
Li et al. Plant Methods           (2024) 20:49  
https://doi.org/10.1186/s13007-024-01169-4

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Plant Methods

Early detection of dark-affected plant 
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Abstract 

Background Mechanical damage to plants triggers local and systemic electrical signals that are eventually decoded 
into plant defense responses. These responses are constantly affected by other environmental stimuli in nature, 
for instance, light fluctuation. In recent years, studies on decoding plant electrical signals powered by various 
machine learning models are increasing in a sense of early prediction or detection of different environmental stresses 
that threaten plant growth or crop yields. However, the main bottleneck is the low-throughput nature of plant electri-
cal signals, making it challenging to obtain a substantial amount of training data. Consequently, training these models 
with small datasets often leads to unsatisfactory performance.

Results In the present work, we set out to decode wound-induced electrical signals (also termed slow wave poten-
tials, SWPs) from plants that are deprived of light to different extents. Using non-invasive electrophysiology, we sepa-
rately collected sets of local and distal SWPs from the treated plants. Then, we proposed a workflow based on few-
shot learning to automatically identify SWPs. This workflow incorporates data preprocessing, feature extraction, data 
augmentation and classifier training. We established the integral and the first-order derivative as features for efficiently 
classifying SWPs. We then proposed an Adversarial Autoencoder (AAE) structure to augment the SWP samples. Com-
bining them, the Random Forest classifier allowed remarkable classification accuracies of 0.99 for both local and sys-
temic SWPs. In addition, in comparison to two other reported methods, our proposed AAE structure enabled better 
classification results using our tested features and classifiers.

Conclusions The results of this study establish new features for efficiently classifying wound-induced electrical sig-
nals, which allow for distinguishing dark-affected local and systemic plant wound responses. We also propose a new 
data augmentation structure to generate virtual plant electrical signals. The methods proposed in this study could be 
further applied to build models for crop plants using electrical signals as inputs, and also to process other small-scale 
signals.
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Background
In nature, plants are constantly challenged by vari-
ous environmental stimuli. Sub-optimal conditions like 
drought, salinity, rainfall, wind, light irradiation, as well 
as attacks by pathogens or insects cause severe damage to 
crop plants all over the world every year, which eventually 
leads to a great threat to food security [1, 2]. To deal with 
stressing factors, plants have evolved sophisticated strat-
egies to defend themselves, in the meantime, maintaining 
their overall fitness under unfavored circumstances. Out 
of all these environmental stimuli, mechanical damages 
elicited by wounding of chewing insects not only break 
down tissue integrity and dampen crop growth, but also 
facilitate pathogen infections and greatly reduce the yield 
[3]. Therefore, an increasing number of studies were car-
ried out to decipher how plants coordinate themselves in 
response to mechanical damages within the spot of injury 
as well as throughout the bodies, aiming at designing 
stress resilient plants.

As early as last decades, it was already observed that 
damages to plants triggered electrical signals that prop-
agated to a distance away from the wounds [4]. These 
kinds of signals exist widespread across plant king-
doms, for instance, in the wounded tomato plants [5], 
the excised cucumber hypocotyls [6] and the crushed 
or chewed Arabidopsis leaves [7]. Interestingly, in these 
cases, the electrical signals typified the signature of the 
variation potentials (VPs), which has a steep depolariza-
tion phase and a slow repolarization phase. Besides VPs, 
damage also triggers action potentials (APs) and sys-
temic potentials (SPs) in various plant species. For exam-
ple, APs and SPs were detected on the stems and leaves 
of Vicia faba and Hordeum vulgare, respectively, upon 
herbivory [8]. However, the biological relevance of the 
electrical signals was largely unknown until the charac-
terization of clade three Arabidopsis glutamate receptor-
like (GLRs) genes [7]. Upon leaf wounding, Arabidopsis 
plants with impaired function of GLR3.3, GLR3.6 and 
GLR3.1 genes failed to propagate electrical signals to 
the distal intact leaves. Accordingly, defense responses 
mediated by the defense hormone jasmonate were largely 
reduced [7].

Wound-induced electrical signals are also termed 
as slow wave potentials (SWPs), in light of the differ-
ent features in comparison with other electrical reac-
tions. With the identification of more components in 
wound-induced electrical signaling, SWPs were further 
characterized and decoded using multiple parameters. 
Duration of SWPs was established as a major parameter 
in indicating the levels of defense activation in a couple 
of loss-of-function mutants. Unlike glr mutants, in Arabi-
dopsis H+-ATPase AHA1 mutants, the longer duration of 
SWPs corresponded to a stronger defense response [9]. 

In another Arabidopsis mutants defective in the mecha-
nosensitive channels (MSLs), besides the SWP duration, 
SWP repolarization maxima was another key feature cor-
responded to the defense activation [10]. Interestingly, in 
the rice glr3.4 loss-of-function mutants, peak amplitude 
of the SWP determined the defense levels in response to 
wounding [11]. Moreover, in two irregular xylem (irx) 
mutants irx3 and irx5 showing altered systemic defense 
responses, wound-induced SWPs displayed several dif-
ferent characteristics compared to wild-type plants, 
including the detected depolarization spikes prior to the 
main SWP signal, the slope of the principal depolariza-
tion and also the velocity of SWPs [12]. Therefore, the 
features of SWPs are tightly correlated with the defense 
activities in plants and are potentialized in indicating 
how plants react to wound stimuli under different cir-
cumstances. However, little information is available in 
the direction of decoding SWP features, which not only 
limits our understanding on how plants utilize SWPs to 
initiate systemic defense responses, but also restricts the 
potential application of SWPs in indicating the variable 
mechanical responses of plants when they are challenged 
by biotic or abiotic stresses.

In recent years, plant electrical signals are emerging as 
stimuli-specific phenotypes to differentiate plants from a 
wide range of environmental stimuli [13]. Moreover, as 
electrical signals are often produced rapidly upon stimuli, 
detection and classification of plant electrical signals also 
allow early diagnosis of the health status of plants before 
visible symptoms [14, 15]. In particular, machine learn-
ing-coupled strategies showed great power in analyzing 
and classifying plant electrical signals under various con-
ditions. For example, Chatterjee et  al. [16] extracted 11 
statistical features from the electrical signals of tomato 
plants under different stimuli (NaCl,  H2SO4 and  O3) and 
then classified them using several machine learning algo-
rithms, i.e. Fisher’s linear discriminant analysis (LDA), 
quadratic discriminant analysis (QDA), naive Bayes 
classifier, and Mahalonobis classifier. The best accuracy 
of 73.67% was archived for the multiple classifications. 
More recently, an improved accuracy of above 90% was 
reached when four different curve fitting methods (Poly-
nomial, Gaussian, Fourier and Exponential) were used to 
obtain the coefficients of the fitted model as features in 
combination with LDA and QDA as the classifiers [17]. 
In addition, Qin et al. [18] proposed a CNN structure to 
extract features and classify electrical signals of wheat 
plants under salt stress, reaching a classification accu-
racy of 92.3%. Following this, they further introduced 
a 1D-CNN-LSTM model to classify the electrical sig-
nals of wheat plants under serial concentrations of NaCl 
[19]. In another study, an interval algorithm was used 
to reduce the dimension of the input electrical signal in 
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combination with the SVM classifier [20]. More recently, 
to classify various nutrient deficiencies in tomato plants, 
Intrinsic Mode Functions (IMFs) of electrical signals 
from tomato plants cultured under various nutrient defi-
ciencies (Ca, Fe, Mn and N) were extracted using Empiri-
cal Mode Decomposition (EMD). An average accuracy 
rate of 98.5% was reached using descriptive statistics and 
the bi-level measurements of IMF groups as features [21]. 
Despite the growing number of studies on decoding plant 
electrical signals, the successful utilization of plant elec-
trical signals to predict how plants react to various stress 
conditions is still constrained by the low throughput of 
signals that can be used to generate reliable models.

In this study, we sought to determine if wound-induced 
local and systemic SWPs could be classified when plants 
are deprived of light to different extents. On the one 
hand, light qualities are crucial in determining plant 
growth [22]. On the other hand, geographical differences 
at different altitudes render plants with variable access 
to sunlight. Light fluctuation also occurs when smaller 
plants are shaded by the taller ones grown under high 
densities [23]. Whether plants grown under less sunlight 
react differently to mechanical stress compared to those 
receiving more sunlight remains uncharacterized. To 
address these questions, we simulated the variable light 
access in nature by treating the Arabidopsis plants under 
dark conditions to different extents, took advantage of 
the non-invasive electrophysiology to measure SWPs 
in the wounded and the distal connected leaves [24], 
extracted features from the traces and finally classified 
them using improved machine learning models. Notably, 
we also proposed a new network structure to augment 
the electrical signals, which showed a great performance 
in boosting the classification accuracy.

In summary, the main contributions of our present 
work are:

1) Our work established SWP as an effective parameter 
that can be utilized to differentiate plant local and 
systemic wound responses when they are deprived of 
light at different levels.

2) New features were established for efficiently classi-
fying plant electrical signals. In our case, the electri-
cal signals were collected from wounded plants that 
were pretreated under darkness to different extents.

3) An improved Adversarial Autoencoder (AAE) struc-
ture was proposed to augment the electrical signals.

The following sections of the manuscript were organ-
ized as below: (1) Materials and Methods. In this sec-
tion, the pipeline for the data acquisition, preprocessing, 
feature extraction, data augmentation and classification 
models were described in detail. (2) Results. This section 

presented the classification results of SWPs as well as 
performance evaluation of our proposed data augmenta-
tion structure. (3) Discussion. The results and the limita-
tions of the present work were discussed in this Sect. (4) 
Conclusion. This section summarized the overall findings 
and potential future applications.

Materials and methods
Plant growth conditions
5-week-old Arabidopsis thaliana Colombia-0 (Col-
0) plants were used as a model in this study. Individual 
plants were grown in the growth room at 21  °C under 
150 μE  m−2  s−1 light (10 h light, 14 h dark, 70% humidity) 
until 5-week-old with expanded rosettes. Then the plants 
were subjected to darkness treatment before measuring 
wound-induced electrical signals. Normal light condi-
tion: 10 h light/14 h night. Two extended darkness condi-
tions were introduced: (1) short extended darkness (SED, 
10 h light/18 h night); (2) long extended darkness (LED: 
10  h light/40  h night). The above three conditions are 
summarized in Fig. 1A.

Experimental setup and data acquisition
As shown in Fig.  1A, measurements of wound-induced 
SWPs were carried out in a Faraday cage to avoid inter-
ference. Two Ag/AgCl recording electrodes (e1, e2) were 
placed on the petioles of leaf 8 (wounded) and leaf 13 
(systemic), respectively. One drop of KCl/agar solution 
was added in between the electrode and the leaf peti-
ole to maintain the connection. Another Ag/AgCl elec-
trode was placed in soil as a reference. Upon crushing 
leaf 8 (wounded), the signals from both e1 and e2 were 
collected at a frequency of 100 Hz, amplified through a 
high-impedance signal amplifier (FD223a, WPI), and 
finally visualized using LabScribe3 software (iWorx Sys-
tem, Inc., Dover, NH). In this study, we collected SWPs 
from 20 plants under normal light conditions, 20 plants 
treated with SED and 15 plants treated with LED. For 
each plant, leaf 8 and leaf 13 SWPs were separately meas-
ured. In Table 1, the total number of the measured plants 
under different light conditions is listed.

Overall framework of data analysis
Figure  1B shows the overall workflow for analyzing the 
SWPs in this study. It contains the following procedures: 
(1) data preprocessing; (2) obtaining of characteristic 
equations; (3) data augmentation; (4) classification using 
different models.

Data preprocessing
Signal extraction
It was well established in the previous study [7] that 
when a local leaf (usually leaf 8) of Arabidopsis plants 
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is wounded, SWPs could be generated in this leaf and 
then successfully transmitted to the distal part of plants. 
Leaf 13, which is distal to leaf 8, is normally measured 
to assess the systemic defense responses reflected by the 
SWP signals. Therefore, in our study, we also focused on 
the SWPs from this pair of leaves to estimate the local 
and systemic wound responses of the plants. As SWPs 
in the local leaf typically did not recover to the baseline 
during recording, and the time point for wounding the 
plants varies from sample to sample, to facilitate com-
parable features of SWPs under different conditions, we 

extracted electrical signals from each sample following 
the same criteria. Specifically, electrical signals used for 
further analysis were extracted in between the “start” and 
“stop” window of the raw sample (as shown in Fig. 2A). 
Start: the time point when wounding was applied. Stop: 
the time point when the repolarization phase recovers to 
half of the maximum depolarization. For each sample, all 
the data points in this window were extracted and repre-
sented the useful signals. In the example trace in Fig. 2A, 
there are 12,800 data points after the signal extraction 
(between “start” and “stop”).

Fig. 1 Pipeline for the experimental setup and the data analysis. A Overview of the data acquisition system. To avoid external interference, 
5-week-old Arabidopsis plants were treated under different light conditions before measurement in a Faraday cage. Light conditions: Normal: 10 h 
light/14 h night; SED: short extended darkness, 10 h light/18 h night; LED: long extended darkness, 10 h light/40 h night. Leaf 8 was wounded 
with forceps and the electrical signals were measured by two electrodes (e1, e2) that were placed on the petioles of leaf 8 and leaf 13, respectively. 
The signals were amplified through a signal amplifier and then converted for visualization on the laptop as shown. B Overall workflow for classifying 
the electrical signals. Following preprocessing, characteristics were extracted from the leaf 8 and leaf 13 electrical signals, respectively. Machine 
learning-based classification was performed using either the extracted characteristics from original samples or extended samples upon data 
augmentation. The colored bars next to “Data augmentation” represent the structural network for data augmentation
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Local mean compression
The process of local mean compression was performed 
on the extracted leaf 8 and leaf 13 signals for a specific 
purpose. The main objective was to reduce the amount of 
data while preserving the essential features of the origi-
nal signals. Specifically, the signals were first divided into 
smaller segments. Then the mean values were calculated 
for each segment and were used to represent the entire 
segment. The compressed signal will have fewer data 
points compared to the original signal while the mean 
values of each segment still retain the essential features of 
the original signal. In this study, as shown in Fig. 2B, we 
set a fixed-size sliding window with a width of 100 data 
points. Following this, the original 12,800 data points 
were converted to a duration of 128 s (12,800/100 = 128). 
The same treatment was applied to all the samples.

Table 1 Number of samples measured before treating with 
different light conditions

Electrical signals from both leaf 8 (wounded) and leaf 13 (systemic) were 
collected

Leaves Treatments Number 
of 
samples

Leaf 8 Normal 20

SED 20

LED 15

Leaf 13 Normal 20

SED 20

LED 15

Fig. 2 Data preprocessing. A The electrical signal between the “start” and “stop” window was extracted from each raw recording as the useful signal. 
The horizontal axis shows the number (num) of the data points within the sample. B The values of every 100 data points in the window of A were 
averaged and the resulting mean trace is shown. The horizontal axis was converted to show the duration (s) within the window. C The mean trace 
in B was equalized with a length of 411 s by filling the sample with the value of the last data point. D Normalization and alignment of the equalized 
trace in C 
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Padding
Many machine learning models, especially those based 
on neural networks, require inputs of fixed dimensions. 
In this study, the duration of electrical signals can differ 
from one sample to another. Padding [25] was performed 
to fix the inputs into the same dimension. To do so, the 
samples were all filled with the values of their last data 
points to ensure an equal duration of 411  s, which cor-
responded to the sample with longest duration (Fig. 2C).

Normalization and baseline correction
We normalized each sample of all datasets to [−  1,1] 
by Eq.  (1), which allows variables with uncertainties to 
become more comparable. Normalization will make the 
model more data-sensitive which improves the accuracy 
of classification [26].

where Yi is the i-th normalized sample, Xi,j is the j-th 
datapoint of the i-th sample, Xi,min is the minimum data-
point of the i-th sample, Xi,max is the maximum datapoint 
of the i-th sample, i is the number of samples and j is the 
number of datapoints.

Next, to reduce the impact of the filled values on the 
following calculations, they were aligned to the amplitude 
at “0”. The details of this section are shown in Fig. 2D.

Feature extraction
Time domain characteristics
To classify wound-induced Leaf 8 and Leaf 13 SWPs 
from plants that were treated with three light conditions 
(Normal, SED and LED), we started with extracting 12 
time-domain features [27] from the SWP signals (Addi-
tional file 1: Table S1). Maximum and minimum respec-
tively represent the maximum and minimum potential 
values in a sample. The mean is computed by dividing the 
overall potential values by the number of data points in a 
sample. The variance reflects the degree of fluctuation of 
the signal and is calculated by the distance between the 
potential value and the mean value at each time point. 
The standard deviation is the root of the variance. The 
skewness measures the skewed direction and degree of 
signal distribution. The kurtosis measures the sharpness 
of the signal distribution. The mean square is defined as 
the average value of each potential value squared. The 
root mean square is the root of the mean square value. 
The area represents the overall trend of a useful signal 
over the entire period. The declining slope represents the 
slope of the signal from the first maximum value to the 
minimum value. The rising slope represents the slope of 
the signal from the minimum value to the next maximum 

(1)

Yi =
Xi,j − Xi,min

Xi,max − Xi,max

(

i = 1, 2, · · · , n; j = 1, 2, · · · , 411
)

value. The peak represents the difference between the 
maximum and the minimum peak values. The equations 
for calculating the above features are computed below:

Maximum = max(xi) Minumum = min(xi) (2)
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1
n

∑n
i=1xi Variance : σ 2
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1
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[
1
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Where xi represents the i-th datapoint in a sample, 
i = 1, 2, · · · 411.

Derivative and integral transformation
Plant electrical signals are kinds of time series, and 
are non-stationary and nonlinear. As a mathematical 
method, derivative transformation calculates the deriva-
tive of a signal and can be used to isolate specific features 
in a signal, such as edges, spikes, and changes in slopes 
[28]. The integral of a signal represents the accumulated 
change of the signal over time [29]. As another math-
ematical method, integral transformation calculates the 
integral of a signal. It is advantageous in signal smooth-
ing, noise eliminating, and information extracting from 
the overall shape and trends of signals. Both derivative 
and integral transformation facilitate analysis and char-
acterization of the accumulated change in a signal over 
time. The formulas for computing the first-order deriva-
tive and the integral are given in Eq.  (3). The first-order 
derivative (deriv_1st) and the integral of a representa-
tive leaf 8 (wounded) SWP under normal condition are 
shown in Additional file 1: Fig. S1.

where xi represents the i-th datapoint in a sample, 
i = 1, 2, · · · 411.

Data augmentation
The core concept of few-shot learning lies in addressing 
the issue of limited samples, which often impacts clas-
sification accuracy due to experimental constraints [30]. 
To enhance the model’s generalization ability and sub-
sequently improve classification accuracy, one approach 
is to expand the number of electrical signal samples by 
generating augmented data within the training sets. In 

(3)

f
′

(xi) =
1

2
(
yi+1 − yi
xi+1 − xi

+
yi − yi−1

xi − xi−1
)s

=
(f(xi+1)+ f(xi)) ∗ (xi+1 − xi)

2
(i = 1, 2, · · · , 411.)
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our study, sample augmentation for plant electrical sig-
nals based on Adversarial Autoencoder (AAE) [31] was 
proposed. AAE was shown as a powerful tool in several 
aspects like semi-supervised classification, unsupervised 
clustering, image generation and data visualization [32]. 
However, its application in augmenting plant electri-
cal signal samples has not been explored until now. This 
innovative use of AAE presents a significant opportunity 
to bolster few-shot learning capabilities in the context of 
plant electrical signal analysis.

Architecture for the data augmentation
The autoencoder (AE) [33] is composed of an encoder 
and a decoder. The encoder extracts key informative 
features from high-dimensional original data and maps 
them to a low-dimensional latent representation. Then 
the decoder maps the latent representation back to the 
original high-dimensional input. AAE adds a discrimi-
nator to the AE. After the original data is mapped to the 
latent space, the data conforming to a specific distribu-
tion is input. The discriminator is used to determine 
whether the mapped data space follows a specific data 
distribution pattern.

As shown in Fig. 3, the entire network structure is com-
posed of the autoencoder (upper) and the discriminator 
(lower). The training process is divided into two stages: 
in the sample reconstruction stage, the original samples 
were input as one-dimensional data. The autoencoder 
was renewed by Stochastic Gradient Descent (SGD) [34] 
to minimize the reconstruction loss function. Here, we 
proposed to use the L1 loss function given by Eq.  (5). 
Regularization [35] is accomplished using the aggre-
gated posterior q(z) to match any prior p(z) in the regu-
larization phase. The encoding function q(z|x) on the 
autoencoder defines the hidden encoding q(z) , and the 
vector aggregated posterior distribution is computed 
as:q(z) =

∫

xq(z|x)pd(x)dx.P(z) is the data that conforms 
to a certain distribution. Here we set it as the data that 
conforms to Gaussian distribution, which alternately 
allows updating the discriminant network and generator. 
We proposed to use Generative Adversarial Network [36] 
to complete the network training. The idea of using it is 
shown below:

(4)

min
G

max
D

EZ∼pdata [logD(p(z))+ log(1− D(G(q(z))))]

Fig. 3 Pipeline of the data augmentation.’ + ’ represents the virtual vector,’-’ represents the real vector. The pipeline consists of Encoder Q, Decoder P 
and Discriminator D. The curve in the lower left corner is a Gaussian distribution plot. The curve in the lower right corner shows a sigmoid function
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where p(z) is the real Gaussian data distribution. G(q(z)) 
is the virtual data distribution generated according to the 
input samples. D(p(z)) represents the probability of D 
judging the real data distribution. D(G(q(z))) represents 
the probability of D judging the distribution of virtual 
data.

where ŷ represents the predicted value, y represents the 
real value, and i represents the sample dimension.

The encoder, decoder, and the discriminator are all 
composed of fully-connected layers. The encoder con-
tains 5 linear layers. Considering that each sample has 
411 data points, the number of input neurons was set 
to 411, and the number of output neurons is 50. Cor-
responding to the encoder, the decoder also consists of 
5 linear layers, with 50 input neurons and 411 output 
neurons. The discriminator consists of five linear layers 
with 50 input neurons and 1 neuron as a discrimina-
tive output. Detailed network architecture is shown in 
Additional file  1: Fig.  S2. Dropout [37] was set to 0.2 
for the linear layer to prevent overfitting. Relu acti-
vation function [38] was used to better mine sample 
features. fivefold cross-validation was used to split 
the dataset. The remaining parameters were set as fol-
lows: seed = 10, epoch = 200, reconstruction learn-
ing rate reg_lr = 0.0001, and generation learning rate 
gen_lr = 0.0005.

Evaluation criterion for the data augmentation
To evaluate the generative AAE, the mean values of 
each dimension from all samples were used as the tem-
plate, and the similarity between the original sample 
and the augmented sample was compared using the fol-
lowing four indicators:

Euclidean distance (ED) measures the distance 
between two points in a multidimensional space.

Pearson correlation coefficients (PCC) measures the 
levels of correlation between x , y variables.

(5)L1_loss : L1
(

ŷ− y
)

=

∑n

i=0
|̂y(i) − y(i)|

(6)ED =
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h=1

√
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2

m
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PCC =
1

m







�m

h=1

�n
i=1(xi − x)

�

yi − y
�

�

�n
i=1(xi − x)2

�

�n
i=1

�

yi − y
�2







x =

�n

i=1
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�n

i=1
yi

Cosine similarity (CS) indicates the similarity between 
two vectors by measuring the cosine of the angle.

where m is the number of samples, n is the number of 
dimensions,xi represents the dimension of the origi-
nal sample or the augmented sample, yi represents the 
dimension of the template.

If the similarity between the original sample and the 
template is close to that between the augmented sample 
and the template, the augmented sample is considered 
reliable.

Classification
Classifier
Support Vector Machine (SVM) [39]. SVM is a super-
vised learning algorithm used for classification and 
regression tasks. It is a powerful and versatile classifier 
that finds the optimal hyperplane to separate data into 
different classes. In the SVM model, C is the regulariza-
tion parameter, which is crucial in avoiding overfitting or 
underfitting issues. In our case, the value of C was set to 
1 to balance the model’s complexity and fitting capabil-
ity. To deal with non-linearly separable data, we used the 
‘RBF’ (Radial Basis Function) kernel as the kernel func-
tion. In the RBF kernel function, gamma is an important 
parameter that determines the impact of each sample 
on the decision boundary. We chose to automatically 
adjust the gamma value to determine the optimal deci-
sion boundary based on the characteristics of the data. 
By optimizing the values of C and the parameters for the 
kernel function, SVM is expected to achieve a good per-
formance in classification problems, in our case, in clas-
sifying wound-induced SWPs from plants treated with 
different light conditions.

K-Nearest Neighbor (KNN) [40]. The KNN algorithm 
follows a specific classification process. First, it calculates 
the distances between each testing sample and all other 
samples in the dataset. Then the distances are sorted, and 
the k samples with the shortest distances to the testing 
sample are selected. Next, the categories of these k-near-
est samples are determined. Finally, the testing sample is 
classified based on the category that is most frequently 
represented among the k-chosen neighbors. By consid-
ering multiple nearest neighbors, the KNN algorithm 
leverages the collective information from neighboring 
samples to make a more informative and reliable classi-
fication decision. This approach enhances the accuracy 
and robustness of the classification results. In our clas-
sification process, we tested different values of k to assess 

(8)cosθ =
1

m
(
∑m

h=1

∑n
i=1(xi ∗ yi)

√

∑n
i=1x

2
i

√

∑n
i=1y

2
i

)
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the impact on classification accuracy. After evaluation, 
we determined to set the value of k to 5, which resulted in 
the best classification accuracy.

Random Forest [41]. Random Forest is a commonly 
used supervised learning algorithm composing of multi-
ple decision trees. The "random" refers to two key com-
ponents. First, when constructing each decision tree, 
a random subset of samples is selected from the origi-
nal dataset using sampling with replacement. Second, a 
random subset of features is selected as input variables, 
which helps to increase the diversity among decision 
trees and reduce the risk of overfitting. By setting ran-
dom_state = 0, the results of running the Random For-
est algorithm are reproducible. In other words, the same 
random seed will lead to the same random sampling and 
feature selection results, therefore ensuring consistency 
and comparability of the output results. The classification 
result of Random Forest is determined by a voting mech-
anism. After the samples are classified by each decision 
tree, the final classification is determined based on the 
voting results of all decision trees. This ensemble learn-
ing approach helps to improve the accuracy and robust-
ness of the Random Forest algorithm.

Muti-Layer Perception (MLP) [42]. Multi-layer per-
ceptron (MLP) is a classical neural network model. 
It usually consists of an input layer, a hidden layer 
and an output layer. The different layers are fully con-
nected. In our study, we incorporated this deep learn-
ing model, in addtion to the other machine learning 
models described above, to evaluate their performance 
in SWP classification. The number of hidden layer neu-
rons is set to 10. Relu is used as the activation function 
between layers. The MLP model is ended up with Soft-
max layer, which outputs the confidence of each category. 
Learning_rate = 0.01.

Evaluation criterion for the classifiers
To visualize the classification results, we introduced con-
fusion matrix with the horizontal axis representing the 
true label and the vertical axis representing the predicted 
label.

The confusion matrix contains four pieces of informa-
tion: True Positive (TP), which means the actual positive 
samples are predicted to be positive; True Negative (TN), 
which means the actual negative samples are predicted to 
be negative; False Positive (FP), which means the actual 
samples are negative but predicted to be positive; False 
Negative (FN), which means the actual samples are posi-
tive but predicted to be negative.

The following four indicators were used to evaluate the 
classification effect:

Precision =
TP

TP+FP
Recall = TP

TP+FN
(9)

F1 score = 2 ∗ Precision ∗ Recall
Precision+Recall

ACC =
TP+TN

TP+TN+FP+FN

Precision represents the proportion of samples that are 
actually positive among the samples that are predicted to 
be positive. The recall is determined as the ratio between 
the number of positive samples that are correctly classi-
fied as positive  to the total number of positive  samples. 
The recall measures the model’s ability to detect  posi-
tive samples. The higher the recall, the more positive sam-
ples detected. F1 score is calculated as a weighted average 
of precision and recall. Greater F1 score reflects robuster 
model. Given that our task is a multi-classification, we 
used macro-averaging method that first calculated the 
precision, recall, and F1 score for each positive example 
and then averaged all the results. Accuracy (ACC) rep-
resents the proportion of the correctly classified samples 
out of the total number of samples.

Results
Leaf 8 and leaf 13 SWPs separately evaluate the local 
and systemic wound responses for a plant. In this study, 
plants were pre-treated under either normal or extended 
darkness conditions (SED and LED) before leaf 8 and leaf 
13 SWPs were measured upon wounding leaf 8. Then 
leaf 8 and leaf 13 signals were separately classified using 
various models. In this section, we presented the triple 
classification results for leaf 8 (wounded) and leaf 13 (sys-
temic) SWPs, respectively. To improve the classification 
accuracy, we introduced a new data augmentation net-
work to extend the sample size for the electrical signals. 
The performance of this method was evaluated in com-
parison to another two widely used methods.

Triple classification of wound‑elicited SWPs 
under extended darkness using original data
After performing the data preprocessing procedures 
shown in Materials and Methods “Data preprocessing” 
on leaf 8 (wounded) and leaf 13 (systemic) SWP samples 
respectively, we extracted a group of 12 time-domain 
characteristics, the first-order derivative and the integral 
features from the traces. The features were then subjected 
to classification using SVM, KNN and Random Forest, 
and MLP classifiers, respectively. Triple classification 
results for leaf 8 (wounded) and leaf 13 (systemic) SWPs 
are shown in Additional file 1: Tables S2, S3, respectively. 
Table 2 shows the best classification results. In the case of 
leaf 8 (wounded) SWPs, an accuracy of 0.89 was reached 
using the integral as the feature and SVM as the classi-
fier. For classifying leaf 13 (systemic) SWPs, the SVM 
classifier showed the best performance and generated a 
classification accuracy of 0.8 when using the integral as 
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the feature. Details of the classification are shown in the 
confusion matrices in Additional file 1: Fig. S3. Six sam-
ples for leaf 8 SWPs were misclassified (Additional file 1: 
Fig. S3A) while eleven samples were misclassified for leaf 
13 SWPs (Additional file 1: Fig. S3B).

Evaluation of the augmented samples
To improve the classification accuracy for the misclas-
sified leaf 8 and leaf 13 samples as shown in Additional 
file  1: Fig.  S3, we proposed to use a data augmentation 
strategy to generate augmented leaf 8 and leaf 13 sam-
ples for training the models. After preprocessing the 
samples as shown in Materials and Methods “Data pre-
processing”, the samples were augmented using AAE as 
described in the methods. Four evaluation indicators 
described in Materials and Methods “Evaluation cri-
terion for the data augmentation” were used to evaluate 
the similarities between the original and the augmented 
samples. The mean values of each dimension of the origi-
nal sample under Normal, SED and LED conditions were 
calculated and used as templates. For evaluation, we used 
the ED, CS and PCC parameters to compare the correla-
tion among the templates, the original samples and the 
augmented samples. As shown in Table  3, for both leaf 
8 and leaf 13 SWPs, the Euclidean distance between the 
augmented sample and the template, and that between 
the original sample and the template, is very close. In 
addition, the PCC and CS values are close to 0.8, indi-
cating that the templates are strongly correlated to all 
the samples. Together, our results demonstrated that the 
augmented samples are very similar to the original sam-
ples, supporting the effectiveness of our proposed data 
augmentation model.

Triple classification of wound‑elicited SWPs 
under extended darkness upon data augmentation
Based on the above model, 50 augmented samples were 
respectively generated for leaf 8 and leaf 13 SWPs under 
normal, SED and LED conditions. Similarly, we extracted 
the features and reclassified the leaf 8 and leaf 13 SWPs 
using the above four classifiers with the same settings 
as for the original data. For all of the datasets, the leave-
one-out method was used to divide the training and 
testing sets. Upon data augmentation, the classification 
results were generally improved in all the combinations 
of different features and classifiers as reflected by the four 
parameters (Additional file 1: Table S4 and Table S5). We 
noted that upon adding the augmented samples, Random 
Forest showed the best performance in classifying either 
leaf 8 or leaf 13 SWPs using their deriv_1st as features 
(Table 4).

Specifically, the classification accuracy for leaf 8 
(wounded) SWPs was increased to 0.99 when using the 
deriv_1st as the feature and Random Forest as the clas-
sifier (Table 4). Moreover, the scores for other evaluation 
indicators (Recall, Precision, F1-score) were also greatly 
boosted (Table  4). Detailed classification results are 
shown in the confusion matrix in Additional file  1: Fig. 
S4. Originally, 13 samples were misclassified (Additional 
file 1: Fig. S4A), whereas, upon data augmentation, only 
two samples were incorrectly classified under SED and 
LED conditions (Additional file 1: Fig. S4B).

For leaf 13 (systemic) SWPs, as shown in Table 4, the 
best classification accuracy was also greatly elevated to 
0.99. Similar to leaf 8 SWPs classification, Random For-
est again showed the best performance when using the 
deriv_1st as the feature. Detailed information for the 

Table 2 The best classification results for leaf 8 (wounded) and leaf 13 (systemic) SWPs

Leaves Features Classifiers Accuracy Recall Precision F1 score

Leaf 8 Integral SVM 0.89 0.89 0.90 0.89

Leaf 13 Integral SVM 0.80 0.80 0.80 0.80

Table 3 Quality evaluation of the augmented samples for leaf 8 (wounded) and leaf 13 (systemic) SWPs

Leaves Indicators Augmented 
Normal_template

Original Normal_
template

Augmented 
SED_template

Original SED_
template

Augmented 
LED_template

Original 
LED_
template

Leaf 8 ED 11.51 14.21 14.99 14.39 20.06 13.09

CS 0.83 0.75 0.83 0.75 0.94 0.88

PCC 0.82 0.74 0.81 0.72 0.93 0.87

Leaf 13 ED 17.76 17.81 23.16 24.82 23.82 16.43

CS 0.84 0.78 0.94 0.82 0.83 0.79

PCC 0.84 0.77 0.89 0.78 0.79 0.79
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classification was shown in Additional file  1: Fig. S4. 
Before data augmentation, seven samples under normal 
condition, two samples under SED condition and seven 
samples under LED condition were misclassified (Addi-
tional file 1: Fig. S4C) whereas after data augmentation, 
only one sample under normal condition and one sam-
ple under SED condition were misclassified (Additional 
file 1: Fig. S4D).

Performance comparison of the different augmentation 
methods
Finally, to evaluate if our proposed augmentation method 
was superior to other reported models, we compared the 
performance of AAE to the Generative Adversarial Net-
work (GAN) [36] and the Variational Autoencoder (VAE) 
models [43] in augmenting SWPs. The GAN method 
was proposed to enrich the electrical signals from wheat 
seedlings under salt tolerance. By introducing a certain 
amount of noise into the model, a regularization effect 
was produced and the performance of the model was 
improved. The classification accuracy was increased from 
80.77 to 92.31% [18]. Variational Auto-Encoder (VAE) is 
a generative algorithm which is highly versatile and its 
function is not affected by the format of data [44]. How-
ever, it has not been applied in generating plant electrical 
signals before.

To facilitate comparison, the same signal preprocess-
ing, feature extraction and classifying procedures were 
used before deploying the GAN and VAE methods. The 
dataset was divided into training set and testing set by 

fivefold cross-validation. All experiments were done by 
CPU through python3.7 under win10 operating system. 
In the case of using GAN to generate SWPs, we reused 
the same settings reported in [18], to compare its per-
formance in augmenting and classifying our electrical 
signals with our proposed AAE. The number of input 
and output neurons was set to 411 based on the model 
proposed in [18]. In the case of using VAE to generate 
SWPs, as it was not reported in augmenting electri-
cal signals before, the parameters were set the same as 
those for AAE. Specifically, the encoder consists of five 
linear layers with each layer containing 411, 200, 100, 
100, and 50 neurons, respectively. The decoder consists 
of five linear layers with each layer containing 50, 100, 
100, 200, and 411 neurons, respectively.

As shown in Table  5, in comparison to GAN and 
VAE, our proposed AAE method showed the best 
performance in combination with the tested classifi-
ers to classify leaf 8 and leaf 13 SWPs. Altogether, the 
results strongly suggest that our method is an effective 
tool for augmenting SWPs in the testing sets, which 
further allowed us to improve the performance of the 
classifiers.

Discussion
Plants can generate electrical signals when subjected 
to various environmental stimuli or grown at differ-
ent developmental stages [45, 46]. Particularly, in recent 
years, wound-induced electrical signals, widely known 
as slow wave potentials (SWPs), are receiving great 

Table 4 The best classificaiton results for leaf 8 (wounded) and leaf 13 (systemic) SWPs upon data augmentation

The results before augmentation are shown before slash

Leaves Features Classifiers Accuracy Recall Precision F1 score

Leaf 8 Deriv_1st Random forest 0.76/0.99 0.76/0.99 0.77/0.99 0.76/0.99

Leaf 13 Deriv_1st Random forest 0.71/0.99 0.69/0.99 0.75/0.99 0.70/0.99

Table 5 Comparison of the classification accuracies (ACC (%)) for leaf 8 (wounded) and leaf 13 (systemic) SWPs using three different 
augmentation methods

The best results are underlined and highlighted in bold

Leaves Time‑domain (ACC) Deriv_1st (ACC) Integral (ACC)

AAE VAE GAN AAE VAE GAN AAE VAE GAN

Leaf 8 82.44 79.51 84.39 95.61 89.75 67.32 95.61 89.26 83.90

80.98 82.43 81.95 90.24 87.31 69.93 84.88 85.85 86.83

80.49 81.95 81.95 99.02 90.24 80.49 91.22 88.78 84.88

Leaf 13 87.80 64.88 76.10 93.66 89.27 76.59 97.07 91.71 84.39

88.78 77.56 76.59 86.83 88.78 71.22 91.21 91.21 84.39

88.78 84.39 80.49 99.02 90.73 70.73 96.10 93.65 83.90
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attention as they were found to tightly connect with plant 
defense activities in response to herbivory or mechanical 
damage [45]. Therefore, decoding SWPs under different 
conditions will potentially enable differentiating whether 
plants could react differently to mechanical stress when 
grown under a varying environment. In this work, we 
measured local (leaf 8) and systemic (leaf 13) wound-
induced SWPs from Arabidopsis plants that were kept 
in darkness to different extents (normal, short-extended 
darkness and long-extended darkness) and classified the 
signals in combination with machine learning models. 
Extended darkness has a great impact on plant growth 
[23]. Moreover, in a recent study by Fotouhi et  al. [47], 
it was shown that extended darkness led to a failure in 
generating SWPs in an aca10 aca12 mutant, which sub-
sequently enhanced the susceptibility to herbivory. By 
extracting different features from SWPs and applying dif-
ferent machine learning models, we managed to classify 
leaf 8 and leaf 13 SWPs separately from plants treated 
under darkness to different extents (SED and LED) com-
pared to normal light condition, with accuracies above 
0.8. To further improve the performance, we introduced 
an AAE method to augment our obtained SWP samples. 
The classification accuracies were greatly increased up 
to more than 0.99 for both leaf 8 and leaf 13 SWPs. Our 
work established SWPs as an effective proxy that can be 
applied to differentiate plant local and systemic wound 
responses when they are deprived of light to different 
extents. This is actually in line with the genetic evidence 
that extended darkness reshapes plant wound responses, 
for example, in the aca mutants [47]. Therefore, our pro-
posed methods for classifying SWPs under different light 
conditions could be further applied in the early detection 
of various wound responses in different genetic mutants 
when they are subjected to different environmental 
stimuli.

From the perspective of methodology, we introduced 
to use the integral and the deriv_1st as new features for 
plant electrical signals. Compared to the canonical dura-
tion and amplitude features used to quantify electrical 
signals [45], our established parameters also effectively 
allowed distinguishing plant wound response-SWPs 
affected by different levels of darkness. However, accu-
rate and reliable classification of plant electrical signals 
under different conditions is still counteracted by the 
limited number of samples. Although data augmenta-
tion has been implemented as a useful tool to improve 
the performance of models [48, 49], its application in 
augmenting plant electrical signals was poorly investi-
gated. In our work, we proposed to use AAE method to 
generate virtual SWP samples for training the machine 
learning models. This method has not been reported in 
augmenting plant electrical signals before. We compared 

the classification results using data obtained by three dif-
ferent data extension methods, out of which, our pro-
posed AAE model obtained the best result for classifying 
SWPs. This is probably because the AAE idea is to estab-
lish a reversible mapping from the real text distribution 
to an unknown distribution. This unknown distribution 
could be set following a Gaussian distribution, avoiding 
problems like text discreteness and non-differentiability. 
Given the powerful performance of the AAE model, it 
could also be helpful for future research to convert other 
small-scale datasets to large-scale that are needed for 
improving the performance of machine learning models.

While AAE serves as an effective and commonly 
employed data augmentation strategy for time series, 
which is in the context of plant electrical signals, it has 
several constraints which may cause limitation of this 
work. First, AAE, like any generative model, can be 
prone to overfitting especially when the training data is 
limited. It makes the model under the risk of missing to 
generalizing well to new or unseen data. Second, inter-
preting the latent space of AAE can be challenging. It 
might be unclear what specific features are encoded in 
the latent variables.

Conclusions
To summarize, using non-invasive electrophysiology, we 
generated three sets of wound-induced local and sys-
temic electrical signals from plants treated with three 
light conditions (Normal, SED and LED). To develop 
new methods that could classify electrical signals more 
efficiently and precisely, we extracted different features 
from our generated signals and classified them using 
different machine learning models. We established the 
integral and deriv_1st as useful features for leaf 8 and 
leaf 13 SWPs classification under the three light con-
ditions. In cooperation with our new proposed AAE 
method to augment the limited number of SWP sam-
ples, the Random Forest classifier showed the best 
performance in distinguishing both leaf 8 and leaf 13 
SWPs with an accuracy of 0.99. In nature, plants are 
under constant mechanical stresses and their access to 
light is affected by various factors. Therefore, our model 
could also be a useful tool for crop plants in predicting 
their wound responses, even more broadly, other stress 
responses reflected by plant electrical signals.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007- 024- 01169-4.

Additional file 1: Fig S1. The first-order derivative (deriv_1st) (A) and 
the integral (B) features of an example trace from a preprocessed leaf 8 
(wounded) SWP. Fig S2. Network structures of the Q Encoder, P Decoder 
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and D Discriminator. The circles filled with blue color represent neurons. 
Fig S3. Confusion matrices for prediction results using SVM classifier. Fig 
S4. Confusion matrices for prediction results using Random Forest clas-
sifier. Table S1. Time-domain features used in this study. Table S2. Triple 
classification results for leaf 8 (wounded) SWPs. Table S3. Triple classifica-
tion results for leaf 13 (systemic) SWPs. Table S4. Classificaiton results for 
leaf 8 (wounded) SWPs upon data augmentation. Table S5. Classificaiton 
results for leaf 13 (systemic) SWPs upon data augmentation.
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