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Abstract 

Background Lysine crotonylation (Kcr) is a crucial protein post-translational modification found in histone and non-
histone proteins. It plays a pivotal role in regulating diverse biological processes in both animals and plants, includ-
ing gene transcription and replication, cell metabolism and differentiation, as well as photosynthesis. Despite the sig-
nificance of Kcr, detection of Kcr sites through biological experiments is often time-consuming, expensive, and only a 
fraction of crotonylated peptides can be identified. This reality highlights the need for efficient and rapid prediction 
of Kcr sites through computational methods. Currently, several machine learning models exist for predicting Kcr sites 
in humans, yet models tailored for plants are rare. Furthermore, no downloadable Kcr site predictors or datasets have 
been developed specifically for plants. To address this gap, it is imperative to integrate existing Kcr sites detected 
in plant experiments and establish a dedicated computational model for plants.

Results Most plant Kcr sites are located on non-histones. In this study, we collected non-histone Kcr sites from five 
plants, including wheat, tabacum, rice, peanut, and papaya. We then conducted a comprehensive analysis 
of the amino acid distribution surrounding these sites. To develop a predictive model for plant non-histone Kcr sites, 
we combined a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), 
and attention mechanism to build a deep learning model called PlantNh-Kcr. On both five-fold cross-validation 
and independent tests, PlantNh-Kcr outperformed multiple conventional machine learning models and other 
deep learning models. Furthermore, we conducted an analysis of species-specific effect on the PlantNh-Kcr model 
and found that a general model trained using data from multiple species outperforms species-specific models.

Conclusion PlantNh-Kcr represents a valuable tool for predicting plant non-histone Kcr sites. We expect that this 
model will aid in addressing key challenges and tasks in the study of plant crotonylation sites.

Keywords Crotonylation, Convolutional neural network, Bidirectional long short-term memory, Attention 
mechanism, Focal loss

Introduction
Post-translational modifications (PTMs) [1] of proteins 
involve the addition or removal of chemical groups 
to amino acid residues, thereby modifying protein 
properties and expanding functional diversity. PTMs play 
crucial roles in various biological processes and metabolic 
pathways. Among the PTMs, lysine crotonylation (Kcr) 
is a novel and significant modification that has been 
widely detected in both animals and plants. The Kcr 
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modification was initially discovered in the histones 
of human somatic cells and mouse germ cells, and Kcr 
enrichment on sex chromosomes has been identified 
as a key indicator in male germ cell differentiation 
control [2]. In mice, it was shown that increased histone 
crotonylation level might have a positive effect on acute 
kidney injury [3]. In addition, histone Kcr sites are 
involved in many other biological processes, including 
organism development [2], DNA damage response [4], 
and gene transcription and expression [5]. Kcr is not 
limited to histones but is also abundant in non-histones 
[6–9]. Previous studies have clearly revealed that 
crotonylation of non-histone proteins is associated with 
various metabolic pathways and participates in protein 
expression and multiple cell signaling cascades [8].

In plants, global identification and functional analysis 
of lysine crotonylation have been conducted in species 
such as tabacum [10], papaya [11], rice [12], peanut [13], 
and wheat [14, 15]. The Kcr modification is involved in 
regulating various metabolic pathways in plants, includ-
ing photosynthesis, oxidative phosphorylation, and car-
bon metabolism [14]. Additionally, Kcr is involved in gene 
transcription regulation [12] and adaptation to adverse 
conditions in plants [16]. Notably, Kcr is related to cold 
stress tolerance in plants [17], exhibiting a positive regula-
tory effect on wheat’s freezing tolerance [14].

The current experimental methods for detecting Kcr 
sites include high-performance liquid chromatography 
fractionation, stable isotope labelling of amino acids 
in cell culture, immunological affinity enrichment, and 
high-resolution liquid chromatography-tandem mass 
spectrometry [18]. While biological experiments are the 
most reliable means to identify Kcr sites, the experiments 
are often time-consuming, labor-intensive, and costly. In 
addition, mass spectrometry platforms can only identify 
a subset of crotonylated peptides due to factors such as 
protein abundance, protein hydrolysis and digestion [19]. 
Therefore, computational models for conveniently and 
rapidly predicting Kcr sites are desirable, which have 
been developed in the past few years.

Early models for Kcr site prediction were limited by 
the small training datasets with fewer than 200 Kcr 
sites, and all sites were limited to histones. These models 
employed conventional machine learning methods such 
as support vector machines [20], random forest (RF) [21], 
LightGBM [22–24], etc. The input features used by these 
models include composition of amino acids and amino 
acid pairs, amino acid properties, etc. The representative 
models include CrotPred [25], CKSAAP_CrotSite [26], 
iKcr-PseEns [27], iCrotoK-PseAAC [28], LightGBM-
CroSite [29], etc.

With the advancement of mass spectrometry 
technology, the global Kcr sites in the proteome of 

several species have been detected that enabled the 
utilization of significantly larger training datasets. At 
the same time, the deep learning frameworks [30] have 
reached a level of maturity that resulted in the common 
employment of deep learning methods in establishing 
predictive models for Kcr sites. Among these models, 
some predict Kcr sites on a mixture of histones and 
non-histones, such as Deep-Kcr [31], BERT-Kcr [32], 
DeepCap-Kcr [33], Adapt-Kcr [34], and ATCLSTM-Kcr 
[19]. Others are tailored to predict Kcr sites on non-
histones, such as nhKcr [35], DeepKcrot [36], iKcr_CNN 
[37], and CapsNh-Kcr [38]. The primary input features of 
these models consist of binary encoding and embedding 
vectors. A majority of these models utilize convolutional 
neural networks (CNNs) [19, 31, 33–38] and long short-
term memory networks (LSTM) [19, 32–34, 36] as 
integral components of their structure. Notably, some 
models integrate self-attention mechanism to enhance 
their predictive capabilities [19, 32, 34]. Additionally, 
a few models stand out due to their unique network 
architecture. For instance, DeepCap-Kcr and CapsNh-
Kcr employ capsule networks, a distinctive approach in 
deep learning architecture. The deep learning models 
have resulted in significantly improved performance 
compared to the earlier conventional machine learning 
models.

Among the four models for predicting Kcr sites on non-
histones, nhKcr, iKcr_CNN, and CapsNh-Kcr are limited 
to predicting human Kcr sites. In contrast, DeepKcrot 
predict Kcr sites in four species, including humans, rice, 
tabacum, and papaya. However, it is important to note 
that due to the current unavailability of DeepKcrot’s 
web server, accessing its datasets and models for further 
research purposes can be challenging. In addition, recent 
experimental studies have detected Kcr sites in some 
other plants, emphasizing the need for a computational 
model that is specifically tailored for plants. To address 
this gap, it is essential to integrate existing Kcr site 
data detected from plants and establish a specialized 
computational model dedicated to plants.

In this study, we compiled a comprehensive dataset 
of non-histone Kcr sites from five plant species includ-
ing rice, tabacum, papaya, peanut, and wheat, and built 
a reliable training and test dataset. Then we utilized the 
binary encoding (BE) as input features and employed a 
combination of a convolutional neural network (CNN) 
[39], a bidirectional long short-term memory (BiLSTM) 
network [40] and multi-head self-attention (MHSA) [41] 
to construct a novel deep learning model called PlantNh-
Kcr. This model was specifically designed to predict Kcr 
sites on non-histones in plants. We validated our model 
through rigorous comparisons with conventional machine 
learning methods and other state-of-the-art deep learning 
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models. On five-fold cross-validation and independ-
ent test, PlantNh-Kcr consistently demonstrated supe-
rior performance. Furthermore, it excelled in predicting 
Kcr sites across individual plant species, highlighting its 
remarkable versatility and generalizability. We believe that 
the development of this plant-specific prediction model 
offers valuable insights for the biological community and 
will drive further advancement in plant biology.

Materials and methods
Benchmark dataset
To train and test the model, we carefully curated a 
training dataset and a test dataset. This process was 
meticulously designed and is depicted in Fig. 1. We first 
collected non-histone Kcr sites from five plant spe-
cies. These sites numbered 5692 from wheat [14, 15], 
1258 from rice [12], 2028 from tabacum [10], 6603 

Fig. 1 The flowchart of dataset preparation
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from peanut [13], and 5332 from papaya [11]. We then 
retrieved the corresponding protein sequences from the 
UniProt [42] and NCBI [43] databases for each species. 
Subsequently, we extracted peptides of length 29 from 
these protein sequences, with the K (Lysine) residue 
positioned at the center and 14 residues upstream and 
downstream respectively. If a peptide had fewer than 
14 residues on one side, we replaced the missing resi-
dues with X. Peptides where the central K residues rep-
resented Kcr sites were designated as positive samples; 
otherwise, they were designated as negative samples. To 
eliminate redundancy and potential false negatives, we 
used the CD-HIT program [44] with a sequence identity 
threshold of 40%. Finally, we obtained 12,352 positive and 
46,389 negative samples. To evaluate the performance of 
the model on test samples of each species, we separated 
the samples based on their species. For each species, the 
samples were randomly divided into two subsets in a 7:3 
ratio while retaining the proportion of positive and nega-
tive samples during the partitioning process. The larger 
sets for each species were merged to form the training 
dataset and the smaller sets for each species were merged 
to form the test dataset. The training dataset totaled 
41,114 samples, with 8644 positive and 32,470 negative 
samples. The test dataset included 17,627 samples, with 
3708 positive 13,919 negative samples. The numbers of 
samples for each species in the training and test datasets 
are listed in Table 1. 

Peptide encoding
To build a predictive model for non-histone Kcr sites, it 
is necessary to transform peptide samples into numeri-
cal vectors as input features for the model. PlantNh-Kcr 
employs binary encoding as its input features. We con-
ducted a comparative analysis of PlantNh-Kcr’s predic-
tive performance against conventional machine learning 
models and other deep learning models. The conven-
tional machine learning models utilize various input 
features, including amino acid composition (AAC), 

enhanced group amino acid composition (EGAAC), BE, 
AAindex encoding, and BLOSUM62 encoding. Other 
deep learning models employ features including BE, word 
embedding (WE) encoding, AAindex encoding, and 
BLOSUM62 encoding. The following provides a detailed 
description of these encoding methods:

AAC: In bioinformatics, AAC is a commonly used 
encoding method, which calculates the frequencies 
of each amino acid in a peptide. In this study, X is also 
considered as an amino acid. So the peptide is encoded 
as a 21-dimensional vector, where each dimension 
corresponds to the frequency of one of the 21 amino 
acids present in the peptide.

EGAAC: The EGAAC encoding divides amino 
acids into five groups based on their physicochemical 
properties, i.e. aliphatic group (GAVLMI), aromatic 
group (FYW), positively charged group (KRH), negatively 
charged group (DE), and no charge group (STCPNQ). A 
peptide is encoded as a five-dimensional vector, where 
each dimension represents the proportion of one of the 
five groups of amino acids within the peptide.

BE: BE is a common technique used to convert amino 
acid sequences into numerical representations suit-
able for model training. For this encoding method, each 
amino acid is encoded as a 21-dimensional binary vector. 
This vector has one component set to 1 to indicate the 
type of amino acid, while all other components are set to 
0. Finally, a peptide of length 29, is encoded as a matrix or 
a vector of size 29 × 21.

WE encoding: WE is a technique that has gained 
popularity in the field of natural language processing. 
It assigns words to vectors in a high-dimensional space, 
ensuring that semantically similar words are positioned 
close to each other. This technique has also been effec-
tively applied to sequence encoding in bioinformatics [45, 
46]. In this work, the vocabulary size is set to 21, repre-
senting the number of amino acid types. The peptide of 
length 29 is treated as a sentence, with each amino acid 
residue mapped to a unique word ID. Subsequently, WE 
is used to translate these IDs into vectors. Finally, the 
peptide is encoded as a matrix of size 29 × 10, where 10 is 
the dimension of the vector space.

AAindex encoding: AAindex [47] is a public database 
that curates a range of physicochemical and biochemi-
cal properties of amino acids. This database serves as a 
valuable resource for various bioinformatics studies, 
including protein structure prediction, sequence align-
ment, protein function annotation, and more. Previously, 
the model nhKcr selected 29 indices from AAindex that 
were most relevant to the prediction task to encode the 
peptide [35]. In this study, we used the same 29 indices to 
encode the peptide. Consequently, the peptide of length 
29 is encoded as a matrix or a vector of size 29 × 29.

Table 1 The numbers of positive and negative samples for each 
species in the training and test datasets

Species Training set Test set

Positive Negative Positive Negative

Wheat 2484 7585 1066 3252

Tabacum 820 2524 352 1082

Rice 662 3486 284 1495

Peanut 2452 10,675 1051 4575

Papaya 2226 8200 955 3515

Total samples 8644 32,470 3708 13,919
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BLOSUM62 encoding: BLOSUM62 (BLOck 
Substitution Matrix 62) [48], is a widely used substitution 
matrix in protein sequence alignment. The matrix assigns 
scores to pairs of amino acids based on their substitution 
frequency during evolution. Higher scores indicate 
more frequent substitutions, while lower scores indicate 
rare substitutions. In this study, we used the rows of the 
BLUSUM62 matrix to encode amino acids in the peptide. 
Consequently, the peptide of length 29 is encoded as a 
matrix or a vector of size 29 × 21.

The structures of the plantNh‑Kcr model
The structure of PlantNh-Kcr was determined as Fig.  2 
after evaluating various encoding methods and model 
architectures. The model accepts a 29 × 21 matrix derived 
from binary encoding as input. This matrix feeds into two 
distinct layers. The first is a convolutional layer that is 
followed by two additional convolutional layers. The sec-
ond layer is a BiLSTM layer that is succeeded by a MHSA 
layer. The outputs of the third convolutional layer and the 
MHSA layer are merged and flattened into a vector. The 
flatten layer is followed by a linear layer and an output 
layer. All the layers are described in detail below.

Input layer: The layer receives a 29 × 21 matrix as input.
Convolutional layers: The first convolutional layer has 

21 input channels and 32 output channels, with a kernel 
size of 5 and a stride of 1. The second convolutional layer 
has 32 input channels and 32 output channels, and the 
third one has 32 input channels and 29 output channels. 
Both the latter two layers have a kernel size of 5 and a 

stride of 2. The outputs of each layer are activated using 
the ReLU function [49]. During training, to prevent over-
fitting, 30% of the output data from the three convolution 
layers are dropped respectively.

BiLSTM layer and MHSA layer: The input size of 
the BiLSTM layer is 21, and the output size is 128. The 
MHSA layer has an input size of 128 and eight attention 
heads. To prevent overfitting, dropout operations with 
ratios of 0.9 and 0.5 are applied after the BiLSTM layer 
and MHSA layer, respectively.

Flatten layer: The flatten layer flattens the concatenated 
outputs of the third convolutional layer and MHSA layer, 
resulting in a 3944-dimensional vector.

Linear layer: The input size of the linear layer is 3944 
and the output size is 128. The output is activated using 
the ReLU function.

Output layer: The output layer has an input size of 128 
and output size of 2. The two-dimensional output vector 
represents the probabilities of a sample being positive 
and negative, respectively.

Focal loss
In this study, the training dataset has significantly 
more negative samples than positive samples, which 
would lead to a bias towards the negative samples dur-
ing model training. To address this issue, we employed 
focal loss [50] as the loss function for the model. Focal 
loss reshapes the traditional cross-entropy loss function 
by introducing a modulating factor (1− pt)

γ . The math-
ematical formulas for focal loss are as follows:

Fig. 2 The architecture of the PlantNh-Kcr model
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where p represents the probability for the sample to be 
class 1 (1 represents positive samples, while 0 represents 
negative samples). αt represents the balanced weight 
factor for the sample. The modulating factor (1− pt)

γ 
is used to adjust the weight of easy samples and hard 
samples, and γ indicates a tunable focusing parameter.

Optimization of the model
The PlantNh-Kcr model was constructed and trained in 
a Python 3.9 and Pytorch 1.13.1 environment. Focal loss 
[50], with α set to 0.7 and γ to 1, was employed as the loss 
function. The model optimization was achieved using the 
Adam algorithm [51] with a learning rate of 0.001. The 
batch size of the input data during training was set to 
256, and the number of training epochs was set to 50. To 
determine the optimal hyperparameters for the model, grid 
search was employed.

Model evaluation
In bioinformatics, the evaluation of classification models 
often involves cross-validation and independent test 
to assess their generalization capabilities. Similar to 
previous studies [33, 35, 37, 38] that predicted Kcr sites, 
we employed five-fold cross-validation and independent 
tests to evaluate PlantNh-Kcr and other models. For this 
purpose, we prepared the training dataset and the test 
dataset. For five-fold cross-validation, the training dataset 
was evenly divided into five folds. Four folds were used 
to learn the model, while the remaining one was used to 
validate its performance. This process was repeated five 
times, ensuring that each fold was used once for validation. 
For independent test, the training dataset was used to 
build the model, and the test dataset was used to access its 
performance.

In bioinformatics, commonly used evaluation metrics for 
binary classification models include sensitivity (Sn), speci-
ficity (Sp), accuracy (ACC), F1-score, Matthews correlation 
coefficient (MCC), and area under the receiver operat-
ing characteristic (ROC) curve (AUC) [35, 38, 52, 53]. The 
mathematical formulas for Sn, Sp, ACC, and MCC are as 
follows:

(1)pt =
{

p if y = 1

1− p otherwise.
0 ≤ p ≤ 1

(2)αt =
{

α if y = 1

1− α otherwise.
0 ≤ α ≤ 1

(3)
FL(pt) = −αt(1− pt)

γ log(pt) 0 ≤ αt ≤ 1, γ ≥ 0

In the above equations, TP, FP, TN, and FN represent 
the numbers of true positives, false positives, true 
negatives, and false negatives, respectively. Sn indicates 
the ability of the model to identify positive samples, with 
higher values indicating more accurate predictions for 
positive samples. Sp reflects the ability of the model to 
identify negative samples, with higher values indicating 
more accurate predictions for negative samples. F1-score 
provides a comprehensive measure of the model’s 
performance in identifying positive samples, through 
balancing the counts of true positives, false positives, 
and false negatives. A higher F1-score indicates better 
performance. MCC considers both Sn and Sp, and 
ranges from −  1 to 1. A higher MCC value indicates 
better performance of the model. The ROC curve offers a 
graphical representation of the relationship between the 
true positive rate (TPR) and false positive rate (FPR) at 
different thresholds. TPR corresponds to Sn, while FPR 
equals one minus Sp. AUC represents the probability of a 
model ranking positive samples above negative samples. 
AUC is regarded as the most important metric in the 
evaluation of many bioinformatics models. The closer 
the ROC curve approaches the upper left corner, the 
closer the AUC value approaches 1, indicating a better 
classification performance of the model. In this study, 
samples with a predicted probability of being positive 
greater than 0.5 are classified as positive samples. The 
evaluation metrics of Sn, Sp, ACC, F1-score, and MCC 
are computed based on the fixed threshold of 0.5. We 
primarily use the ROC curve and its corresponding 
AUC value to compare the performance of different 
models. The ROC curve effectively visualizes the trade-
off between Sn and Sp across various thresholds. This 

(4)Sn =
TP

TP+ FN

(5)Sp =
TN

TN+ FP

(6)ACC =
TP+ TN

TP+ TN+ FP+ FN

(7)F1− score =
2× TP

2× TP+ FP+ FN

(8)

MCC =
(TP× TN)− (FP× FN)

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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allows to compare models by considering their respective 
sensitivities at the same specificities, thus providing a 
more comprehensive evaluation.

To ensure the robustness of our model’s performance, 
we conducted rigorous tests. For five-fold cross-valida-
tion, we calculated the mean and standard deviation of 
the metric values obtained from each fold. For independ-
ent test, we conducted 10 independent tests with differ-
ent random seeds, and calculated the mean and standard 
deviation of the evaluated metrics.

Results
Conservation analysis of non‑histone Kcr sites in plants
Kcr is a post-translational modification that plays a 
crucial role in various cellular processes. It has been 
observed that the evolution of Kcr sites exhibits conser-
vation, which suggests that these sites have functional 
significance [35]. To further investigate the conserva-
tion of plant non-histone Kcr sites, we used the pLogo 
tool [54] to generate a sequence logo (Fig. 3A) using the 
merged training and test dataset. Significant disparities 

Fig. 3 Sequence logo of Kcr sites on non-histone proteins. A Sequence logo for plants; B Sequence logo for humans
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can be observed in the distribution of some amino acids 
such as K, D, E, R, and P, surrounding Kcr sites and non-
Kcr sites. Notably, residues D and E are overrepresented 
at positions -1 and + 1. Residue K is prevalent at numer-
ous positions, and it is more overrepresented on the 
left side of Kcr sites. Residues R and P are significantly 
underrepresented at positions −  1 and + 1, respectively. 
Previous research has identified specific motifs that 
are enriched around Kcr sites, including “EkxxxxxK”, 
“EkxxxK”, and “KxxxEK”, where x denotes any amino acid 
[35, 38]. These findings are consistent with our sequence 
logo, which indicates an overrepresentation of amino 
acid residues K and E in the vicinity of Kcr sites in plants. 
To further contextualize our findings, we also generated 
a sequence logo (Fig.  3B) for Kcr sites on non-histone 
proteins in humans. The resulting logo was based on the 
training dataset of nhKcr, a model developed for predict-
ing Kcr sites on human non-histones [35]. Notably, the 
amino acid distribution observed around human Kcr 
sites exhibits similarity to that in plants; however, there 
were slight differences. For example, K is underrepre-
sented at positions − 1 and + 1 for the human Kcr sites, 
which is not observed in plants. This observation high-
lights the need for developing a predictive model dedi-
cated to plants.

Performance of PlantNh‑Kcr on five‑fold cross‑validation 
and independent tests
To evaluate the performance of PlantNh-Kcr, we con-
ducted a five-fold cross-validation and 10 independ-
ent tests. For cross-validation, the ROC curves for each 
fold were tightly clustered in the top left corner of the 
plot (Fig.  4A), indicating that the model has strong dis-
criminatory power. The average AUC value are 0.891, 
which is significantly better than random prediction. The 
average values for Sn, Sp, ACC, F1-score and MCC are 
0.821, 0.810, 0.812, 0.648 and 0.551 respectively (Table 2). 
For independent tests, PlantNh-Kcr also demonstrats 
strong performance, with the average AUC value of 
0.899 (Fig.  4B) and the average values for Sn, Sp, ACC, 
F1-score, and MCC are 0.811, 0.833, 0.828, 0.665 and 
0.572, respectively (Table 2).

To visualize the discriminatory power of PlantNh-Kcr, 
we utilized the training dataset to train a model and sub-
sequently fed the samples in the test dataset to it. Then 
we used t-SNE [55] for dimensionality reduction and vis-
ualization of the input data in the input layer, the output 
data of the flatten layer, and the output data of the linear 
layer. The results are presented in Fig. 5. In this figure, the 
red and light blue dots represent Kcr and non-Kcr sites, 
respectively. It is evident from the input layer that Kcr 
and non-Kcr sites are intermingled. However, following 

Fig. 4 ROC curves of the PlantNh-Kcr model on five-fold cross-validation and independent tests. A The ROC curves on five-fold cross-validation; B 
The ROC curve on independent tests

Table 2 Metric values of the PlantNh-Kcr model on five-fold cross-validation and independent tests

Evaluation methods Sn (%) Sp (%) ACC (%) F1˗score (%) MCC (%) AUC (%)

Cross-validation 82.1 ± 2.36 81.0 ± 1.91 81.2 ± 1.04 64.8 ± 0.33 55.1 ± 0.54 89.1 ± 0.54

Independent test 81.1 ± 3.23 83.3 ± 2.09 82.8 ± 0.99 66.5 ± 0.50 57.2 ± 0.50 89.9 ± 0.19
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the processing involving three convolutional layers, a 
BiLSTM layer, and a MHSA layer, most Kcr and non-Kcr 
sites are separated. This observation underscores the dis-
criminatory capability of these layers in effectively distin-
guishing between Kcr and non-Kcr sites. Subsequently, 
after the linear layer, Kcr sites are predominantly clus-
tered in the left region, forming a distinct boundary from 
non-Kcr sites. This outcome highlights the model’s prow-
ess in accurately classifying Kcr sites.

Comparison with conventional machine learning models 
and deep learning models
To further demonstrate the superior performance and 
robustness of PlantNh-Kcr, we conducted a comparative 
analysis with several well-established conventional 
machine learning models and deep learning models. The 
detailed information about these models is provided in 
Additional file 1.

In this study, we utilized three conventional machine 
learning methods including RF [21], AdaBoost [56], 
and LightGBM [24]. Additionally, five commonly used 

encodings were employed, including BE, ACC, EGAAC, 
AAindex, and BLOUSUM62. Each encoding was fed into 
each conventional machine learning model for training. 
The specific results for each combination are summa-
rized in Tables  3, 4. For both five-fold cross-validation 
and independent tests, RF, AdaBoost, and LightGBM get 
the largest AUC values, when BE, AAindex, and BLO-
SUM62 encodings were used as input features, respec-
tively. Among the three models, the LightGBM model 
emerged as the leader with average AUC values of 0.869 
and 0.881 on five-fold cross-validation and independent 
tests, respectively. However, it lagged behind PlantNh-
Kcr in terms of performance. To visually compare the 
models, Fig. 6 presents the ROC curves on independent 
tests. Notably, The ROC curve of PlantNh-Kcr is above 
those of other models. This observation indicates that 
at the same FPR, PlantNh-Kcr exhibits the highest TPR, 
indicating its superior ability to correctly identify positive 
samples compared to other models when predicting the 
same number of false positives.

Fig. 5 T-SNE visualization of test samples in PlantNh-Kcr layers. A The input layer; B The flatten layer; C The linear layer
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Three networks including LSTM network, BiLSTM 
network, and CNN were used to compare with PlantNh-
Kcr. The inputs for these networks encompassed BE, WE, 
AAindex, and BLOSUM62 encodings. The specific met-
ric values for each network are detailed in Tables  3,   4. 
Interestingly, all three networks perform best when using 
BE as input. On five-fold cross-validation, the maximum 
average AUC values achieved by the LSTM, BiLSTM, and 
CNN networks are 0.882, 0.880 and 0.888, respectively. 
Similarly, on independent tests, the maximum average 
AUC values of these networks are 0.890, 0.889, and 0.896, 
respectively. However, the performance of the three net-
works is still inferior to PlantNh-Kcr.

Comparison with existing models for Kcr site prediction 
on non‑histones
To further demonstrate the performance of our 
model, we conducted a comparative analysis with four 
other models: nhKcr, iKcr_CNN, CapsNh-Kcr, and 

DeepKcrot, all designed to predict Kcr sites on non-
histones. nhKcr, iKcr_CNN and CapsNh-Kcr pre-
dict Kcr sites in human. The nhKcr model integrated 
BE, AAindex encoding and BLOSUM62 encoding 
as input features and employed a CNN architecture. 
The iKcr_CNN model employed a CNN architecture 
and utilized a focal loss function for optimization. 
CapsNh-Kcr employed a CNN-based capsule network 
strategy. DeepKcrot predicted Kcr sites in four species 
including human, rice, papaya and tabacum. It utilized 
CNN with WE encoding as input features.

For nhKcr, iKcr_CNN and CapsNh-Kcr, we down-
loaded their source codes. For DeepKcrot, we rewrote 
its code due to the unavailability of its web server. We 
applied focal loss to nhKcr and DeepKcrot because they 
didn’t address the data imbalance issue in their original 
source codes. We then trained the four models using 
the training dataset and evaluated their performance 
on the test set. The prediction performance of the four 

Table 3 Metric values of different models on five-fold cross-validation

a Bold indicates the best performance for the classifier

Classifiers Encodings Sn (%) Sp (%) ACC (%) F1˗score (%) MCC (%) AUC (%)

RF aBE 69.4 ± 1.12 71.3 ± 0.94 70.9 ± 0.76 50.1 ± 0.99 34.4 ± 1.29 77.5 ± 0.77
AAC 70.5 ± 1.89 64.8 ± 0.99 66.0 ± 0.55 44.6 ± 0.78 29.1 ± 1.02 74.5 ± 0.63

EGAAC 70.9 ± 1.47 59.3 ± 1.44 61.8 ± 0.87 43.8 ± 0.82 24.7 ± 0.67 71.1 ± 0.30

AAindex 74.1 ± 0.83 60.9 ± 1.41 63.7 ± 0.98 46.2 ± 0.58 28.6 ± 0.78 75.2 ± 0.56

BLOSUM62 70.1 ± 1.04 66.8 ± 0.53 67.5 ± 0.30 47.6 ± 0.44 30.6 ± 0.60 75.5 ± 0.50

AdaBoost BE 24.3 ± 1.28 95.4 ± 0.17 80.5 ± 0.51 34.4 ± 1.60 28.6 ± 1.82 79.0 ± 0.60

AAC 17.6 ± 0.79 95.3 ± 0.28 79.0 ± 0.32 26.0 ± 0.76 20.1 ± 0.52 75.8 ± 0.63

EGAAC 2.40 ± 0.30 99.4 ± 0.17 79.0 ± 0.28 4.70 ± 0.54 7.60 ± 1.05 71.5 ± 0.66

AAindex 25.4 ± 0.86 95.3 ± 0.36 80.6 ± 0.28 35.6 ± 1.09 29.5 ± 1.43 79.4 ± 0.49
BLOSUM62 24.2 ± 0.79 95.6 ± 0.30 80.6 ± 0.26 34.4 ± 0.80 28.8 ± 0.77 78.9 ± 0.55

LightGBM BE 68.6 ± 1.30 85.0 ± 0.23 81.5 ± 0.47 60.9 ± 1.00 49.5 ± 1.32 85.6 ± 0.52

AAC 67.3 ± 1.03 73.5 ± 0.74 72.2 ± 0.51 50.4 ± 0.66 34.8 ± 0.77 78.0 ± 0.81

EGAAC 70.3 ± 0.48 59.4 ± 0.85 61.7 ± 0.67 43.6 ± 0.39 24.3 ± 0.75 70.5 ± 0.62

AAindex 65.1 ± 1.13 88.0 ± 0.31 83.2 ± 0.32 61.9 ± 0.81 51.3 ± 0.99 86.6 ± 0.23

BLOSUM62 66.8 ± 0.64 87.2 ± 0.60 83.0 ± 0.50 62.3 ± 0.93 51.7 ± 1.17 86.9 ± 0.54
LSTM BE 78.3 ± 2.23 81.7 ± 2.08 81.0 ± 1.20 63.4 ± 0.86 53.0 ± 0.99 88.2 ± 0.12

WE 74.8 ± 0.79 81.8 ± 0.47 80.4 ± 0.24 61.6 ± 0.37 50.3 ± 0.36 86.5 ± 0.37

AAindex 76.6 ± 4.05 83.1 ± 2.18 81.8 ± 0.97 63.8 ± 0.94 53.5 ± 1.15 88.0 ± 0.59

BLOSUM62 72.3 ± 3.92 84.7 ± 2.36 82.1 ± 1.18 63.0 ± 1.26 52.3 ± 1.50 87.6 ± 0.43

BiLSTM BE 76.9 ± 3.03 82.1 ± 2.71 81.0 ± 1.50 63.1 ± 1.13 52.6 ± 1.22 88.0 ± 0.25
WE 74.4 ± 2.67 81.9 ± 130 80.3 ± 0.50 61.4 ± 0.55 50.1 ± 0.62 86.6 ± 0.54

AAindex 77.6 ± 2.28 81.7 ± 1.25 80.9 ± 0.56 63.0 ± 0.55 52.4 ± 0.65 88.1 ± 0.30

BLOSUM62 81.1 ± 3.10 78.4 ± 2.95 79.0 ± 1.70 62.0 ± 0.86 51.3 ± 1.01 87.7 ± 0.31

CNN BE 80.9 ± 1.78 81.5 ± 0.92 81.0 ± 0.50 64.2 ± 0.89 54.1 ± 1.04 88.8 ± 0.34
WE 80.3 ± 2.59 81.6 ± 1.95 81.4 ± 1.13 64.4 ± 1.25 54.4 ± 1.43 88.6 ± 0.47

AAindex 78.3 ± 4.65 82.6 ± 2.94 81.7 ± 1.40 64.3 ± 0.87 54.2 ± 0.90 88.5 ± 0.64

BLOSUM62 77.3 ± 4.29 83.0 ± 2.75 81.9 ± 1.31 64.2 ± 0.82 54.0 ± 0.96 88.6 ± 0.32

PlantNh-Kcr BE 82.1 ± 2.36 81.0 ± 1.91 81.2 ± 1.04 64.8 ± 0.33 55.1 ± 0.54 89.1 ± 0.54
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Table 4 Metric values of different models on independent test

a Bold indicates the best performance for the classifier

Classifiers Encodings Sn (%) Sp (%) ACC (%) F1˗score (%) MCC (%) AUC (%)

RF BE 69.6 ± 0.30 70.7 ± 0.41 70.5 ± 0.27 49.8 ± 0.15 33.9 ± 0.22 77.4 ± 0.04
AAC 70.5 ± 0.32 65.1 ± 0.20 66.2 ± 0.15 46.8 ± 0.18 29.4 ± 0.28 74.6 ± 0.06

EGAAC 70.5 ± 0.71 60.9 ± 0.54 62.9 ± 0.29 44.4 ± 0.10 25.6 ± 0.17 71.1 ± 0.01

AAindex 74.5 ± 0.40 60.0 ± 043 63.0 ± 0.27 45.9 ± 0.11 28.2 ± 0.17 75.2 ± 0.10

BLOSUM62 70.0 ± 0.42 66.4 ± 0.40 67.1 ± 0.27 47.2 ± 0.20 30.1 ± 0.30 75.4 ± 0.11

AdaBoost BE 23.5 ± 0.00 95.4 ± 0.00 80.3 ± 0.00 33.8 ± 0.00 27.8 ± 0.00 78.9 ± 0.00

AAC 18.0 ± 0.00 95.6 ± 0.00 79.3 ± 0.00 26.8 ± 0.00 23.1 ± 0.00 76.2 ± 0.00

EGAAC 2.60 ± 0.00 99.4 ± 0.00 79.0 ± 0.00 5.00 ± 0.00 7.90 ± 0.00 71.5 ± 0.00

AAindex 25.8 ± 0.00 95.2 ± 0.00 80.6 ± 0.00 35.0 ± 0.00 29.5 ± 0.00 79.5 ± 0.00
BLOSUM62 23.1 ± 0.00 95.3 ± 0.00 80.1 ± 0.00 32.9 ± 0.00 26.9 ± 0.00 79.0 ± 0.00

LightGBM BE 71.9 ± 0.00 84.0 ± 0.00 81.4 ± 0.00 62.0 ± 0.00 50.8 ± 0.00 86.6 ± 0.00

AAC 69.0 ± 0.00 72.2 ± 0.00 71.5 ± 0.00 50.5 ± 0.00 34.9 ± 0.00 78.4 ± 0.00

EGAAC 72.4 ± 0.00 59.0 ± 0.00 61.9 ± 0.00 44.4 ± 0.00 25.7 ± 0.00 71.1 ± 0.00

AAindex 69.4 ± 0.00 86.9 ± 0.00 83.2 ± 0.00 63.5 ± 0.00 53.0 ± 0.00 87.6 ± 0.00

BLOSUM62 71.7 ± 0.00 86.2 ± 0.00 83.2 ± 0.00 64.2 ± 0.00 53.8 ± 0.00 88.1 ± 0.00
LSTM BE 79.7 ± 5.22 82.2 ± 3.29 81.7 ± 1.54 64.7 ± 0.66 54.9 ± 0.60 89.0 ± 0.14

WE 75.2 ± 1.82 83.4 ± 1.32 81.7 ± 0.62 63.3 ± 0.40 52.7 ± 0.51 87.5 ± 0.21

AAindex 79.0 ± 4.48 82.5 ± 3.21 81.7 ± 1.61 64.6 ± 0.77 54.6 ± 0.72 88.7 ± 0.32

BLOSUM62 75.5 ± 4.72 83.8 ± 2.88 82.0 ± 1.33 63.9 ± 0.68 53.6 ± 0.82 88.5 ± 0.43

BiLSTM BE 75.8 ± 3.49 84.3 ± 1.77 82.5 ± 0.71 64.6 ± 0.50 54.5 ± 0.67 88.9 ± 0.25
WE 77.5 ± 2.79 81.0 ± 0.20 80.3 ± 1.03 62.3 ± 0.60 51.5 ± 0.73 87.4 ± 0.28

AAindex 79.3 ± 3.45 82.2 ± 2.59 81.6 ± 1.37 64.5 ± 0.88 54.5 ± 0.96 88.9 ± 0.26

BLOSUM62 75.5 ± 7.16 83.5 ± 4.16 81.8 ± 1.81 63.7 ± 0.58 53.5 ± 0.50 88.7 ± 0.13

CNN BE 82.1 ± 1.08 82.2 ± 0.80 82.1 ± 0.43 66.0 ± 0.33 56.5 ± 0.38 89.6 ± 0.07
WE 79.0 ± 2.13 83.4 ± 1.33 82.4 ± 0.54 65.4 ± 0.48 55.6 ± 0.63 89.1 ± 0.16

AAindex 82.1 ± 3.27 81.2 ± 2.06 81.4 ± 0.96 65.0 ± 0.39 55.3 ± 0.38 89.1 ± 0.14

BLOSUM62 79.2 ± 4.92 83.1 ± 2.88 82.3 ± 1.26 65.3 ± 0.43 55.6 ± 0.38 89.4 ± 0.11

PlantNh-Kcr BE 81.1 ± 3.23 83.3 ± 2.09 82.8 ± 0.99 66.5 ± 0.50 57.2 ± 0.50 89.9 ± 0.19

Fig. 6 ROC curves of different models on independent tests Fig. 7 ROC curves of PlantNh-Kcr and the other four models
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models is shown in Fig. 7 and Table 5. The average AUC 
values are 0.876, 0.876, 0.890, and 0.892, respectively, 
which are lower than that of PlantNh-Kcr. This again 
underscores the superior performance of PlantNh-Kcr.

Ablation study
To assess the effect of each component in the PlantNh-
Kcr model on prediction performance, we conducted 
an ablation study. In this study, we removed the linear 
layer, CNN, MHSA, and BiLSTM + MHSA individually 
from the model and evaluated the prediction perfor-
mance on independent tests. The results are summa-
rized in Table  6. Removing the linear layer and CNN 
individually resulted in a decrease of 1.1% and 1.2% in 
AUC values, respectively. This suggests that these two 
components have a certain impact on the overall per-
formance of the model. On the other hand, removing 
MHSA and BiLSTM + MHSA individually resulted in a 
decrease of 0.5% and 0.3% in AUC values, respectively, 
indicating that these components have a smaller impact 
on performance compared to the linear layer and CNN. 
Overall, our results demonstrate that each component 

in the PlantNh-Kcr model contributes to its predic-
tion performance. Removing any module from the 
model will result in a decrease in performance, indicat-
ing that each module is essential for achieving optimal 
performance.

The performance of PlantNh‑Kcr on independent tests 
for each plant
In this study, we collected non-histone Kcr sites from 
different types of plants. Given the potential species-
specific impact on these sites, it’s necessary to assess the 
generalizability of our predictive model across diverse 
plant species. Therefore, we studied the performance of 
our model for each species on independent tests. Table 7 
details the evaluation metrics for each species, which are 
further visualized in Fig. 8 as a bar chart.

The results indicate that the prediction performance of 
the model varies slightly across different species. Nota-
bly, peanuts and papaya exhibit particularly strong per-
formance, with average AUC values of 0.930 and 0.914, 
respectively. The model also demonstrates good perfor-
mance for tabacum and rice, with average AUC values of 

Table 5 Metric values of PlantNh-Kcr and the other four models

Models Sn (%) Sp (%) ACC (%) F1˗score (%) MCC (%) AUC (%)

iKcr_CNN 77.2 ± 1.07 82.0 ± 0.79 81.0 ± 0.45 63.1 ± 0.39 52.5 ± 0.51 87.6 ± 0.18

DeepKcrot 82.8 ± 1.53 77.9 ± 1.46 78.9 ± 0.85 62.3 ± 0.56 51.9 ± 0.59 87.6 ± 0.26

nhKcr 87.6 ± 2.42 77.3 ± 3.26 79.4 ± 3.26 64.3 ± 1.61 55.1 ± 1.63 89.0 ± 0.92

CapsNh-Kcr 76.4 ± 3.59 84.3 ± 1.59 83.1 ± 0.71 65.5 ± 0.47 55.6 ± 0.58 89.2 ± 0.09

PlantNh-Kcr 81.1 ± 3.23 83.3 ± 2.09 82.8 ± 0.99 66.5 ± 0.50 57.2 ± 0.50 89.9 ± 0.19

Table 6 Prediction performance of models in the ablation study

Model Sn (%) Sp (%) ACC (%) F1˗score (%) MCC (%) AUC (%)

Removing linear layer 90.0 ± 1.19 70.7 ± 2.24 74.8 ± 1.56 60.1 ± 1.27 50.2 ± 1.46 88.8 ± 0.32

Removing CNN 78.0 ± 4.48 82.6 ± 3.00 81.6 ± 1.50 64.1 ± 0.92 53.9 ± 1.09 88.7 ± 0.44

Removing MHSA 79.2 ± 2.33 84.5 ± 1.45 83.4 ± 0.70 66.7 ± 0.51 57.3 ± 0.64 89.4 ± 0.44

Removing BiLSTM + MHSA 82.1 ± 1.08 82.2 ± 0.80 82.1 ± 0.43 66.0 ± 0.33 56.5 ± 0.38 89.6 ± 0.07

PlantNh-Kcr 81.1 ± 3.23 83.3 ± 2.09 82.8 ± 0.99 66.5 ± 0.50 57.2 ± 0.50 89.9 ± 0.19

Table 7 Performance of PlantNh-Kcr for different plants

Species Sn (%) Sp (%) ACC (%) F1‑score (%) MCC (%) AUC (%)

Wheat 73.4 ± 3.94 81.9 ± 2.19 79.8 ± 0.76 64.2 ± 0.80 51.3 ± 0.93 85.8 ± 0.32

Tabacum 79.0 ± 4.16 84.5 ± 1.98 83.1 ± 0.81 69.7 ± 1.22 59.1 ± 1.67 89.6 ± 0.46

Rice 87.2 ± 2.18 78.2 ± 2.32 79.6 ± 1.68 57.8 ± 1.65 51.3 ± 1.69 89.0 ± 0.49

Peanut 87.9 ± 2.54 84.0 ± 2.17 84.7 ± 1.31 68.3 ± 1.29 61.5 ± 1.21 93.0 ± 0.21

Papaya 81.1 ± 3.58 85.5 ± 1.94 84.6 ± 0.81 69.2 ± 0.57 60.4 ± 0.75 91.4 ± 0.30
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0.896 and 0.890, respectively. However, wheat exhibits 
slightly lower performance compared to other species, 
with an average AUC value of 0.858. This may be attrib-
uted to species-specific characteristics.

To study the performance of species-specific models, 
we developed individual models for each plant using 
samples from the corresponding species in the train-
ing dataset. We then evaluated these models using 
samples from the corresponding species in the test 
set. The performance of these models on five metrics 
are shown in Table 8. Notably, the peanut-specific and 
papaya-specific models exhibit the best performance, 
with average AUC values of 0.920 and 0.902, respec-
tively. In contrast, the species-specific models for rice, 
tabacum, and wheat exhibit relatively poorer perfor-
mance. This can be attributed to the smaller training 
set size for rice and tabacum and potential species-
specific characteristics affecting crotonylation patterns 
in wheat. When compared with the general model’s 
performance in Table  7, the species-specific models 
underperform. This finding underscores the advantage 

of integrating data from diverse species to train a gen-
eral predictive model for plant non-histone Kcr sites.

Discussion
The PlantNh-Kcr exhibits superior performance. 
However, there are still some issues that need to be 
considered.

First, our model PlantNh-Kcr contains three convo-
lutional layers, which can effectively capture local pat-
terns in protein sequences. Careful consideration must 
be given to the kernel size and the step size, as well as 
the number of convolution kernels. Too few or too many 
convolution kernels can lead to information loss or over-
fitting, respectively, which can impact model perfor-
mance. Furthermore, when utilizing the convolutional 
layer to process long protein sequences, there is a risk of 
losing global contextual information. This can be a lim-
iting factor in the predictive accuracy of the model. To 
address this issue, stacking multiple convolutional layers 
and effectively integrating their outputs can compensate 
for the loss of global context. By doing so, the model can 

Fig. 8 Metric values on independent tests for different plants

Table 8 Performance of species-specific models on independent tests

Species Sn (%) Sp (%) ACC (%) F1‑score (%) MCC (%) AUC (%)

Wheat 73.3 ± 5.12 77.6 ± 4.26 76.5 ± 1.95 60.7 ± 0.53 46.2 ± 0.86 83.1 ± 0.36

Tabacum 72.4 ± 2.28 77.1 ± 1.06 76.0 ± 0.43 59.7 ± 0.77 44.7 ± 1.06 82.7 ± 0.77

Rice 66.2 ± 5.53 83.2 ± 3.46 80.4 ± 2.07 52.8 ± 1.11 43.2 ± 1.31 83.6 ± 0.80

Peanut 83.7 ± 2.55 84.8 ± 1.58 84.6 ± 0.84 67.1 ± 0.65 59.6 ± 0.62 92.0 ± 0.17

Papaya 84.4 ± 2.90 80.5 ± 2.26 81.4 ± 1.20 66.0 ± 0.85 56.6 ± 0.93 90.2 ± 0.19
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achieve a more comprehensive understanding of the pro-
tein sequences, ultimately leading to improved predictive 
performance.

Second, multiple encodings were described in the 
paper, such as BE, WE encoding, AAindex encoding, 
and BLOSUM62 encoding. The PlantNh-Kcr model 
only utilize BE as input features. We have attempted to 
integrate multiple encodings as input features of the 
model, but failed to improve the performance. This may 
be because these features have poor complementarity.

Third, there are far more negative samples than 
positive samples in our training set. This imbalance 
can significantly influence model training, biasing it 
towards the negative samples. To address this issue, 
three methods were employed: up-sampling the positive 
samples, down-sampling the negative samples, and 
utilizing the focal loss function. Among these methods, 
the focal loss function presented the best prediction 
performance, and improved the ability of the model 
to correctly predict positive samples. We believe that 
dataset imbalance remains a potential problem that 
needs to be addressed in bioinformatics.

Conclusion
In this study, we compiled a large dataset of non-histone 
Kcr sites from five different plant species. Using this 
dataset, we developed a deep learning model called 
PlantNh-Kcr to predict non-histone Kcr sites in plants. 
The model’s architecture integrates CNN, LSTM, 
and attention mechanism, utilizing BE as its primary 
input features. Notably, the model exhibits satisfactory 
performance on both five-fold cross-validation and 
independent tests, outperforming several other models. 
In addition, there are minor variations in prediction 
performance across different plant species, a general 
predictive model demonstrates superior performance 
compared to species-specific models. We believe that 
the PlantNh-Kcr model offers a valuable contribution 
to addressing challenges and advancing the study 
of plant Kcr sites. We also believe that as more Kcr 
sites are experimentally determined and as deep 
learning techniques continue to develop, we will see 
the emergence of more high-performance models for 
predicting Kcr sites.
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