.

Results The Three-dimensional correlation spectroscopy (3DCOS) images of Dendrobium stems to build a (Split-
Attention Networks) ResNet model can identify different harvesting periods 100%, which is 90% faster than (Sup-
port Vector Machine) SVM, and provides a scientific basis for modeling a large number of samples. The (Partial Least 
Squares Regression) PLSR model based on MSC preprocessing can predict the dry matter content of Dendrobium 
stems with Factor = 7, RMSE = 0.47,  R2 = 0.99, RPD = 8.79; the PLSR model based on SG preprocessing can predict 
the dry matter content of Dendrobium leaves with Factor = 9, RMSE = 0.2,  R2 = 0.99, RPD = 9.55.

Conclusions These results show that the ResNet model possesses a fast and accurate recognition ability, and at the 
same time can provide a scientific basis for the processing of a large number of sample data; the PLSR model 
with MSC and SG preprocessing can predict the dry matter content of Dendrobium stems and leaves, respectively; The 
suitable harvesting period for D. officinale is from November to April of the following year, with the best harvesting 
period being December. During this period, it is necessary to ensure sufficient water supply between 7:00 and 10:00 
every day and to provide a certain degree of light blocking between 14:00 and 17:00.
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Background
There are about 750–900 genera of orchids (Orchidaceae), 
and their origin can be traced back to about 120 million 
years ago [1]. Dendrobium is one of the largest genera 
in the Orchidaceae family, and most of its species have 
important medicinal, economic, and ecological values, 
playing an important role in the health and wellness of 
people around the world [2]. Dendrobium officinale is 
the most researched and popular medicinal plant in the 
genus Dendrobium, with high commercial value and rich 
in chemical components and pharmacological activities, 
and is regarded as “the first of the nine immortal herbs” 
[3]. Among them, polysaccharide compounds are impor-
tant active ingredients affecting the quality of D. officinale, 
accounting for 20–40% of the total compounds, with good 
antioxidant and anti-inflammatory effects [4]. Modern 
pharmacological studies have shown that D. officinale 
contains pectin with distinctive structural features, which 
is an important compound for protecting the human liver 
and a key factor in determining the chewing texture of D. 
officinale [5]. Notably, related studies have shown that D. 
officinale leaves have higher polysaccharide content than 
the stems, and there are records of folk minorities using 
them for prevention, treatment of diseases and body 
maintenance [6]. This has caused researchers to use both 
the stem and leaf parts of D. officinale as an important 
basis for measuring its quality and yield.

In China, Yunnan is known as the “Kingdom of Plants” 
with complex terrain and significant climate changes at 
different times [7]. The suitable harvesting period for 
Dendrobium is from November to April of the following 
year, and the dry matter content (DMC), yield, and accu-
mulation of effective chemical components change with 
different growth times. Usually, in the harvesting of Den-
drobium, the period with higher yield can only be selected 
based on individual subjective factors, resulting in miss-
ing the optimal harvesting period, this damages produc-
tion and economic income [8]. Morphological data can be 
used to comprehensively assess the variation of Dendro-
bium production in different months, which can solve the 
problem of production assessment to a certain extent.

DNA barcoding, high-performance liquid chromatog-
raphy, and powder microscopic identification are com-
mon methods for the identification of Dendrobium herbs 
and original plants [9]. The identification mainly contains 
the origin, species and harvesting period of D. officinale. 
The above methods rely on the experience of researchers, 
and chemical analysis is reagent-consuming, expensive, 
and has the potential risk of environmental pollution. 
Spectroscopy has the advantages of being non-destruc-
tive, rapid and efficient, and has gradually become an 
important research method for quality control and quali-
tative analysis of traditional Chinese medicine in recent 

years [10]. Fourier Transform Infrared Spectrometer 
(FTIR) has been reported to be more widely used, but it 
has problems with low apparent resolution and overlap-
ping of the characteristic peaks [11]. Three-dimensional 
correlation spectroscopy (3DCOS) can transform com-
plex spectral data into a more intuitive image form and is 
a technique to characterize spectral feature information 
by improving the apparent resolution to solve the prob-
lem of overlapping spectral bands. At present, combining 
ATR-FTIR with chemometrics can further accomplish 
the information recognition of different chemical types, 
and the common recognition models mainly include Par-
tial Least Squares Discriminant Analysis (PLS-DA) and 
Support Vector Machines (SVM), among which SVM 
has a simple structure and strong generalization abil-
ity, and has a unique advantage in dealing with small 
amount of samples [12]. Deep learning plays an impor-
tant role in the field of image recognition and is the main 
method currently used in the development of artificial 
intelligence research [13]. Convolutional Neural Net-
works (CNN), which include convolutional operations 
and deep structure, is a representative algorithm of deep 
learning [14]. Residual Neural Network (ResNet) formed 
by its improvement has unique advantages in target 
recognition and image classification. Scholars at home 
and abroad have achieved good experimental results 
by using this algorithm combined with 3DCOS to clas-
sify and recognize samples, indicating that this method 
has good potential for application in the field of classifi-
cation and identification of species, origin and harvest-
ing period. Recently, ATR-FTIR spectroscopy combined 
with multivariate analysis has been used to determine 
chemical content for quality control of medicinal plants, 
with the PLSR model being the most common predictive 
model [15]. DMC is a direct factor affecting yield and is 
positively correlated with polysaccharide content [16]. In 
addition, little research has been reported on the appro-
priate harvesting period for D. officinale.

To summarize, combining stems and leaves to evalu-
ate the yield and at the same time, establishing a scientific 
and effective method to identify the optimal harvesting 
period is of great significance for D. officinale herb pro-
duction and reducing economic losses. In this study, the 
first attempt was made to identify the harvesting period 
of D. officinale by ResNet modeling and combined with 
morphological data to provide a fast and effective method 
for yield control of D. officinale in different months. In 
addition, the DMC of D. officinale in different months 
was predicted by ATR-FTIR. The results of the study can 
provide new methods and ideas for future research on 
the optimal harvesting period of D. officinale and related 
medicinal and food plants, and can also avoid economic 
losses caused by improper selection of harvesting period.
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Methods
Material collection and sample processing
The samples of D. officinale were collected from the 
lotus pond planting base in Beicheng Town, Hongta 
District, Yuxi City, Yunnan Province, and samples were 
collected at 15:30 on the 15th day of each month during 
the months of 1–12, with 12 individual plants sampled 
in each month and identified by Prof. Huang Hengyu 
of Yunnan University of Traditional Chinese Medicine 
(Fig. 1). Samples were cleaned after harvesting, divided 
into stem and leaf parts, length of the stem (X1, cm); 
fresh weight of stem (X2, g); fresh weight of leaf (X3, 
g); stem weights (X4, g); leaf weights (X5, g); dry matter 
content of stem (X6, %); dry matter content of Leaf (X7, 
%); water content of stem (X8, %) and water content of 
leaf (X9, %) were measured and calculated for subse-
quent analysis (Additional file 1: Table S1). Finally, the 
samples were dried to constant weight at 55  °C using 
an electric thermostat dryer (Shanghai Yiheng Scien-
tific Instruments Co., Ltd.). The dried samples were 
ground using a portable high-speed grinder and passed 
through a 100-hole sieve, and the final sample powder 

was stored in a self-sealing bag for chemical analysis 
(Fig. 2).

ATR‑FTIR acquisition
Laboratory temperature and relative humidity were 
kept relatively constant, and sample powder spectral 
data were collected using a Fourier transform mid-
infrared spectrometer with a deuterated triamcinolone 
sulfate crystal (DTGS) detector equipped with a sin-
gle-reflector diamond universal ATR sampling acces-
sory (UATR). In order to exclude the interference of 
 H2O and  CO2, spectral information of the background 
was collected prior to the acquisition of the sample 
spectra. The spectral range was 4000–450   cm−1 with a 
resolution of 4   cm−1 and 64 consecutive scans. Three 
replicate scans were performed for each sample, and 
the final data used for analysis were the average spectra 
of the three scans.

Data preprocessing
FT-MIR spectrometer introduces redundant information 
and noise in addition to the feature information required 

Fig. 1 D. officinale planting base location
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for sample acquisition, which affects the results of sub-
sequent analysis. Therefore, it is necessary to preprocess 
the raw spectral information before statistical analysis and 
modeling, and First Derivative (FD) and Second Deriva-
tive (SD) can overcome the overlap of spectral informa-
tion and improve the resolution of overlapping peaks [17]. 
Multiple Scattering Correction (MSC) can solve the prob-
lem of absorbance shift by constructing a linear regression 
model [18]. Standard Normal Variable (SNV) can miti-
gate the ability to add or multiply in spectra [19]. In this 
study, the dataset was divided into training set (70%) and 
test set (30%) by the Kennard-Stone (KS) algorithm, and 
four methods, SD, MSC, SNV and SG, were selected for 
preprocessing. In addition, the above methods were per-
formed by Matlab R2017a and SIMCA 14.1 software.

3DCOS acquisition
The theoretical foundations of the synchronous, asyn-
chronous, and integrated 3DCOS generation methods 

are shown in Eqs. (1) to (5), where t denotes the perturba-
tion interval, m denotes the number of spectral measure-
ments, and the dynamic spectral intensity representation 
of the variable v is represented by the vectors [20].

The synchronous and asynchronous 3DCOS correla-
tion strengths between v1 and v2 are denoted as Φ (v1, 
v2) and Ψ (v1, v2) (Eq. 2 Eq. 3) [21]. Respectively the inte-
grated 3DCOS is obtained by multiplying the same syn-
chronous and asynchronous 3DCOS.

(1)S(v) =
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Fig. 2 Sample Collection and Processing Procedures
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where N is defined as the Hilbert matrix Eq. (5).

PLS‑DA construction
PLS-DA is a supervised discriminative classification 
model in which the spectral data is X and the vector con-
taining the category information is Y. The screening of 
variables contributing to the identification is based on the 
maximum covariance of X and Y. In this study, we have 
used PLS-DA as a model for the classification of samples. 
In this study, samples are assigned to categories (0 or 1) 
based on the predicted value of the dummy Y variable, 
and a Y value of 1 means that these samples belong to the 
category; a Y value of 0 means that these samples do not 
belong to the category [22].

Identification models for different harvesting periods 
(January-December) were developed based on ATR-
FTIR spectra of both stem and leaf parts of Dendro-
bium officinale. Root mean square error (RMSEE), root 
mean square error of prediction (RMSEP) and root mean 
square error of cross-validation (RMSECV) were used 
as the evaluation indexes of the model accuracy; the 
closer the error value was to 0, the more stable the model 
was;  R2 was used as a parameter to measure the match 
between the data and the model, and the closer the value 
was to 1, the more stable the model was;  Q2 indicated the 
prediction ability of the model on new data, and in gen-
eral, the model proved to have a good prediction perfor-
mance when the value of  Q2 > 0.5 proves that the model 
has good prediction performance. In addition, SIMCA 
14.1 software was used to perform 200 substitution tests 
on the model to verify whether PLS-DA had overfitting 
problems.

SVM model construction
SVM is a supervised classification model with good 
generalization ability, and its nonlinear algorithm can 
address the statistical validation deficiencies of PLS-DA 
in dealing with multiple covariates and inhomogeneous 
distributions, thus validating the results of PLS-DA [8]. 
Based on limited sample information, SVM has a unique 
advantage in solving high-dimensional patterns and non-
linear identification when the sample size is small [12]. 
A penalty coefficient (coast, c) that is too large or too 
small will result in poorer model generalization and risk 
of fitting; accompanied by an increase in the kernel func-
tion (gamma, g) and an increase in the number of sup-
port vectors, resulting in an impact on the training and 
prediction speed. The SVM model in this study was con-
structed by Matlab R2017b.

(5)Njk =

{

0, j = k
1

πk−j
, j �= k

ResNet model construction
ResNet can solve the problems of over-model weight 
decay, overfitting and gradient vanishing or gradient 
explosion caused by deepening of CNN layers [23]. 
Proposed by Microsoft Research in 2015. Compared to 
ordinary machine learning algorithms, ResNet avoids 
the errors of feature data extraction by artificial intel-
ligence by using machines to automatically extract fea-
tures to build models.

In this study, Conv block and Identity block were 
used to construct 14-layer ResNet to distinguish Den-
drobium from different harvesting periods. Conv block 
was used when the size of the output F(x) is the same 
as the size of the input x and vice versa, Identity block 
was used. 60% of the training set was used to build the 
model and the minimum loss value was obtained by 
updating the weight values in conjunction with Sto-
chastic Gradient Descent (SGD) to determine the con-
vergence of the model. The stability and accuracy of the 
built model were verified using a 30% test set and finally 
10% external validation set was fed to the built model to 
verify the generalization ability of the model.

Statistical analysis
The coefficient of variation was calculated from the 
measured trait indicators, and factor analysis and 
combined factor scores were performed using online 
SPSSAU data analysis software (https:// spssau. com/). 
Comparison of the weight share of each trait, the total 
factor scores were used to determine the appropri-
ate harvesting period, and the DMC and coefficient of 
variation were used to determine the optimal harvest-
ing period for yield. The coefficient of variation (1) and 
DMC (2) were calculated as follows:

In Eq.  (1) CV is the coefficient of variation of each 
indicator, x represents the standard deviation of the 
indicator, and y represents the mean value of the indi-
cator; in Eq.  (2) DMC is the dry matter content of the 
samples in each month, m represents the dry weight, 
and n represents the fresh weight.

Environment variable extraction
By importing the latitude and longitude of the sampling 
points in Yuxi City, Yunnan Province, into ArcGIS 10.0 
software, and utilizing the Toolbox toolkit value extrac-
tion to point function, the values of solar radiation 

(6)CV =

x

y

(7)DMC =

m

n
× 100%

https://spssau.com/
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(sard) and average precipitation (Pre) were extracted 
and recorded from November to April of the following 
year (Table  1). Correlation (Spearman) analyses were 
conducted between the harvesting period of the sam-
ples (overwintering period, November–April of the fol-
lowing year) and the data (X1-X9) of different traits of 
D. officinale, comparing the effects of heat factor and 
moisture factor on its growth.

Construction of predictive model
Partial Least Squares Regression (PLSR) modeling can 
correlate the changes in the spectral absorption intensity 
of a sample with its quantitative data, which can effec-
tively quantify the quantitative data in the data, and a 
linear mathematical relationship between X (spectra) and 
Y (quantitative data) can be found by correlating the two 
sets of observed data [24]. In this study, the model perfor-
mance of PLSR was evaluated by both linearity and accu-
racy; the calibration set samples were used to create and 
evaluate the model, and the remaining samples were the 
external validation set, where the model was considered 
to have a high degree of linearity when  R2 was close to 
one. In addition, the residual prediction deviation (RPD) 
was used to further evaluate the model performance, 
where RPD < 1.4 indicated that the subspectral data were 
difficult to evaluate quantitatively, and 1.4 < RPD < 2.0 
indicated that its spectral data could be evaluated quan-
titatively but the prediction accuracy needed to be 
improved [25]. RPD > 2.0 indicated that the model was 
effective and had a high prediction accuracy, and could 
be used for practical prediction. DMC is a direct factor 
affecting the yield of D. officinale, in this study, Matlab 
R2017a software was used to divide the dataset, and the 
PLSR models of D. officinale stems and leaves were estab-
lished by The Unscrambler X 10.4 software, respectively, 
and the optimal model was compared to select the opti-
mal model after predicting its DMC.

Results
Information on ATR‑FTIR spectra of D. officinale stems 
and leaves
The ATR-FTIR spectra of 120 stem and 120 leaf samples 
involved in the study were shown in Fig. 3. The spectral 
intensities of November-March were generally stronger 
than those of the other months, which might be caused 
by the fact that they were in the harvest period and the 
samples were relatively high in chemical content, with 
the strongest absorbance in December. The overall vari-
ation in stem and leaf spectra was small, with differences 
mainly in the range 3000–2750  cm−1 and near the spec-
tral band 1595  cm−1.

Classification results of PLS‑DA
In the PLS-DA model, it could be seen that not all model 
results by preprocessing were improved, and all preproc-
essing methods make the model worse, except after SD, 
which is better (Table  2). Among them, the leaf (SD-L) 
was more accurate than the stem, with 100% and 97.22% 
accuracy in the training and test sets, respectively, and 
lower  R2 and  Q2, 0.7892 and 0.5611, respectively, and 
the PLS-DA model of the D. officinale stem with SD pre-
processing (SD-S) was more robust compared to it, and 
there was no risk of overfitting (Additional file  1: Fig. 
S1). In addition, this preprocessing method was chosen 
for further modeling and analysis because the training 
and test sets of the PLS-DA model of SD-S were 97.62% 
and 97.22%, respectively, which still had the risk of 
misclassification.

Discriminant results of SVM
The results of the SVM establishment of D. officinale 
stems by genetic algorithm (GA) were shown in Addi-
tional file 1: Fig. S2, based on the original data, the SVM 
model was established with a c = 98.902, g = 9.5 ×  10–4, a 
training set accuracy of 57.14%, and a test set accuracy 
of 86.11%, which took 50.85 min; after SD preprocessing, 
the SVM model was established with a c value of 0.846, a 
g value of 10.0145, the training set accuracy was 80.95%, 

Table 1 Environmental and trait data for Dendrobium during the appropriate harvesting period

X1: Length of the stem (cm); X2: Fresh weight of stem (g); X3: Fresh weight of leaf (g); X4: Stem weights (g); X5: Leaf weights (g); X6: Dry matter content of stem (%);X7: 
Dry matter content of Leaf (%); X8: Water content of stem (%); X9: Water content of leaf (%); Sard: Solar radiation (KJ  m−2  day−1); Pre: Precipitation (mm)

Month Sard Pre X1 X2 X3 X4 X5 X6 X7 X8 X9

1 M 12780 13 18.26 5.86 3.55 1.08 0.56 18.53 15.7 81.47 84.3

2 M 15601 14 10.79 3.08 1.9 0.57 0.26 18.7 13.97 81.3 86.03

3 M 17831 48 23.49 4.11 3.41 0.83 0.46 20.53 14.04 79.47 85.96

4 M 19063 448 21.82 2.93 2.66 0.64 0.39 22.37 14.93 77.63 85.07

11 M 12533 11 32.69 6.98 6.16 0.99 0.76 14.27 12.5 85.73 87.5

12 M 11527 887 31.95 6.77 4.17 1.35 0.73 19.67 17.33 80.33 82.67
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Fig. 3 ATR-FTIR spectroscopy of D. officinale A and B Raw spectrum; C and D Average spectrum

Table 2 Parameters of the PLS-DA model

Bolded values represent the models with the best results

Style LVs R2 Q2 RMSEE RMSECV RMSEP Accuracy of training 
test (%)

Accuracy of 
testing test 
(%)

Raw-S 10 0.511 0.313 0.203 0.229 0.198 86.9 77.78

SD‑S 15 0.875 0.616 0.104 0.190 0.133 97.62 97.22
MSC-S 15 0.211 0.120 0.254 0.258 0.239 54.76 44.44

SNV-S 15 0.212 0.119 0.254 0.259 0.254 54.76 41.67

SG-S 9 0.415 0.236 0.243 0.241 0.231 78.57 61.11

Raw-L 11 0.536 0.307 0.121 0.213 0.178 86.9 77.78

SD-L 12 0.789 0.561 0.109 0.189 0.150 100 97.22

MSC-L 14 0.188 0.120 0.252 0.255 0.257 41.67 50

SNV-L 14 0.188 0.120 0.252 0.225 0.257 40.48 52.78

SG-L 10 0.449 0.228 0.186 0.226 0.211 84.52 72.22
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the test set accuracy was 88.89% took 117.26 min; due to 
the low accuracy, ResNet model is further selected for 
further analysis.

The 3DCOS Information of D. officinale
The 3DCOS plot has differences more obvious and 
clearer peak characteristics, mainly including position 
and intensity, while resolving spectral overlap and less 
obvious peak differences. In the synchronous 3DCOS 
of D. officinale, the absorbance of month 12 was signifi-
cantly stronger than the other months; the asynchronous 
3DCOS featured more peak information; and the inte-
grated 3DCOS had the least spectral information (Fig. 4).

Deep learning model results (ResNet)
Based on the results of the above analysis, the ResNet 
model was further built with the weight decay coefficient 
γ were 0.0001 and the learning rate was 0.01. The model 
was constructed from synchronous, asynchronous and 
integrated 3DCOS image datasets of stems to identify 
D. officinale samples from different harvesting periods. 
The best synchronous 3DCOS results could be seen in 
Fig. 5A, with 100% accuracy in both training and test sets 
when the number of iterations was 58, with a loss value 
of 0.139, and 100% accuracy in external validation, with a 
total time of 9.8 min.

Phenotypic data analysis
From the matrix of correlation coefficients and vari-
ance contribution of phenotypic traits, it could be seen 
that the three principal factors contributed the most to 
the explanatory variables with a cumulative contribu-
tion of 91.576%, which represented the information of 
D. officinale traits X1-X9 in the 12  months (Additional 
file 1: Table S2). In the rotated factor loading matrix, the 
1st principal factor mainly contained the phenotypic trait 
information of X1, X2, X3, X4 and X5; the 2nd principal 
factor mainly contained the phenotypic trait information 
of X6 and X8; and the 3rd principal factor mainly con-
tained the phenotypic trait information of X7 and X9 
(Additional file 1: Table S3).The rankings of the compos-
ite factor scores in the 12  months of D. officinale were, 
in descending order: 11 > 3 > 12 > 1 > 4 > 5 > 9 > 6 > 2 > 8 > 10 
> 7 (Table 3). It is worth noting that its harvesting period 
was from November to April of the following year, and all 
other months ranked within the top 5 except for the 9th 
ranked in the 2nd month, indicating that the factor analy-
sis can be utilized to initially identify the suitable harvest-
ing period of D. officinale.

Analysis of the coefficient of variation
Most of the CV of different months of D. officinale in 
traits X1-X5 were greater than 20%, implying that the 
data were unstable and varied greatly; in X6, the CV of 
March, July, August October and November were greater 
than 20%, indicating that the data of the samples in these 
months were unstable and varied greatly, with the great-
est variability in July, with a CV value of 33%; in X7, only 
the data of March were unstable, with a CV value of 22%; 
and the information of X8 and X9 was the most stable, 
with the CV of less than 20% (Additional file 1: Table S4).

Comparison of production in different months
Through the dry matter content can be used as an impor-
tant indicator to judge the level of yield of D. officinale 
in different months, in general, its dry matter content 
was higher in November–April than other periods, with 
stems having the highest DMC in April and leaves having 
the highest in December, indicating that D. officinale had 
a higher yield in April and December (Fig. 6).

Model parameters for PLSR
Predictive analysis of the dry matter content in different 
months of D. officinale can be used as a reliable method 
for evaluating its suitable harvesting period. Figure  7A 
represents the PLSR predictive model of dry matter con-
tent using raw data, with poor prediction of D. officinale 
stems and better fitting of the PLSR model for leaves. 
Considering the effects caused by different preprocessing 
on the model, the spectral data of D. officinale stem and 
leaf were further modeled after preprocessing (Fig.  7B, 
C). The parameters after modeling were shown in Table 4, 
the PLSR model built after preprocessing by MSC pre-
dicted the best dry matter content of Dendrobium stems 
with Factor = 7, Slope = 0.95, RMSE = 0.47,  R2 = 0.99, and 
RPD = 8.79; and the PLSR model built after preprocess-
ing by SG predicted the best dry matter content of Den-
drobium leaves with Factor = 9, Slope = 0.94, RMSE = 0.2, 
 R2 = 0.99, RPD = 9.55; it proves that the model established 
by this method has a stable effect, high precision, small 
error, and can predict the dry matter content of D. offici-
nale stem and leaf at the same time.

Effect of solar radiation (Sard) and precipitation (Pre) 
on the traits of D. officinale during november–april 
following year
Using Spearman’s correlation analysis to correlate the D. 
officinale trait data from November to April with the cor-
responding solar radiation and precipitation, it was found 
that X2 was significantly negatively correlated with Sard, 
X6 was significantly positively correlated with Pre, and 
X8 was significantly negatively correlated with Pre within 
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Fig. 4 3DCOS of D. officinale stem. A synchronization; B synchronous; C synthesize
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the appropriate harvesting period (Additional file 1: Fig. 
S3).

Discussion
Analysis of ATR‑FTIR spectra of D. officinale
Dendrobium leaves were overall stronger than stems in 
terms of absorbance intensity in the characteristic peak 
1750–1500   cm−1 range, which may be caused by the 
higher polysaccharide content of leaves than stems. The 
characteristic peak at 3417  cm−1 was the O–H telescopic 
vibrational absorption of polysaccharides; and the char-
acteristic peaks in the range of 3000–2750  cm−1 were the 
methyl C–H anti-symmetric and symmetric telescopic 
vibrational absorption and the methylene-cyclohexane 
antisymmetric telescopic vibrational absorption. The 
characteristic peaks in the range 3000–2750   cm−1 are 
methyl C–H anti-symmetric and symmetric telescopic 
vibrational absorption and methylene C-H anti-symmet-
ric telescopic vibrational absorptimethylene-cyclohex-
aneon [8]. 1702   cm−1 is the carbonyl C=O telescopic 
vibrational absorption of saccharides [5]. 1595   cm−1 is 

mainly due to the telescopic vibration of the carboxy-
late ions [26]. The 2 characteristic peaks with moderate 
absorption intensities near 1440 and 1380   cm−1 belong 
to the C–H stretching vibration, in-plane bending vibra-
tion, and –CH3 scissor bending vibration, respectively; 
1322   cm−1 The characteristic peaks near the vicinity 
characterize the hydroxyl O–H bending vibration with 
the amide III band absorption; 1270–1245   cm−1 char-
acterize the amide III band characteristic absorption of 
saccharides with the C–O–C stretching vibration [27]. 
1027   cm−1 near the vicinity represents the characteris-
tic absorption peaks of the pyran ring, which come from 
the asymmetric vibrational absorption of the C–O–C 
glycosidic bond of the pyran ring and C–O–H stretching 
vibration, respectively. It is noteworthy that the absorb-
ance intensity of the characteristic peaks at 1702   cm−1 
and 1595  cm−1 may be related to galacturonic acid [28]. 
The absorbance intensity of the characteristic peak at 
1027   cm−1 may be related to the high or low content of 
galactomannan [29].

Fig. 4 continued
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Identification of different harvesting periods of D. officinale
PLS-DA has certain statistical validation defects when 
dealing with multiple covariance and inhomogeneous 
distribution, this shortcoming can be compensated by 
utilizing SVM which has a unique advantage in solv-
ing problems such as nonlinear and high-latitude data, 
and the results of PLS-DA can be validated [30]. The 

results proved that the accuracy of the SVM model was 
low, and the SVM model based on the GA algorithm 
took 50.85  min to model using the original data, and 
117.26  min after preprocessing, and the more samples, 
the longer the time consumed. The ResNet model based 
on synchronous 3DCOS did not need to be preprocessed, 
and it took 9.8 min to build the model using the original 

Fig. 5 ResNet model based on 3DCOS. A synchronization; B synchronous; C synthesize

Table 3 Composite factor score

Month First principal factor Second principal 
factor

Third principal factor Aggregate score NO

1 0.372897 0.241814 − 0.43721 0.134544 4

2 − 0.91393 0.418097 0.513253 − 0.2099 9

3 0.01221 0.768536 0.610066 0.358308 2

4 − 0.43336 1.01551 0.251237 0.113335 5

5 − 0.1055 − 0.30795 0.220011 − 0.07556 6

6 − 0.23098 − 0.35753 − 0.00096 − 0.20556 8

7 − 0.88661 − 0.05651 − 0.2763 − 0.51833 12

8 0.038571 − 0.76199 − 0.33093 − 0.26129 10

9 − 0.01105 − 0.35787 − 0.01912 − 0.10258 7

10 − 0.35179 − 0.40248 − 0.23974 − 0.33658 11

11 1.335152 − 0.46284 1.012049 0.789642 1

12 1.174386 0.263207 − 1.30236 0.313964 3
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data with 100% accuracy in both the training and test 
sets, and 100% accuracy in external validation. ResNet 
took less than 10% of the time of the SVM model, and 
achieveds a good classification effect regardless of the 
size of the samples and the number of categories [31]. 
ATR -FTIR combined with chemometrics for qualitative 
analysis, because it is not possible to assess the quality 
and yield of the high and low, when dealing with sam-
ples can be measured in its morphological characteristics 
data, using factor analysis in statistics can be used to pro-
vide a comprehensive assessment of the different months 
of harvesting D. officinale, to provide a reasonable time 
of harvesting. In this study, 3DCOS images of Dendro-
bium stems were successfully used to construct a ResNet 
model to recognize Dendrobiums with different harvest-
ing periods, which largely saves time and cost compared 
to SVM models. Unfortunately, the number of external 
validation samples used in this study to verify the stability 
and generalization ability of the ResNet model is small, 
and there is some chance in the recognition results, and 
the model will be further validated by increasing the sam-
ple size in the future. However, the results of this study 
can still provide a reference for the identification of Den-
drobium harvesting period, and also provide a theoretical 
basis for the quality evaluation of medicinal plants.

Analysis of the best harvesting period of D. officinale
The results of the rotated factor loading matrix showed 
that the first principal factor was mainly determined 
by traits X1-X5, with an explanation rate of 44.83%, 
which could explain half of the information of the sam-
ples; the second principal factor and the third principal 
factor were determined by X6 and X8, and X7 and X9, 

respectively, which could explain 23.63% and 23.12% 
of the information of the samples, respectively. Most 
of the coefficients of variation of the first principal fac-
tor traits X1-X5 were within 20–50%, which might be 
caused by the small sample size and different selection 
criteria when collecting D. officinale individuals. Differ-
ent people collect Dendrobium with different judgment 
criteria, part of some people choose stem length or stem 
thickness as a subjective factor, which can not represent 
the content of its effective chemical composition and 
dry matter, so it can not be used to evaluate the yield of 
medicinal plants by sex trans X1-X5. DMC is a direct fac-
tor affecting the high or low yield, and the coefficients 
of variation of X6 and X7 are relatively stable [16]. The 
content of polysaccharides in D. officinale leaves is higher 
than that of stems, and it has anti-tumor and antihyper-
tensive effects on the human body [32]. Therefore, it is 
necessary to combine both stem and leaf components to 
assess the yield. In Fig. 6, the DMC of D. officinale stems 
and leaves was higher in November–April compared to 
other months, and such a result is consistent with the 
factor composite scores. The DMC of the stem reaches its 
highest level in April and December, and the DMC of the 
leaves in December is much higher than in other months, 
indicating that November to April of the following year is 
the suitable harvest period for D. officinale, and Decem-
ber is the optimal harvest period. Spearman’s correla-
tion analysis showed that during the suitable harvesting 
period (November–April of the following year) of D. 
officinale, an increase in Sard would lead to a decrease in 
trait X2, and an increase in Pre would lead to an increase 
in trait X6, i.e., the loss of stem water content, which 
affects photosynthesis and the accumulation of DMC by 

Fig. 6 Dry matter content in different months of D. officinale. A Dry matter content of dendrobium stem; B Dry matter content of dendrobium leaf
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Fig. 7 PLSR modeling of Dendrobium officinale after different pre-treatments. A Modeling with RAW; B PLSR modeling of Dendrobium officinale 
stems; C PLSR modeling of Dendrobium officinale Leaf
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the plant through water supply, and the magnitude of its 
accumulation can be directly reflected in trait X1 [33]. 
Therefore, the suitable harvesting period of D. officinale 
needs a certain degree of light shading during the period 
of high solar radiation (14:00–17:00), and at the same 
time ensure sufficient water in the morning (7:00–10:00) 
to ensure the normal photosynthesis and DMC accumu-
lation. In addition, different planting environments may 
lead to different optimal harvesting periods of D. offici-
nale. Based on the importance of DMC on the appropri-
ate harvesting period of D. officinale, ATR-FTIR-based 
DMC prediction analysis can reduce the time for sample 
processing and its phenotypic data analysis, and the opti-
mal harvesting period of D. officinale can be evaluated 
quickly and efficiently.

Conclusion
In this study, the 3DCOS combined with the ResNet 
model was used for the first time to determine the har-
vest period of D. officinale. Morphological and environ-
mental factors were combined to evaluate the optimal 
harvest period of D. officinale, and PLSR prediction was 
used to analyze dry matter content. The results showed 
that the ResNet model was effective, with 100% accuracy 
in training, testing, and external validation. In addition, 
the model construction time was 90% faster than tradi-
tional models, greatly saving time and cost. The suitable 
harvesting period for D. officinale is from November 
to April of the following year, with the best harvest-
ing period being the 12th month. During the harvesting 
period, plants need to be covered with a certain degree 
of light every day and maintained in sufficient water to 
ensure their photosynthesis and dry matter content. 
PLSR modeling of D. officinale stems and leaves based 
on MSC and SG preprocessing, respectively, was the best 
and can be used as an effective means to predict their dry 
matter content. In this study, ATR-FTIR spectroscopy, 

3-dimensional correlation analysis, image recognition, 
and chemometrics analysis were used to construct a 
comprehensive analysis method for Dendrobium har-
vesting period identification and yield prediction, which 
has the advantages of fast, non-destructive and green. 
It provides a scientific method for the identification of 
suitable harvesting period and yield prediction of Den-
drobium, which can guide local growers to choose the 
suitable harvesting time and reduce the economic losses 
caused by human factors. Meanwhile, the method has 
strong identification and generalization ability and can be 
popularized and applied to the research of identification 
and yield prediction of medicinal plants’ origin, parts and 
suitable harvesting period.
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