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Abstract 

Background  Leaf water content (LWC) significantly affects rice growth and development. Real-time monitoring 
of rice leaf water status is essential to obtain high yield and water use efficiency of rice plants with precise irriga-
tion regimes in rice fields. Hyperspectral remote sensing technology is widely used in monitoring crop water status 
because of its rapid, nondestructive, and real-time characteristics. Recently, multi-source data have been attempted 
to integrate into a monitored model of crop water status based on spectral indices. However, there are fewer studies 
using spectral index model coupled with multi-source data for monitoring LWC in rice plants. Therefore, 2-year field 
experiments were conducted with three irrigation regimes using four rice cultivars in this study. The multi-source 
data, including canopy ecological factors and physiological parameters, were incorporated into the vegetation index 
to accurately predict LWC in rice plants.

Results  The results presented that the model accuracy of rice LWC estimation after combining data from multiple 
sources improved by 6–44% compared to the accuracy of a single spectral index normalized difference index (ND). 
Additionally, the optimal prediction accuracy of rice LWC was produced using a machine algorithm of gradient 
boosted decision tree (GBDT) based on the combination of ND(1287,1673) and crop water stress index (CWSI) (R2 = 0.86, 
RMSE = 0.01).

Conclusions  The machine learning estimation model constructed based on multi-source data fully utilizes the spec-
tral information and considers the environmental changes in the crop canopy after introducing multi-source data 
parameters, thus improving the performance of spectral technology for monitoring rice LWC. The findings may be 
helpful to the water status diagnosis and accurate irrigation management of rice plants.
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Introduction
Rice is an important staple food worldwide. Rice is 
the largest water-consuming crop in the central rice 
production regions in the world, and water scarcity is 
bound to threaten rice production [1]. Additionally, 
the water consumption in paddy fields would increase 
significantly due to global climate change in the future. 
The unfavorable factors must aggravate the water 
crisis in rice fields [2, 3]. Leaf water content (LWC) is 
an important evaluation index for crop water demand 
status [4]. Monitoring LWC effectively achieves precise 
irrigation, improves water utilization, and alleviates the 
water crisis.

Hyperspectral remote sensing technology has recently 
been widely used in agricultural production due to 
its rapid, nondestructive, and real-time monitoring 
of crop physiological and biochemical characteristics 
[5–7]. Early LWC spectral modeling studies improved 
prediction accuracy by constructing various types of 
vegetation indices from sensitive spectral bands, such 
as the moisture stress index (MSI) and water index (WI) 
[8, 9]. Previous spectral monitoring studies have initially 
focused on vegetation indices derived from spectral 
bands. Researchers construct different vegetation 
indices by spectrally sensitive bands to improve the 
prediction accuracy of LWC [10, 11]. Vegetation indices 
are frequently screened by selecting spectral information 
and have a good correlation with LWC at multiple points 
over many years [12, 13], but the established models 
usually ignore the effects of the growing environment 
and growth characteristics on LWC of the crops. 
Climate characteristics and physiological status of the 
plants are important factors affecting LWC [14, 15]. 
The neglected information could be the primary reason 
for the poor generalizability of existing vegetation index 
models in practical applications. Therefore, integrating 
the actors into the spectral monitoring models of LWC 
would be more high precision due to considering the 
potential effects of the growing environment and growth 
characteristics on LWC [16, 17]. Qin et  al. [18] have 
recently improved crop nitrogen content prediction 
accuracy using a spectral model that combines image 
feature parameters and fluorescence parameters. These 
results supported our inferences that introducing multi-
source data may be important means to improve the 
monitoring accuracy of LWC spectral modeling in rice 
plants.

Choosing modeling methods are one of key steps 
in building monitoring models. Vegetation index 
monitoring models have been usually established using 
linear and nonlinear functions [19, 20]. These traditional 
monitoring models do not represent the complex 
relationship between various indicators. Machine 

learning algorithms with sophisticated functionality 
and the ability to handle complex relationships between 
predictors and target variables can be a good solution 
to this problem [21, 22]. The accuracy and stability 
of models have significantly improved with the rapid 
development of machine learning algorithms, and these 
are widely adopted when establishing rice nitrogen 
nutrition monitoring models [23–25]. Moreover, machine 
learning algorithms allow the use of different classes 
of sample data as input variables, allowing multiple 
sources of data (physiological and ecological indicators 
and spectral information) to be effectively coupled and 
can effectively discriminate between differences in the 
contributions of the input variables, allowing the model’s 
parameters can be fully utilized. Therefore, we speculated 
that the monitoring capacities of vegetation index models 
integrating with multi-source data would also have 
significant advantages using machine learning algorithms 
when predicting the LWC of rice plants based on the 
results previous studies [16, 26].

Three irrigation regimes and four varieties with 
different drought tolerance capacities were established 
LWC difference populations in field experiments. This 
study’s objectives are to (1) select spectrally sensitive 
bands with high correlation with LWC at multiple growth 
stages; (2) build a new vegetation index model of LWC 
integrating multi-source data parameters after selecting 
key physiological and ecological indicators; and (3) use 
a machine learning algorithm to optimize the coupling 
model and select the optimal algorithm to monitor the 
LWC.

Materials and methods
Site and treatment description
Three irrigation regimes, including two water-saving irri-
gation regimes named mild alternate dry and wet irriga-
tion (MADW), severe alternate dry and wet irrigation 
(SADW) and traditional irrigation regime (CK), were 
conducted with four rice cultivars in Anhui province of 
China in 2021 and 2022 (Fig. 1). The planting and sam-
pling plan details and soil characteristics are presented 
in Table 1. The climate conditions are displayed in Fig. 2. 
The irrigation regimes were conducted when rice seed-
lings were planted in plots. The irrigation criterion ref-
erenced the classical definition for the MADW and 
SADW treatments [27]. The supplementary irrigation 
with 2–3  cm water layer was carried out when the soil 
water potential at 20 cm soil layer reached − 15 KPa and 
− 30  KPa in the MADW and SADW treatments during 
whole growth stages of rice plants, respectively, across 
cultivars, years, and locations. The soil water potential of 
each plot was monitored by a tensiometer (Watermark, 
Irrometer Company Riverside, CA, USA). Moreover, 
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2–3  cm water later was always maintained for the CK 
treatment during whole growth stages. Generally, 9–14, 
5–8, and 18–24 times irrigated practices were applied 
for the MADW, SADW, and CK treatments, respectively, 
across cultivars, years, and locations.

The nitrogen fertilizer was divided into three 
applications for each treatment: 40% as a basal fertilizer, 
30% at the early tiller stage, and 30% at the panicle 
differentiation stage. The nitrogen fertilizer was applied 
at the rate of 240  kg  ha−1. Phosphorus and potassium 
fertilizers (P2O5 75  kg  ha−1 and K2O 225  kg  ha−1) were 
also applied as basal fertilizers. Plot sizes for each 
experiment were 12 m2 and 40 m2 in Hefei and Fuyang, 
respectively. All experimental rows were spaced 30.0 cm 
apart, and plants in a row were spaced 13.3 cm apart.

Measurements
Hyperspectral and vegetation index
Canopy reflectance spectra of rice plants were collected 
for the booting, flowering, initial grain filling, and middle 
grain filling stages using spectral scanning equipment 

(ASD Field Spec 4, Boulder, CO, USA). The band 
amplitude of the device ranged from 350 to 2500  nm. 
The measurements were conducted under clear and 
cloudless sky conditions between 10:00 and 14:00 [16]. 
After measuring 10 times for each sample, the average 
value was calculated, and the reference plate was used to 
correct the instrument every 15 min. The representative 
hills were monitored in each plot for all treatments at 
each observed time.

Numerous vegetation indices have been applied 
to monitoring crop water content. The normalized 
difference vegetation index (NDVI) has been widely 
utilized in monitoring plant water using remote sensing 
methods due to its simple construction and effective 
improvement of spectral monitoring accuracy with 
multi-band analysis compared with other vegetation 
indices. Thus, this study used canopy spectral data to 
construct the normalized difference index (ND) and five 
traditional vegetation indices. The calculation equations 
were illustrated in Table 2.

Fig. 1  Sketch of field experiments (c) in Anhui province (b), China (a) using ASD Field Spec 4 (e) and SPAD (d) devices
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Table 1  Basic information of the three experiments

Experiment Year Cultivar Soil water potential Sampling stage Sowing/Harvesting 
date

Soil characteristics

Exp.1 (Hefei, 31° 48′ N, 
117° 23′ E)

2021 Hanyou 73 (HY-73)
Huanghuazhan (HHZ)
Huaidao 5 (HD-5)

0 KPa
− 15 KPa
− 30 KPa

Booting
Flowering
Initial grain filling
Middle grain filling

July 5th /
November 20th

Type: sandy loam soil
Organic matter: 
14.81 g kg−1

Total N: 0.97 g kg−1

Available P: 
21.06 mg kg−1

Available K: 
96.29 mg kg−1

Exp.2 (Hefei, 31° 48′ N, 
117° 23′ E)

2022 Hanyou 73 (HY-73)
Huanghuazhan (HHZ)
Huiliangyou 898 (HLY-
898)

0 KPa
− 15 KPa
− 30 KPa

Booting
Flowering
Initial grain filling
Middle grain filling

May 23th/
September 26th

Type: sandy loam soil
Organic matter: 
15.39 g kg−1

Total N: 1.00 g kg−1

Available P: 
22.67 mg kg−1

Available K: 
98.10 mg kg−1

Exp.3 (Fuyang, 32° 39′ 
N, 116° 15′ E)

2022 Hanyou 73 (HY-73)
Huanghuazhan (HHZ)

0 KPa Booting
Flowering
Initial grain filling
Middle grain filling

May 26th/
September 29th

Type: sandy loam soil
Organic matter: 
17.77 g kg−1

Total N: 0.95 g kg−1

Available P: 
14.18 mg kg−1

Available K: 
65.23 mg kg−1

Fig. 2  Climatic conditions at Wanzhong Comprehensive Experimental Station during the 2021 and 2022 seasons (a). Climatic conditions 
at Yingshang Agricultural Green Development Experiment Station during 2022 (b). AT: monthly average temperature; Rain: monthly accumulated 
rainfall
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SPAD value and chlorophyll fluorescence parameters
SPAD value of rice leaves was monitored using a chloro-
phyll meter (Konica Minolta Company, SPAD-520 plus, 
Japan). The average value of the top three fully expanded 
leaves was defined as the SPAD value of the whole plant. 
The five independent plants were measured in each plot 
across cultivars, water treatments, and observed periods.

The leaves used to measure SPAD value were cho-
sen, and chlorophyll fluorescence parameters of rice 
leaves were determined using a portable pulse-modu-
lated chlorophyll fluorometer (WALZ Company, PAM-
2500, Germany). These leaves were used to determine 
the minimum fluorescence level (Fo) and the maxi-
mum fluorescence level (Fm) of dark-adapted leaves at 
dawn for all cultivars and treatments. The steady-state 
Fo was measured using far-red light with illumination 
less than 1 mol  m−2  s−1. Then, a 0.80-s saturating pulse 
with 8000  mol  m−2  s−1 PAR was supplied to determine 
the Fm. Moreover, the steady-state fluorescence yield 
(Fs) was recorded at the forenoon with clear and cloud-
less sky conditions. Then, a 0.80-s saturating pulse with 
8000 mol m−2 s−1 PAR was stimulated to obtain the maxi-
mal fluorescence level (Fm’). Finally, the maximum pho-
tochemical efficiency (Fv/Fm) and actual photochemical 
efficiency (Y(II)) were calculated:

Leaf water content (LWC)
The fresh leaf mass (FW) was determined by weighing 
the top three fully expanded leaves immediately. Five hills 
were sampled in each plot for four cultivars and three 
water treatments during each observed period. Fresh 
leaves were weighed and dried at 80 ℃ to constant weight 
at each sampling. The weight was marked as dry mass 
(DW). The LWC was calculated as follows:

(1)Fv/Fm = (Fm− Fo)/Fm

(2)Y(II) = (Fm′
− Fs)/Fm′

(3)LWC = (FW − DW )/FW

Crop water stress index (CWSI)
CWSI was calculated as follows [31, 32]:

where Tc is the crop canopy temperature (℃), and Ta is 
the air temperature (℃). Tmin is the lower limit of the 
canopy and air temperature difference (℃), Tmax is the 
upper limit of the canopy and air temperature difference 
(℃), and VPD is the air saturation water vapor pressure 
deficit (KPa). VPG is the difference between the air 
saturation water vapor pressure and VPD when the air 
temperature is Ta and (Ta + A), respectively. A and B are 
linear regression coefficients. RH is the relative humidity 
of air (%).

In this study, a HOBO UX100-003 temperature and 
humidity recorder (Onset, USA) was placed in each 
plot to automatically record rice canopy temperature 
and humidity every 1 h interval throughout the day.

Leaf area index (LAI), above‑ground biomass (Biomass), 
and Grain yield
Five representative hills, which plants in the hills had 
uniform growth capacities, were randomly selected 
from each plot at each sampling time across all culti-
vars and irrigation treatments. The hills with exces-
sively vigorous or weak plants were not sampled to 
minimize sampling error. All green leaves per hill were 
scanned using a portable leaf area meter (CI-203, CID 
Inc., USA). The averaged leaf area in a each plot was 
then calculated from the five hills and marked with D 
(cm2). Finally, the scanned green leaf, remaining yellow 

(4)CWSI =
(Tc − Ta)− T min

T max−T min

(5)Tmin = A+ B× VPD

(6)Tmax = A+ B× VPG

(7)VPD = 0.61× e
17.27Ta
Ta+237.3 × (1−

RH

100
)

Table 2  List of vegetation indices used in this study

The λ1 and λ2 are arbitrary bands in the 350–2500 nm bands, and Rλ1 and Rλ2 are the spectral reflectance of the bands

Vegetation index Algorithm Reference

Normalized difference index (ND) ND = (Rλ1 − Rλ2)/ (Rλ1 + Rλ2) This study

Normalized difference vegetation index (NDVI) NDVI = (R895 − R675)/(R895 + R675) [28]

Normalized difference infrared index (NDII) NDII = (R819 − R1600)/(R819 + R1600) [29]

Normalized difference water index (NDWI) NDWI = (R860 − R1240)/(R860 + R1240) [30]

Water index (WI) WI = R970/R900 [9]

Moisture stress index (MSI) MSI = R1600/R820 [8]
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leaves, stem, and panicle organs were dried at 80 ℃ to 
constant weight to assess the biomass of each plot.

where ρ is the planting density per square meter (hill 
m−2).

Plants from a 2 m2 area were harvested at maturity 
to calculate the actual grain yield with 13.5% moisture 
content in each plot across cultivars and water 
treatments.

Regression models
Some common and classic machine learning algorithms 
were preliminary assessed to select elite algorithms with 
high monitoring abilities to LWC of rice plants. Finally, 
the four machine learning algorithms named decision 
tree regression (DT), random forest regression (RF), 
K-nearest neighbor regression (KNN), and gradient 
boosting decision tree regression (GBDT) were adopted 
in this study. The four selected methods were successfully 
applied on estimating various ecological parameters 
such as water content of wheat plants and soil moisture 
of wheat fields [16, 33]. In addition, the scikit-learn 
packages of the four algorithms were from Python 3.8 
software (https://​scikit-​learn.​org/​stable/​index.​html).

Multiple linear regression (MLR)
MLR is the most basic and commonly used method 
for combining two or more independent variables that 
jointly predict or estimate the dependent variable [34]. 
The y is the dependent variable. The x1, x2… xk are the 
independent variables. The multiple linear regression was 
calculated as follows:

where b0 is the constant term, e is the error term, and 
b1, b2… bk are the regression coefficients. When x1, x2…, 
and xk are fixed, b1(k) represents the effect of increase or 
decrease in x1(k) on y for each unit or named the partial 
regression coefficient of x1(k) on y.

Decision tree regression (DT)
DT is a way to infer classification rules as a decision tree 
from a set of unordered and irregular data, using a top-
down recursive approach to compare attribute values of 
nodes inside the decision tree [35]. Each internal node 
is a splitting problem in a decision tree. A test for some 
instance attribute is specified, and it splits the samples 
arriving at that node according to a particular attribute. 
Each subsequent branch of the node corresponds to one 
of the possible values of that attribute. The prediction 

(8)LAI =
D × ρ

10000

(9)y = b0 + b1x1 + · · · + bkxk + e

results are the average values of the output variables in 
the samples contained in the leaf nodes of the regression 
tree. In this study, the maximum depth of the tree was set 
as 10, and the number of trees was 100.

Random forest regression (RF)
RF resulted from random sampling from sample 
observations and feature variables of the modeled data 
among many decision trees; each sampling result is a tree 
[36]. Meanwhile, each tree generated rules and judgment 
values that match its properties. Finally, the forest 
algorithm integrated the rules and judgment values of all 
decision trees to achieve random forest regression.

K‑nearest neighbor regression (KNN)
KNN was predicted by computing the spatial similarity 
relationship between the k nearest neighbors and 
the predictor. The algorithm was frequently used for 
classification problems in the early stage and gradually 
applied to parameter estimation [37]. The primary 
principle of the KNN algorithm is that a prediction 
sample has K nearest neighbors in the feature space. 
Then, the class of the prediction sample was usually 
determined by the majority class of the K nearest 
neighbors. The K data set value was chosen appropriately 
according to the samples. The model was simplified, and 
useful information was lost if the data set was too large. 
Oppositely, the model would be over-fitted if the data set 
is too small. The K data set was defined as 3 in this study.

Gradient boosting decision tree regression (GBDT)
GBDT is an improved algorithm based on the booting 
algorithm [38]. The booting algorithm assigned the same 
weight to each training sample in the initial training 
and then increased the weights of the error points after 
each training session to generate multiple base learners. 
Finally, these base learners were combined, and the model 
was formed using weighting or voting approaches. The 
difference between gradient boosting tree regression and 
classification algorithms was that the input training data 
was residual. The previous prediction was incorporated 
into the residual to find the training data for the current 
round instead of the gradient of the loss function.

Data analysis and model verification
The Pearson correlation coefficient (PCC) helps to 
measure the linear correlation between variables [39]. In 
this study, PCC was simply regarded as supplementary 
means to eliminate unimportant indicators with low 
correlation coefficient and to obtain eigenvalues with 
high correlation coefficient. This meant that indicators 
closely related to LWC were used to build models to 
improve performance.

https://scikit-learn.org/stable/index.html
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After removing invalid samples from the two-year 
experiments from 2021 to 2022, 91 sample data for each 
growth stage were obtained. In multiple linear regression 
(MLR), 2022 data were used for modeling (55), whereas 
2021 data were used for validation (36). The measured 
data were randomly divided into training (70%) and 
testing (30%) sets in the machine learning regression 
algorithm. The regression model’s accuracy was evaluated 
using the determination coefficient (R2) and root mean 
square error (RMSE). The overall model was evaluated in 
the graph, including linear regression and a 1:1 dash-line, 
to determine the relationship between the predicted and 
measured values. The calculation equations are presented 
in (9)–(10):

where xi is the measured value of LWC, x is the measured 
mean value of LWC, x̂i is the predicted value of the 
model, and n is the sample size. The larger the R2 value, 
the better the accuracy of the model. The RMSE reflects 
the degree of dispersion and deviation between the 
model’s predicted and true values. The smaller the value, 
the better the prediction of the model.

(10)R
2
=

∑
n

i=1 (xi − x̂i)
2

∑
n

i=1 (xi − x)2

(11)RMSE =

√∑
n

i=1 (xi − x̂i)2

n

The workflow of the LWC prediction procedures is 
illustrated in Fig. 3. Data preprocessing included the fol-
lowing processes: (1) normal distribution test and scatter 
plots were performed for the original data such as veg-
etation index parameters, leaf water content, and physi-
ological and ecological indexes (Additional file  1: Fig. 
S1–S4). (2) Outliers detection of all parameters were 
shown in Additional file 1: Table S1. (3) The multicollin-
earity test between ND and SPAD, between ND and Fv/
Fm, between ND and CWSI at whole observed stages 
were also adopted by variance inflation factor and toler-
ance values (Additional file 1: Table S2).

Results
The classical and new vegetation index for monitoring LWC
The sensitive bands of LWC were analyzed and tested 
using the normalized difference vegetation index for-
mula at the booting, flowering, initial grain filling, and 
middle grain filling stages to improve the accuracy of the 
hyperspectral monitoring model for LWC. The classical 
vegetation indices, such as NDII and MSI, had a signifi-
cant positive correlation with LWC and high predictive 
abilities (Table 3). The vegetation index ND constructed 
by the screened sensitive bands (1287 and 1673 mm) also 
had a significant positive correlation with LWC (Fig. 4). 
The R2 in the ND(1287,1673) model was higher than that in 
NDII and MSI vegetation indices at each growth stage. 
These results indicated that vegetation index ND was 
an optimal predicted model at each growth stage of rice 

Fig. 3  Flow chart of this study
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Table 3  Coefficient of determination (R2) of predicting LWC by different vegetation index at different growth stages in rice plants

* and ** indicate significant correlation at 5% and 1% probability level, respectively. ND(1287,1673) is the normalized difference index; NDVI is the normalized difference 
vegetation index; NDII represents the normalized difference infrared index; NDWI is the normalized difference water index; WI shows the water index; MSI represents 
the moisture stress index

Growth stage ND(1287,1673) NDVI NDII NDWI WI MSI

Booting 0.48** 0.01 0.26** 0.00 0.01 0.22**

Flowering 0.64** 0.02 0.48** 0.06 0.27** 0.47**

Initial grain filling 0.57** 0.24** 0.30** 0.03 0.09* 0.30**

Middle grain filling 0.53** 0.01 0.34** 0.32** 0.34** 0.34**

Fig. 4  Image map of the coefficient of determination (R2) and coefficient of determination (RMSE) for screening sensitive band combinations 
of two wavebands at different growth stages of rice plants. a–d and e–h represent R2 and RMSE of the booting, flowering, initial grain filling, 
and middle grain filling stages, respectively

Fig. 5  Model construction (a) and validation (b) of normalized difference index (ND) for monitoring LWC at different growth stages of rice plants. 
Each symbol is the average value from 5 (a) and 4 (b) repeated measurements. Dashed lines represent 1:1 lines; * and ** indicate significant 
correlation at 5% and 1% probability level, respectively
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plants. The R2 of the linear equation between LWC (y) 
and ND(1287,1673) (x) was 0.48, 0.64, 0.57, and 0.53, and 
the corresponding prediction R2 was 0.36, 0.67, 0.64, and 
0.52 at the booting, flowering, initial grain filling, and 
middle grain filling stages, respectively (Fig. 5).

The relationship between physiological‑ecological 
indicators and LWC
The physiological-ecological indicators had obvious 
effects on LWC at each growth stage and yield (Fig.  6). 
The LWC had the highest correlation with grain yield 
at the booting, flowering, and initial grain filling stages. 
The LWC is the most important parameter that regu-
lates grain yield, especially for different irrigation treat-
ments. CWSI had the highest correlation coefficient with 
LWC (− 0.60 to − 0.85) at each observed stage, followed 
by the Fv/Fm (0.56–0.71) and SPAD (0.53–0.67). There-
fore, CWSI, Fv/Fm, and SPAD can be considered reliable 
multi-source data to improve the detection accuracy of 
LWC using the vegetation index model.

In this study, the slope (a) and intercept (b) of linear 
functions between LWC and ND(1287,1673) at different 
growth stages (Fig. 5) were systematically analyzed using 
multi-source data, such as SPAD, Fv/Fm, and CWSI 
(Fig.  7). Both a and b have significantly quadratic curve 
relations with CWSI, SPAD, and Fv/Fm. For a parameter, 
the determination coefficient (R2) of the curves reached 
the highest for the CWSI (R2 = 0.92), followed by the 
SPAD and Fv/Fm. In contrast, Fv/Fm had the greatest R2 
with parameter b (R2 = 0.99), while CWSI had the low-
est R2 with parameter b (R2 = 0.37). The results illustrate 
that SPAD, Fv/Fm, and CWSI can be regarded as useful 
multi-source data to improve the prediction capacities of 
LWC.

Improving the prediction performance of LWC by coupling 
multi‑source data
There were no multicollinearity between ND and SPAD, 
between ND and Fv/Fm, between ND and CWSI based 
on the tolerance and variance inflation factor val-
ues (Additional file  1: Table  S2). Also, Durbin Watson 

Fig. 6  Pearson correlation coefficient (PCC) among LWC, biomass, LAI, CWSI, SPAD, Fo, Fv/Fm, Y(II), and yield at different growth stages. a–d 
Represents the PCC of the booting, flowering, initial grain filling, and middle grain filling stages, respectively. * and ** indicate significant correlation 
at 5% and 1% probability level, respectively. SPAD: chlorophyll content; Fv/Fm: maximum photochemical efficiency; Fo: minimal fluorescence; Y(II): 
actual photochemical efficiency; CWSI: crop water stress index; LWC: leaf water content; Biomass: above-ground biomass; LAI: leaf area index
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Fig. 7  The SPAD value (a), Fv/Fm (b), and CWSI (c) at different growth stages merged cultivars, water treatments, and years. The quadratic function 
relations of both a (black line) and b (red line) parameters derived from the ND(1287,1673) model in Fig. 4a with SPAD d, Fv/Fm (e), and CWSI (f). 
Booting: booting stage; Flowering: flowering stage; Initial: initial grain filling; Middle: middle grain filling; p < 0.05 and p < 0.01 indicate significant 
correlation at 5% and 1% probability level, respectively

Table 4  The ND(1287,1673) models predicting LWC after integrating with multi-source data

LWC: leaf water content; ND(1287,1673): normalized difference index; SPAD: chlorophyll content; Fv/Fm: maximum photochemical efficiency; CWSI: crop water stress 
index; * and ** indicate significant correlation at 5% and 1% probability level, respectively

Growth stage Model Multiple linear regression equation Model Precision Prediction 
Precision

RMSE

Booting ND + SPAD LWC = 1.91ND + 0.02SPAD − 0.19 0.60* 0.53* 0.04

Booting ND + Fv/Fm LWC = 2.75ND + 1.99Fv/Fm − 1.16 0.61* 0.62** 0.03

Booting ND + CWSI LWC = 1.22ND − 0.34CWSI + 0.66 0.69** 0.65** 0.03

Flowering ND + SPAD LWC = 1.48ND + 0.01SPAD + 0.19 0.71** 0.60* 0.02

Flowering ND + Fv/Fm LWC = 2.10ND + 0.37Fv/Fm + 0.18 0.74** 0.64* 0.02

Flowering ND + CWSI LWC = 1.49ND − 0.08CWSI + 0.57 0.75** 0.69** 0.01

Initial grain filling ND + SPAD LWC = 1.15ND + 0.01SPAD + 0.16 0.67** 0.64** 0.01

Initial grain filling ND + Fv/Fm LWC = 1.58ND + 0.88Fv/Fm − 0.16 0.68** 0.66** 0.01

Initial grain filling ND + CWSI LWC = 1.11ND − 0.20CWSI + 0.73 0.61* 0.55* 0.01

Middle grain filling ND + SPAD LWC = 0.60ND + 0.002SPAD + 0.56 0.56* 0.49* 0.01

Middle grain filling ND + Fv/Fm LWC = 0.70ND + 1.19Fv/Fm − 0.31 0.59* 0.56* 0.01

Middle grain filling ND + CWSI LWC = 0.59ND − 0.10CWSI + 0.67 0.57* 0.44 0.01
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test indicated that the established multivariate linear 
regressed models in this study were basically meet the 
requirements of linear model (Additional file 1: Table S2). 
The indicators CWSI, Fv/Fm, and SPAD were introduced 
into the ND(1287,1673) model to improve the prediction 
model accuracy of LWC further (Table  4). The results 
demonstrated that the ND(1287,1673) model integrating 
with multi-source data enhanced predictive power than 
the conventional ND(1287,1673) model (Fig. 5 and Table 4). 
The coupled models of ND(1287,1673) and CWSI had the 
best monitoring capacity to LWC at the booting and 
flowering stages (Fig. 8). The R2 improved from 0.48–0.64 
in conventional ND(1287,1673) models to 0.69–0.75 in the 

coupled models. Prediction R2 also improved from 0.36–
0.67 in conventional ND(1287,1673) models to 0.65–0.69 in 
the coupled models at the booting and flowering stages. 
Moreover, the coupling models of ND(1287,1673) and Fv/Fm 
were optimal at the initial and middle grain filling. The 
R2 and the corresponding prediction R2 improved in the 
coupling models than in conventional ND(1287,1673) mod-
els at the initial and middle grain filling.

Machine learning algorithm optimization model
The data from the flowering stage, most sensitive to water 
treatments, were used as an example to assess the effects 
of the machine learning algorithm on ND(1287,1673) com-
bined with CWSI model precision (Table 5; Fig. 9). The 
R2 were 0.77, 0.78, 0.75, and 0.86 based on DT, RF, KNN, 
and GBDT models, respectively. Additionally, the RMSE 
was 0.01 and 0.02 for the simulating and verifying data 
sets in the machine learning algorithm, respectively.

The R2 and RMSE of simulation and verification sets of 
machine learning algorithm were compared with mul-
tiple linear regression (MLR) model (Fig.  10). R2 of DT, 
RF, KNN and GBDT simulation sets were 1.16, 1.23, 1.16 
and 1.35 times higher than that of MLR, respectively 
(Fig.  10). However, the RMSE of all simulated models 
were almost the same, which the RMSE in simulation 
sets were no advantage in machine learning algorithms 
compared with MLR. In addition, R2 of DT, RF, KNN 

Fig. 8  The 1:1 validation of the ND(1287,1673) and multi-source data coupling model for monitoring LWC at different growth stages. a, b represents 
ND + CWSI model validation of the booting and flowering stages, and c, d represents ND + Fv/Fm model validation of the initial and middle 
grain filling stages. Each symbol is the average value of 4 measurements. * and ** indicate significant correlation at 5% and 1% probability level, 
respectively

Table 5  The R2 and RMSE of simulating and verifying data sets 
for the four machine learning algorithms

RS
2: determination coefficient of simulating data set; RMSES: root mean square 

error of simulating data set; RV
2: determination coefficient of verification data 

set; RMSEV: root mean square error of verification data set

Algorithm Simulating data set Verification data set

RS
2 RMSES RV

2 RMSEV

DT 0.80 0.01 0.77 0.02

RF 0.85 0.01 0.78 0.02

KNN 0.80 0.01 0.75 0.02

GBDT 0.93 0.01 0.86 0.01

Fig. 9  The 1:1 validation of the machine learning algorithms with ND + CWSI model for monitoring LWC at the flowering stage. a Decision tree 
regression (DT); b Random forest regression (RF); c K-nearest neighbor regression (KNN); d Gradient boosting decision tree regression (GBDT)
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and GBDT verification sets were 1.12, 1.13, 1.09 and 1.25 
times higher than that of MLR, respectively. The RMSE 
in verification sets of DT, RF and KNN was about 2 times 
higher than that of MLR, but the RMSE of GBDT was at 
the same level when compared with MLR. Particularly, 
GBDT synergistically improved the R2 of simulating and 
verifying models with low RMSR level compared with 
MLR.

Discussion
Relationship between multi‑source data and LWC
A suitable vegetation index is important to construct an 
LWC spectral monitoring model in smart agriculture. 
The first important step is to screen the sensitive band. 
However, there are some differences on the selected 
water-sensitive bands for different crops. Thomas et  al. 
[40] discovered a significant correlation between the 
relative water content of cotton leaves and the reflectance 
values in the near-infrared (NIR) bands (1450 and 
1930  nm). Yang et  al. [41] suggest that the sensitive 
band range of LWC in wheat plants is located in the 
visible (400–780  nm) and NIR bands (1400–2500  nm). 
This study selected different spectral indices from 
previous studies to establish relationships with rice 
LWC. However, the correlation was not optimal. The 
ND constructed by the NIR band at 1287 and 1673 nm 
was instead optimal (Table  3). This study’s results were 
inconsistent with those of previous studies. One of the 
important reasons could be that vegetation index models 
for monitoring LWC in our study considered the multiple 
growth stages of rice plants, rather than focusing on a 
specific growth stage in previous studies. Additionally, 

the spectral data obtained from different ecological 
sites, climates, and varieties. In this study, the varieties 
were selected for their commonality bands, considering 
the universality of the varieties from which the four rice 
varieties with a large span of validation years and large 
differences in drought resistance were selected.

Recently, multi-source data related to environmental 
factors coupled with the spectral monitoring model of 
LWC has been successfully established in wheat plants 
to reduce the errors caused by environmental and 
physiological factors during the spectral monitoring 
process [16]. This study used the Pearson correlation 
coefficient method to analyze the physiological and 
ecological indicators related to LWC. Our results 
displayed that CWSI, Fv/Fm and SPAD would be 
considered as optimized multi-source data because 
the parameters had a higher correlation with LWC 
compared to other physiological and agronomic indices 
during whole observed periods (Fig.  6). These findings 
were also consistent with the basic physiological laws of 
plants that the three parameters would be changed with 
the change of LWC. First, the transpiration rate quickly 
reduces with declining LWC in rice plants [42, 43]. A 
low transpiration rate increases canopy temperature 
for a short time and then fleetly regulates CWSI in the 
canopy of plants [44, 45]. Second, H2O is insufficient to 
maintain its physiological activities when LWC is low 
in rice plants; the phenomenon quickly downregulates 
photosynthetic performance, such as declining Fv/Fm 
[46–48]. Third, SPAD biosynthesis would be hindered, 
and decomposition could be accelerated if LWC remains 
low for a long time, resulting in the yellowing of leaves 
[49]. Finally, the fluctuant sensitive parameters lead to 

Fig. 10  The R2 (black line) and RMSE (red line) of simulating (a) and verifying (b) data sets for the four machine learning algorithms and multiple 
linear regression. The numbers closed to the dots represent the changed folds in machine learning algorithms when compared with the normalized 
multiple linear regression, respectively
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significant changes in population characteristics, such 
as leaf area, biomass, and yield, presenting different 
degrees of decline [50]. Therefore, we deduce that CWSI, 
Fv/Fm, and SPAD should be introduced into the spectral 
monitoring model to improve the R2 for monitoring LWC 
in whole growth stages of rice plants.

Coupling multi‑source data for monitoring rice LWC
The canopy structure and growth environment of rice 
have been changing throughout the whole growth period, 
resulting in different spectral reflectance data, making it 
difficult to accurately build a water prediction model for 
the whole growth period with a single vegetation index 
model [51]. A good relationship between physiological 
and ecological indicators and spectral information is 
the key to rapid and non-destructive monitoring of 
coupled multi-source data. The relationships between 
CWSI, Fv/Fm, and SPAD and the slope (a) and intercept 
(b) of the conventional linear ND(1287,1673) models 
were systematically analyzed at each observed period 
to achieve accurate prediction of LWC (Fig.  7). The 
parameter a had the closest relationship with CWSI 
with R2 of 0.92. However, the parameter b had the 
closest relationship with Fv/Fm with R2 of 0.99. These 
results indicate that the conventional linear ND(1287,1673) 
models could be largely influenced by physiological 
and ecological factors when LWC was monitored using 
spectroscopic equipment. Therefore, slope and intercept 
could be defined as ecological and physiological factors 
in conventional linear ND(1287,1673) models, especially for 
monitoring LWC in rice plants. This evidence confirms 
the necessity of incorporating physiological parameters 
into the conventional ND(1287,1673) model to improve 
LWC monitoring accuracy in rice plants.

Currently, multi-source data are widely used in 
hyperspectral monitoring. However, most studies 
have utilized a single type of multi-source numbers to 
construct models independently or in combination, and 
few studies have discussed the effect of coupled multi-
source data on the monitoring performance of rice LWC 
models. This study uses a commonly used multiple linear 
regression algorithm to estimate rice LWC based on 
coupled multi-source data and compare its monitoring 
performance. The results revealed that the monitoring 
capacities in ND(1287,1673) models coupled with 
physiological and ecological factors were significantly 
increased than conventional ND(1287,1673) models across 
all observed stages (Tables 3 and 4). The coupled model 
of ND + CWSI and ND + Fv/Fm had the best monitoring 
capacities at the booting to flowering and initial to 
middle grain filling stages, respectively. The different 
coupled parameters at different growth stages may 

related to the differences in rice growth characteristics. 
Previous studies have demonstrated that the canopy 
structure is unstable and that leaf area and biomass are 
in a state of constant growth during the booting and 
flowering stages in rice plants [52]. Irrigation regimes 
directly regulate canopy growth and development [53]. 
Therefore, the canopy micro-ecological factors, such as 
photosynthetically active radiation, temperature, and 
humidity, constantly fluctuate [54], especially for different 
water treatments. Finally, CWSI is a sensitive index at this 
stage because CWSI is mainly regulated by the micro-
ecological factor [31, 32]. However, rice plants are in the 
senescence stage after flowering. Leaf photosynthetic 
capacity significantly declines during the grain-filling 
stage compared to pre-flowering in rice plants [43, 55]. 
Additionally, photosynthetic performances are susceptive 
to different irrigation regimes during senescence 
processes [56]. Fv/Fm is an important index evaluating 
photosynthetic performance. Therefore, photosynthetic 
performance could be a better multi-source parameter to 
predict LWC during the rice-filling stage.

Comparison of machine learning algorithms
Machine learning algorithms have recently been widely 
used in model monitoring research and have become 
popular tools in precision agricultural production 
research. In this study, four machine learning algorithms, 
DT, RF, KNN, and GBDT were used to perform 
operations based on coupled models using rice flowering 
data as an example (Table  5). The results indicated that 
the R2 for the simulation and validation sets of DT, 
RF, KNN and GBDT were 0.80–0.93 and 0.75–0.86, 
respectively, which the R2 of machine learning algorithms 
were 1.16–1.35 times higher for the simulation sets and 
1.09–1.25 times higher for the validation sets compared 
with MLR (Fig.  10). Among them, GBDT has the 
highest R2 with low and stable RMSE. Therefore, the 
GBDT model would be considered as the best machine 
learning algorithm for monitoring LWC in this study’s 
simulating and verification data sets. Previous research 
supports our results that the GBDT algorithm has 
higher prediction accuracy for leaf area in maize plants 
among the aforementioned algorithms [57]. GBDT can 
improve prediction accuracy by constructing a weak 
learner to correct the original model error via residuals 
and resultant iterations when the sample size is small 
[58]. The same weights are assigned for each input factor 
for the other algorithms; the algorithm would fail to 
determine the primary contributing factor in the input 
factor if the training data are insufficient [57]. This may be 
the primary reason the GBDT algorithm has significant 
advantages to improve LWC monitoring capabilities in 
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this study because our sample size could not be abundant 
enough to support the data requirements of other 
algorithms. In summary, machine learning positively 
improves the monitoring abilities of LWC in rice plants.

Future perspectives
Factors such as fertility period and rice LWC changes 
lead to parameter differences between relevant indicators 
extracted from various data sources. Current crop 
monitoring models are mostly single-factor statistical 
models that are difficult to consider crop growth and 
development, yield formation and its interactions with 
climate and soil environment, and lack universality and 
dynamics. Therefore, coupling spectral remote sensing 
information with multivariate data can construct a 
spectral monitoring model with high accuracy and stable 
reliability of crop growth, moisture content, and other 
indicators, providing an effective solution to the spectral 
monitoring problem. In this study, only four rice cultivars 
were considered after the booting stage, and the early 
growth of rice has yet to be monitored. Establishing a 
standardized water stress detection and diagnosis system 
based on water critical thresholds at various growth 
stages of rice will require the accumulation of data from 
multi-year, multi-point, continuous trials based on 
different rice variety types. This can accurately monitor 
the LWC to ensure high rice yield, improving water 
resource utilization efficiency and providing a basis for 
implementing precision agriculture.

Conclusion
In this study, the LWC of rice with different cultivars, 
years, and water treatments was monitored based on 
multi-source data (physiological and ecological indicators 
and spectral information) with machine learning, 
explored the performance of single and combined multi-
source data in LWC monitoring, and utilized different 
physiological indicators to establish two monitoring 
models for the growth differences of rice in the initial 
and middle stages. The results displayed that ND + CWSI 
had better monitoring performance in the early stage 
(booting to flowering stage), while ND + Fv/Fm was 
better in the late stage (initial to middle grain filling 
stage). Additionally, this study’s newly constructed 
vegetation index ND(1287,1673) also has good monitoring 
capacities for LWC in rice. Meanwhile, the machine 
learning algorithm (GBDT) further improves the 
monitoring performance of the model. In summary, this 
study confirms that using multi-source data and machine 
learning can improve the performance of hyperspectral 
prediction of rice LWC.
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Additional file 1: Fig. S1. The normal distribution characteristics of 
all parameters, linear distribution scatter plots and the corresponding 
correlation coefficient between LWC and physiological and ecological 
parameters including SPAD, Fv/Fm, Fo, Y(II), CWSI, LWC, Biomass, and LAI 
at booting stage and Yield at maturity. Fig. S2. The normal distribution 
characteristics of all parameters, linear distribution scatter plots and the 
corresponding correlation coefficient between LWC and physiological and 
ecological parameters including SPAD, Fv/Fm, Fo, Y(II), CWSI, LWC, Biomass, 
and LAI at flowering stage and Yield at maturity. Fig. S3. The normal distri-
bution characteristics of all parameters, linear distribution scatter plots and 
the corresponding correlation coefficient between LWC and physiological 
and ecological parameters including SPAD, Fv/Fm, Fo, Y(II), CWSI, LWC, 
Biomass, and LAI at initial grain filling stage and Yield at maturity.  Fig. S4. 
The normal distribution characteristics of all parameters, linear distribution 
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and physiological and ecological parameters including SPAD, Fv/Fm, Fo, 
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ation of each parameter in this study. Table S2. The multicollinearity test 
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at different observed periods based on the tolerance and variance infla-
tion factor values and Durbin Watson test of multivariate linear regressed 
models presented in Table 4 in text.
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