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Abstract

Genomic selection (GS) has become an increasingly popular tool in plant breeding programs, propelled by declining
genotyping costs, an increase in computational power, and rediscovery of the best linear unbiased prediction meth-
odology over the past two decades. This development has led to an accumulation of extensive historical datasets
with genotypic and phenotypic information, triggering the question of how to best utilize these datasets. Here, we
investigate whether all available data or a subset should be used to calibrate GS models for across-year predictions

in a 7-year dataset of a commercial hybrid sunflower breeding program. We employed a multi-objective optimization
approach to determine the ideal years to include in the training set (TRS). Next, for a given combination of TRS years,
we further optimized the TRS size and its genetic composition. We developed the Min_GRM size optimization method
which consistently found the optimal TRS size, reducing dimensionality by 20% with an approximately 1% loss in pre-
dictive ability. Additionally, the Tails_GEGVs algorithm displayed potential, outperforming the use of all data by using
just 60% of it for grain yield, a high-complexity, low-heritability trait. Moreover, maximizing the genetic diversity

of the TRS resulted in a consistent predictive ability across the entire range of genotypic values in the test set. Interest-
ingly, the Tails_GEGVs algorithm, due to its ability to leverage heterogeneity, enhanced predictive performance for key
hybrids with extreme genotypic values. Our study provides new insights into the optimal utilization of historical data

in plant breeding programs, resulting in improved GS model predictive ability.

Keywords Genomic selection, Training set optimization, Sunflower hybrids, Historical data, Multi-objective

optimization

Background

Sunflower (Helianthus annuus L.) is a globally signifi-
cant crop, being the fourth largest source of vegetable oil
and the second most important hybrid crop [1]. Initially,
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traditional sunflower breeding relied on open-pollinated
varieties. However, the discovery of cytoplasmic male
sterility and fertility restoration genes brought about a
shift towards hybrid breeding, resulting in improved yield
and genotypic uniformity of cultivars [2, 3]. Although
marker-assisted selection (MAS) has been used in sun-
flower breeding to select for specific traits such as disease
resistance, herbicide tolerance, and fertility restoration
genes [1, 4], it is not suitable for complex traits like yield
and oil content [5-7]. However, genomic technologies
have transformed breeding by enabling genomic selec-
tion (GS) [8], which plays a crucial role in identifying and
selecting plants with desirable quantitative traits [9, 10].
Genomic selection has been implemented in both self
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[11-13] and cross-pollinated [14] species. In sunflower
breeding, GS has revolutionized the process, providing
a more efficient and effective means of improving crop
yield and quality. Recently, Livaja et al. [15] developed a
25k SNP array from a wide variety of sunflower germ-
plasm. This provides a valuable resource for implemen-
tating GS in sunflower research. This array was validated
using genomic predictions for Sclerotinia resistance,
although GS is especially well suited for more quantita-
tive traits such as yield and oil content. In this context,
GS has been shown to outperform classical general
combining ability (GCA) approaches. This is especially
true when predicting hybrids with poorly characterized
parents [16, 17].

Constructing a statistical GS model requires a train-
ing set (TRS) that includes genotyped and phenotyped
individuals. The effectiveness of GS is heavily reliant on
the quality of the TRS used, as demonstrated by several
studies [18]. To ensure maximum efficiency, it is essential
to optimize the TRS, with the goal of maximizing both
genetic diversity and the relationship between the TRS
and the test set (T'S) whose genomic estimated genotypic
values (GEGVs) are to be predicted [18-21]. TRS opti-
mization typically involves selecting a smaller TRS as a
subset of a larger candidate set. This can be accomplished
through either targeted or untargeted methods [18, 22].
The former requires knowledge of the genotypes of the
TS during optimization, leading to a substantial increase
in performance, while the latter increases diversity with-
out information about the TS [22]. The size of the TRS
is also a critical factor in optimizing GS, and should be
maximized for the best results. However, beyond a cer-
tain point, further increasing its size becomes costly and
leads to diminishing returns [19, 22-28].

TRS optimization of historical data offers two potential
benefits: (i) enhancing prediction accuracy by remov-
ing hybrids weakly related to the TS and (ii) reducing
data dimensionality, streamlining data management and
computational efficiency in subsequent analyses [10, 18,
24]. Our primary objective is to enhance predictive GS
models, acknowledging their pivotal role in influencing
the efficacy of selection responses. While not typically
a limiting factor, the extensive data dimensions typical
in commercial breeding programs can slow GS mod-
els training times. Previous studies on TRS optimization
have mainly addressed within-year and within-generation
scenarios [21, 22, 24, 26, 27, 29-41] for self-pollinated
and hybrid crops using cross-validation. Studies have
also investigated genomic predictions across years for
hybrids without optimization, using both simulations [42,
43] and empirical approaches [44—46]. However, research
on optimization across years and generations for the effi-
cient use of historical data in hybrid crops is lacking.
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Despite numerous studies, this specific scenario remains
unexplored. Although Neyhart et al. [47] used TRS opti-
mization algorithms for long-term recurrent selection in
barley, a self-pollinated crop, they did not focus on opti-
mizing historical data. Similarly, Tayeh et al. [48] applied
TRS optimization for across-year predictions in peas, yet
this study differs from our scenario in key aspects. Firstly,
the crop studied was self-pollinated, optimization was
only applied within generation, small population sizes
were considered, and only the mean of the coefficient of
determination (CDmean) algorithm was tested. Fernan-
dez-Gonzdlez et al. [19] showed that, while this algorithm
is powerful, its slow performance poses challenges for
application to the large-scale datasets commonly encoun-
tered in industry.

Although many studies have explored TRS optimiza-
tion, most have tested various TRS sizes without pro-
posing a systematic method to identify the optimal size
a priori. While this approach is reasonable when dealing
with sparse testing, in which TRS size can be determined
by the limited available resources for field phenotyping,
it is crucial to optimize both the TRS size and composi-
tion when working with historical data. Recent literature,
such as studies conducted by Ferndndez-Gonzdlez et al.
[19] and Wu et al. [28], suggest algorithms for system-
atically determining the optimal size of a TRS. Yet, the
implications of integrating historical data into the TRS
for its predictive performance remains an under-explored
area of research. To address this gap, we focused on the
role of historical genotypic and phenotypic data from a
commercial sunflower breeding program in optimizing
the TRS’s size and composition.

Results

Population structure

We analyzed the genetic relationships between paren-
tal lines and hybrids of sunflower within a multivariate
genetic space, defined by the genome-wide markers for
each genotype in our dataset. This complex space can be
summarized by the first two principal components in a
principal components analyses (PCA) of the marker data,
allowing to visualize it in two dimensions as illustrated in
Fig. 1., We found that male and female groups overlap
in the higher values of PC2 but diverge with decreasing
PC2 values. Hybrids are positioned between the paren-
tal groups, exhibiting varying overlap with them. This
overlap is specially pronounced with the male group
and in the upper portion of the plot. Most hybrids can
be grouped in two clusters separated along the axis fol-
lowed by female parental lines. As the parental popula-
tions exhibited no substantial population structure, it
was unnecessary to incorporate clustering information
into the optimization of the training set.
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Fig. 1 This plot displays the first two principal components, calculated on genome-wide marker data, which explained 17 % of the genetic
variance in the population studied. Each solid circle represents a genotype, with colors indicating membership to male parental lines, female

parental lines, or their hybrid combinations

Optimization of the years to be included into the training
set

We conducted an analysis of eleven different scenarios
summarized in Table 5 to investigate whether includ-
ing older data in the TRS would enhance or reduce pre-
dictive ability. The results presented in Table 1 revealed
that predictive ability ranged from 0.328 to 0.384 in
YLD, 0.400 to 0.490 in GM and 0.419 to 0.560 in OIL.
Our results showed that the predictive ability generally
improved as we increased the number of years in the
TRS. However, we noticed diminishing returns when
adding more years. Specifically, the inclusion of a sec-
ond year in the TRS led to an average increase of 6.84%
in predictive ability, while the addition of the oldest
year resulted in a smaller average increase of 0.93%.
However, we identified several exceptions to this gen-
eral trend, which are highlighted in italic in Table 1. For
instance, while including the oldest year (year 1) gen-
erally improved model performance, it had the oppo-
site effect in 4 out of 12 cases (third last column in
Table 1), with its impact on predictive ability ranging
from a reduction of 1.06% to an increase of 3.78%. We
also found that including year 4 in the analysis led to

a decrease in predictive ability for YLD by 0.82% when
year 6 was the test set. Similarly, when we included
year 2 in the GBLUP analysis with year 7 as the test set
for GM, we noticed a reduction in predictive ability by
1.84%. These two instances, marked by their reductions
rather than improvements, can be seen as outliers in
our generally observed trend of enhanced performance.
Finally, we found that year 3 had the most consistent
negative effect on the predictive ability of the mod-
els. In particular, for YLD, including year 3 in the TRS
caused a reduction of predictive ability ranging from
0.53% to 7.67%, depending on the TS and model used.
In contrast, in GM and OIL, it improved performance
in 3 out of 4 scenarios and decreased it in the remain-
ing scenario. Excluding year 3 from a TRS that contains
the older years 1 or 2 (last two columns in Table 1),
resulted in a strong increase in predictive ability for
YLD, a substantial reduction in most GM scenarios and
minor changes in OIL.

We elaborated Fig. 2 to interpret the results in Table 1.
In Fig. 2A, a trade-off between the relationship to the
TS and diversity can be observed. As we progressively
included older years into the TRS, we noted a consist-
ent decrease in its average relationship with the TS and
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an increase in diversity. The diversity gain was rapid ini-
tially, but it slowed down for the inclusion of years 3 and
2, and adding year 1 slightly reduced average diversity.
For all traits in our study, we observed that years 5, 6, and
7 demonstrated higher heritability compared to the older
years, as illustrated in Fig. 2B. It is important to remark
that YLD presented a strong drop in heritability for years
1 and 3, which match the reductions in predictive ability
observed in Table 1.

With the aim of finding the optimal TRS years, we lev-
eraged the trade-off between the relationship to the TS,
diversity, and heritability through multi-objective opti-
mization. Our aim was to maximize these three variables
simultaneously, as shown in Figs. 3, Additional file 3: Figs.
S4 to S8. The results revealed a clear trade-off between
diversity and the other two variables, whereby an increase
in one variable led to a decrease in the other (Fig. 3A and
B). Conversely, there was a positive relationship between
relationship to the TS and heritability (Fig. 3 C). Year
combinations with high heritability and relationship
to the TS, such as solution b in Fig. 3, exhibited lower
diversity due to the inclusion of fewer years in the TRS.
However, these combinations did not perform as well as
others (Table 1). Solutions with extremely high diversity
(solutions ¢, f, e) achieved very high predictive abilities.
Among them, solution e maximized both heritability and
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relationship to the TS (Fig. 3A—C). This solution corre-
sponded to years 2, 4, and 5 (Fig. 3 D) and yielded the
best predictive ability for GBM and the second best for
GBLUP (Table 1). For further details on other traits and
TS vyears, please refer to the Additional file 3, Note 7.
The optimal year combinations selected for each trait are
highlighted in bold in Table 1.

Through our analysis, we discovered a consistent
approach for identifying the best-performing solutions
among those suggested by the multi-objective optimiza-
tion for all traits and TS years. This approach involved
two steps: (i) Selecting solutions with extremely high
diversity and discarding the remaining options (Figs. 3
and Additional file 3: Figs. S4—S8; A, B). (ii) Among the
solutions with the highest diversity, selecting the one
that maximizes the number of years included in the TRS
(Figs. 3 and Additional file 3: Fig. S4-S8; D), as well as
heritability and relationship to the TS (Figs. 3 and Addi-
tional file 3: Fig. S4-S8; A, B, C). By following this meth-
odology, we consistently identified combinations of years
for the TRS that exhibited the highest performance, as
shown in Table 1. The optimized solutions were either
the best or extremely close to the best for YLD and
OIL traits, while their predictive ability for GM ranged
between 94.6% and 99.5% of the highest achieved value.

(B) Heritability per year
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Fig. 2 A Trade-off between the average additive relationship between the training and test sets (vertical axis) and the opposite value

of the average additive relationship within the training set, i.e. training set diversity (horizontal axis). The values in both axes have been normalized
between 0 and 1. Each point corresponds to one of the eleven combinations between training and test set years tested in this work. The point
shape refers to the number of consecutive years preceding the test set that we used to build the training population, with labels indicating

the oldest year contained in the training set. Within the training sets, all available data for the corresponding years has been considered (no
optimization). B Broad sense heritability for each trait within each year. The horizontal dashed lines correspond to the heritability calculated

across all years
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Fig. 3 Results of the multi-objective optimization that aimed to maximize diversity, relationship to the test set, and average heritability

in the yield trait when the test set was year 6. The solutions obtained from the optimization algorithm form a three-dimensional Pareto front.
For ease of result visualization, the findings are presented in three two-dimensional plots, showcasing pairwise combinations of the variables
maximized during the optimization: A Diversity against heritability. B Diversity against relationship to the test set. C Relationship to the test set
against heritability. In these plots, each letter represents a year combination from the Pareto front, and the composition of each combination
is shown in plot (D). Gray squares indicate the years included in the training set, while a darker-colored square highlights the year combination

corresponding to the best solution (e)

Optimization of training set composition for fixed training
set sizes

After selecting the years to be included in the TRS
(Fig. 3), the genetic composition can be further opti-
mized using different optimization methods. We
comprehensively evaluated the predictive ability of
optimization methods for YLD, GM, and OIL using

various combinations of years in the candidate set and TS
(Table 5). Figure 4 presents the evolution of the predic-
tive ability for all methods as the TRS size increases in
two scenarios (TS year 6, CS years 3-5 and TS year 7, CS
years 4—6) that showcase the general trends found in the
eleven scenarios tested (Table 5). Detailed results for all
scenarios and repetitions are available in the Additional
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Fig. 4 Relationship between training set size and predictive ability of models for grain yield (YLD), grain moisture (GM), and percentage of oil (OIL),
calibrated with TRS obtained by various optimization methods. The plot shows the average predictive ability across iterations of the training set
optimization and repetitions of the gradient boosting machine model for two different combinations of candidate and test set years. The x-axis
represents the size of the training set as a percentage of the candidate set. Error bars indicate the standard error of the mean. The gray horizontal
line represents the average predictive ability achieved when using the entire candidate set to calibrate the prediction models and the gray area
around it shows the standard error of the mean
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files 1, 2. Our analysis showed that the predictive ability
generally improved as the TRS size increases. However,
the rate of improvement diminishes for larger TRS sizes.
Additionally, we observe that the difference in predictive
ability between optimization methods is more prominent
for small TRS sizes than for larger ones.

Tails GEGVs for YLD demonstrated very distinctive
performance trends, achieving maximum performance
for intermediate TRS sizes and declining for larger sizes
(Fig. 4A). This trend occurred in 54.5% of the scenarios
tested (Table 5), with maximum predictive ability typi-
cally occurring at a TRS size of 60% of the candidate set.
Tails_GEGVs outperformed using the entire candidate
set to calibrate the models in 54.5% of the scenarios for
YLD; 36.4% for OIL and 27.3% for GM, although the TRS
size at which it occurred was not consistent. The Tails
method outperformed the use of the entire candidate
set as frequently as Tails_ GEGVs did. Other methods,
in contrast, did not achieve this level of performance,
although they often managed a slightly lower or simi-
lar predictive ability than using all data with a TRS size
equating to 80% of the candidate set.

Table 2 provides a more detailed overview of the rela-
tive performance of optimization methods across TRS
sizes. We found that optimization methods performed
best in YLD, with an average area under the curve (AUC)
gain of 1.66% across methods and scenarios, followed by
GM (0.12% AUC gain) and OIL (- 0.12%).

Among the optimization methods, Tails and Tails_
GEGVs had the best average performance in YLD, with
AUC gains of 4.16% and 2.93%, respectively. As shown
in Fig. 4 B, Tails_GEGVs usually reached a higher maxi-
mum accuracy than Tails, but Tails had a better per-
formance across the entire range of sizes, resulting in a
larger AUC value. However, for the other traits, Tails
and Tails_GEGVs had poor performance and were typi-
cally worse than random sampling (negative AUC gain).
Genetic-based methods, such as Avg GRM_self and
Avg GRM_MinMax, showed much higher consistency
across traits, with average AUC gains across scenarios
ranging from 0.75 to 1.16% depending on the trait. Aver-
age AUC gain for PCA_CDmean ranged from 0.11 to
0.6%. PLS_CDmean, which includes both phenotypic and
genotypic information, generally performed similarly to
PCA_CDmean but with a larger variance, with average
AUC gains ranging from — 0.41 to 0.7%.

We evaluated the consistency of the methods within
each trait by calculating the variance across scenarios
(penultimate column in Table 2). YLD had the highest
variances, with all methods ranging between 1.5 and 3
except Tails_GEGVs, which had a variance of 8.31. The
high variance of Tails_ GEGVs is due to the fact that
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this method performed substantially better for TS year
6 (4.94 AUC gain on average) than for TS year 7 (1.26
average AUC gain). For GM and OIL, the variances
were notably lower, ranging between 0.5 and 1.5 for all
methods except Tails and Tails_GEGVs, which ranged
between 7 and 12.

Simultaneous optimization of training set size

and composition

Table 3 presents all combinations of methods used for
optimizing the TRS size and its composition. The perfor-
mance of optimization strategies is expressed as a per-
centage of the predictive ability obtained when the entire
candidate set is used to calibrate the models, with values
exceeding 100% indicating better optimization perfor-
mance than using all the data. For all traits, genetic-based
methods led to a reduction of the TRS size by 20% with
a slight decrease in predictive ability of about 1-2% with
the exception of Avg_GRM and Min_GRM for composi-
tion optimization in YLD, which led to a loss in predic-
tive ability of around 3-4%. Random sampling resulted
in a loss of around 1.5-2%. For YLD, Tails. GEGVs with
the size manually set to 60% or optimized with Tails_
GEGVs_sdl led to a dimensionality reduction of 40%,
resulting in predictive ability that was greater than using
all data in some scenarios and slightly worse in others,
averaging to be comparable. Size optimization with Min_
GRM followed by composition optimization with Tails
resulted in the best performance for GM and OIL, with
a 20% reduction in dimensionality and a decrease in per-
formance close to 0.5%.

To further investigate the performance variation of dif-
ferent optimization methods, we analyzed the Spearman
correlation between predicted GEGVs (using models
calibrated with the TRS) and BLUPs from the first step
model (obtained using phenotypic records of the TS) for
different segments of the TS representing different pro-
portions of hybrids with high or low genotypic values
for each trait (Fig. 5). Among the methods tested, Ran-
dom sampling, Avg GRM_self, Avg GRM_MinMax,
PCA_CDmean, and PLS_CDmean, showed consistent
performance across segments, with Spearman correla-
tion values very similar to the ones obtained by models
trained using the entire candidate set. In contrast, the
other methods were heterogeneous, with better perfor-
mance for some segments and worse for others. Notably,
Tails._ GEGVs and Tails. GEGVs_sd1 often demonstrated
better performance than the entire candidate set for
the top 5% and 10% segments in all traits and for both
TS years. However, no clear pattern was found for Tails,
Min_GRM, and Avg_GRM.
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Table 3 Performance of the different combinations of methods for optimizing training set (TRS) size and composition

Trait TRS Optimization Method Average TRS size and gain in predictive ability both expressed as a percentage
relative to the entire candidate set
type Size Composition Test Set year 6 Test Set year 7 Globally
Mean sd TRSsize Mean sd TRSsize Mean sd TRS size
YLD  Genetic Min_GRM Avg_GRM_self 9822 237 7929 9839 224 7981 9831 230 7955
Min_GRM Avg_GRM_MinMax 98.03 245 7929 9826 284 7981 98.14 267 7955
Min_GRM Avg_GRM 96.82 244 7929 9701 328 7981 9692 292 7955
Min_GRM Min_GRM 9764 329 7929 9544 322 7981 96.54 346 7955
Min_GRM PCA_CDmean 9867 280 7929 9794 226 7981 9831 256 7955
Mixed Min_GRM PLS_CDmean 99.13 224 7929 9856 254 7981 9885 243 7955
Tails_GEGVs_sd1 Tails_GEGVs 10141 224 6062 9895 122 6040 100.18 217 6051
Manually set 60%  Tails_GEGVs 10258 248 60.00 9821 151  60.00 10039 3.00 60.00
Phenotypic ~ Min_GRM Tails 9894 244 79.29 9885 1.88 7981 9890 2.14 7955
Min_GRM Random 9862 244 7929 9790 246 7981 9826 249 7955
GM  Genetic Min_GRM Avg_GRM_self 9880 156 79.29 9886 212 7981 9883 189 7955
Min_GRM Avg_GRM_MinMax 9876 148 79.29 9825 248 7981 9851 210 7955
Min_GRM Avg_GRM 99.27 428 79.29 9698 270 7981 98.13 366 7955
Min_GRM Min_GRM 9843 165 7929 9770 157 7981 9806 165 7955
Min_GRM PCA_CDmean 9844 182 7929 9837 265 7981 9840 231 7955
Mixed Min_GRM PLS_CDmean 9825 150 79.29 9821 237 7981 9823 202 7955
Tails_GEGVs_sd1 Tails_GEGVs 9511 280 56.19 9385 350 5936 9448 323 5777
Manually set 60%  Tails_GEGVs 9656 1.23  60.00 9521 314 60.00 9589 253  60.00
Phenotypic  Min_GRM Tails 9868 1.07 7929 10037 1.57 7981 9952 161 7955
Min_GRM Random 9856 159 79.29 9870 284 7981 9863 236 7955
OoIL Genetic Min_GRM Avg_GRM_self 9862 153 7929 9884 228 7981 9873 198 7955
Min_GRM Avg_GRM_MinMax 9871 157 7929 9891 236 7981 9881 204 7955
Min_GRM Avg_GRM 9569 511 7929 10054 294 7981 9812 483 7955
Min_GRM Min_GRM 9640 180 79.29 10021 165 7981 9830 258 7955
Min_GRM PCA_CDmean 9899 144 79.29 99.12 208 7981 99.05 182 7955
Mixed Min_GRM PLS_CDmean 9851 158 79.29 99.00 215 7981 98.76 193 7955
Tails_GEGVs_sd1 Tails_GEGVs 9426 286 62.03 9638 249 6207 9532 287 6205
Manually set 60%  Tails_GEGVs 9434 237 6000 9642 221  60.00 9538 251  60.00
Phenotypic ~ Min_GRM Tails 9890 111 79.29 9962 162 7981 9926 144 7955
Min_GRM Random 98.18 166 79.29 98.74 234 7981 9846 207 7955

The optimized training sets for all traits were evaluated using 30 repetitions of gradient boosting machine model. For each test set, the average performance across
the different candidate sets tested is displayed. Furthermore, the average for both test sets is in the “Globally” column. The performance values are expressed as

a percentage of the predictive ability obtained using the entire candidate set to calibrate the models and the training set size is expressed as a percentage of the

candidate set size

Effect of common parents in training and test sets

We classified hybrids in the TS into four types based on
how many of their parents were also used as parental
lines of TRS hybrids: (i) TO if neither parent was used,
(if) T1 if one parent was used, (iii) T2 if both parents
were used, and (iv) common if the same hybrid combi-
nation appeared in both sets. The performance of hybrid
types varied depending on the trait and TS used, with the
number of years in the TRS having only a minor effect

(Additional file 3: Fig. S12). We thus focused on TRS con-
taining all data older than the TS in Fig. 6, while vary-
ing the trait, TS year, and TRS optimization method.
For YLD, TO hybrids had the lowest predictive ability
in almost all cases, followed by T1, T2, and common
hybrids. This trend was also observed in OIL for TS year
7, but when the TS was year 6, all hybrid types tended to
perform similarly. In GM, common hybrids achieved the
highest predictive ability. TO and T2 were usually similar
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Fig. 5 Heatmap showing the average increase (orange) or decrease (blue) of Spearman correlation between test set genotypic values and GEGVs
generated by GBM model for multiple training set optimization methods relative to using the entire candidate set to train the model. The average
Spearman correlation change is calculated for each trait (displayed on the right-hand side of the vertical axis), optimization method (displayed

on the bottom of the horizontal axis), and test set (displayed on the top of the horizontal axis) across repetitions and years included in the candidate
set. The Spearman correlation was calculated in several subsets of the test set, created by selecting the highest/lowest genotypic values for the trait
of interest (left axis). It is noteworthy that the training set size used for all methods was optimized previously by Min_GRM, except for Tails_GEGVs_

sd1, which concurrently optimized the training set size and composition

and inferior to common hybrids, while T1 was better
than them for TS year 6 and worse for TS year 7.

Figure 6 also illustrates the impact of optimization
methods on hybrid classification. T1, T2, and common
hybrids consistently exhibited low dispersion across
all optimization methods, while TO hybrids showed
relatively large dispersion for random sampling and
TrainSel methods (Avg_GRM_self and PCA_CDmean).
However, TO hybrids exhibited smaller dispersion for
Tails_GEGVs_sd1, Tails and Entire_CS. In the latter

three cases, all dispersion is caused by the random start
of GBM model across iterations. However, in random
sampling and TrainSel methods, the random starting
point in the optimization process influences the final
composition of the TRS, thereby increasing dispersion.
It is worth noting that, while Tails, Tails_GEGVs_sd1
and Entire_CS present low dispersion, Tails_ GEGVs_
sd1 has the lowest one, as clearly observed in YLD,
TS year 7. The impact of TRS optimization on the
relative predictive ability of the different hybrid types
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are categorized as T0, T1, T2 or Common, based on number of common parents in training and test sets. The dashed horizontal line represents

the average predictive ability for all hybrids in each scenario. The percentage below each box denotes the proportion of the total test set comprised

by the corresponding hybrid type

was generally negligible. However, Tails. GEGVs_sdl
increased the performance of TO hybrids in certain sce-
narios (YLD, TS year 7; OIL TS year 6) and reduced it
in GM, TS year 6.

Discussion

In this study, we investigate the impact of incorporating
older historical data into the TRS for improving GS accu-
racy in sunflower breeding. While previous studies have
focused on optimizing TRS within a year and a genera-
tion, the optimization of historical data in an across-year
and across-generation scenario for efficient utilization in

hybrid crops has not been extensively explored. We aim
to fill this gap by evaluating the performance of differ-
ent methods for optimizing TRS size and composition
using genotypic and phenotypic historical data from a
sunflower breeding program. This study is unique as it
provides a rare opportunity to investigate the impact of
historical data on genomic prediction using large-scale
empirical data from a commercial sunflower breeding
program.

In this work, we have focused on prediction accu-
racy to evaluate the performance of optimization.
While maximizing accuracy is a key goal in genomic
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selection, particularly for early-stage selection, it is cru-
cial to maintain a balanced approach. In plant breeding,
unlike animal breeding, the final selection of new varie-
ties often involves extensive multi-environment trials
where genomic selection has less impact than other tools
employed. Furthermore, other major drivers of genetic
gain in genomic selection such as intensity of selection
and generation interval were out of the scope of this
study. However, an increased GS accuracy through opti-
mized historical data usage could allow to implement GS
in earlier breeding stages, which can lead to improve-
ments on intensity of selection and generation interval.

Optimization of the years to be included in the training set

The inclusion of older historical data in the TRS can have
varying effects, including increased TRS size, which usu-
ally results in enhanced diversity and predictive ability
[19, 22-28, 49]. However, incorporating older data that is
narrowly related to the TS and may have different link-
age disequilibrium patterns can be detrimental to predic-
tive ability [50]. Additionally, as noted by Bernal-Vasquez
et al. [44] and Schrag et al. [46], environmental effects
may differ between older and more recent data. Including
years with low heritability increases the noise in the data
and reduces predictive ability. Consequently, determin-
ing the optimal number of older years to include in the
TRS involves a trade-off that we leveraged through multi-
objective optimization (Fig. 2). It is important to note
that this kind of optimization is extremely fast and com-
putational time will not be a limiting factor regardless of
the dimensionality of the data. More details are available
in Additional file 3, Note 6.

This type of optimization approach yields a set of non-
dominated solutions forming a three-dimensional Pareto
front [18-20]. Selecting the best option from this set of
non-dominated solutions is a critical step and requires
additional criteria (for more information, refer to Addi-
tional file 3, Note 7). Our findings indicate that maxi-
mizing diversity was the most important factor, which is
consistent with existing literature [23, 25, 48]. Moreover,
prioritizing high diversity implicitly favors larger TRS
that encompass a greater number of years. This is crucial
for accurate estimation of year effects and the removal
of environmental effects during the initial modeling step
[44, 46]. Interestingly, our results (see additional file 3:
Figs. S4-S8 A, B, D) highlight the importance of selecting
solutions with a higher number of years over solutions
with slightly higher relationship to the TS and heritabil-
ity. Notably, it is worth mentioning that the optimiza-
tion process never selected a combination of years that
included year 1, as its inclusion led to a reduction in
average diversity (Fig. 2A), likely caused by a redundancy
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between the hybrids found in year 1 and subsequent
years.

Regarding heritability, low heritability posed chal-
lenges in accurately estimating genetic effects in the first
step model, leading to increased noise in the data and
potentially reducing predictive ability. In the second step
model, low heritability is frequently associated with a
higher proportion of variance explained by non-additive
genetic effects, which are more difficult to estimate than
additive ones, further compromising predictive ability
[75, 76]. This is exemplified by year 3 in the YLD trait,
where the very low heritability often made excluding it
from the TRS the optimal strategy (Fig. 3, Table 1). In
contrast, the relationship to the TS emerged as the least
important variable, which contradicts findings in the lit-
erature [50]. This discrepancy is likely due to the dataset
used in our study, where the TRS and TS mostly over-
lapped in the genetic space (Additional file 3: Fig. S13).
Consequently, all TRS years were sufficiently related to
the TS and provided informative data for the GS model.

Training set optimization for fixed years in training

and test sets

In the present study, we observed a trend in predictive
ability that is commonly reported in the literature, where
enlarging the TRS initially leads to a rapid increase in
performance, but tends to plateau for larger TRS sizes
[19, 22-28]. However, in our results (Fig. 4), this trend
was not particularly pronounced. One explanation for
this could be the high dimensionality of the data used
in our study, where even the smallest TRS considered
(20% of the candidate set) contained around 400 to 2000
hybrids, which is a large TRS in absolute terms when
compared with the TRS commonly used in the litera-
ture [26, 27, 48, 51-53]. The small differences in perfor-
mance observed between different optimization methods
(Table 4) can also be attributed to this, as differences
in predictive ability are typically more pronounced for
smaller TRS sizes [19, 22-27].

Contrary to our expectations [19, 22], targeted meth-
ods did not outperform untargeted ones (Fig. 4, Table 2).
In our dataset, the candidate set and TS were highly
related genetically, occupying a similar portion of the
genetic space (Additional file 3: Fig. S13). This makes tar-
geted optimization less critical, as any diverse sampling
of the candidate set will be strongly related to the TS.
CDmean, which has been shown to be the best-perform-
ing targeted method [19], underperformed in our work
due to the need for dimensionality reduction to accel-
erate computations (more details about computational
time of all methods are available in Additional file 3, Note
6). PCA_CDmean and PLS_CDmean sampled TRS with
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between 0 and 1. Each point corresponds to a different method for optimizing training set composition using the optimal training set size found
by Min_GRM (with the exception of Tails_GEGVs_sd1, which simultaneously optimizes training set size and composition). The values obtained

for each method correspond to the average across all scenarios. For visualization purposes, the content within the large ellipse is a zoom-in

of the small ellipse. The position of the optimization methods within the small ellipse is their true location

less diversity and lower relationship to the TS than Avg_
GRM_self, despite being targeted methods (Fig. 7).

OQOur results showed that Tails. GEGVs_sdl was the
best-performing method for predicting YLD, resulting in
a 40% dimensionality reduction and a slight performance
gain. This is consistent with previous findings [54] that a
TRS composed of genotypes with both the best and worst
breeding values performs better than only considering
the genotypes with the highest breeding values. Tails_
GEGVs excludes hybrids with intermediate performance
values, leaving genotypes that tend to contain alleles

with effects of the same sign, making it easier to estimate
their effects in the presence of non-additive interactions.
This would explain why this method performed better
for YLD, which has the lowest additive-to-dominance
variance ratio (Table 4). The extreme hybrids sampled
by Tails_GEGVs need to have their dominance effects in
the same direction for most loci, which probably helps to
differentiate additive and dominance effects. Supporting
this, prior research has demonstrated that non-additive
variance can be better captured in the case of extreme
allelic frequencies [55]. The need to remove the hybrids

Table 4 Broad sense Cullis heritability (H?), variance of female general combining ability (%<4, variance of male general combining
ability (%), and variance of specific combining ability (o%sc,) for each trait across all years and locations

Trait H? et o 6cam o%sca Ratio 02 /02
YLD 043 4.28 3.15 227 3.27
GM 046 047 0.28 0.11 6.82
OIL 0.64 1.08 0.90 0.31 6.39

In addition, we calculated the ratio of additive and dominance variances (Ratio 02 /0.2) as (02css + 08cam)/ 034 The traits evaluated were grain yield (YLD), grain
moisture (GM), and percentage of oil (OIL). Further details on these calculations can be found in the Additional file 3, Note 3
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with intermediate genotypic values may explain why the
best performance was usually reached at smaller TRS
sizes compared to other methods (Fig. 4A). Moreover,
Tails. GEGVs does not maximize the genetic diversity of
the TRS (as clearly seen in Fig. 7), but it maximizes the
diversity of alleles with an important effect on the trait
of interest by sampling hybrids with extreme values, indi-
rectly considering marker effects. Finally, as Tails. GEGVs
uses phenotypic information, it is influenced by environ-
mental effects, which have a large effect on low heritabil-
ity traits like YLD, especially in across-year predictions.
This may explain the inconsistent performance of this
method across scenarios and traits.

Regarding optimization of TRS size [19, 28], we devel-
oped Min_GRM size optimization, which was able to
consistently find the optimal value in all scenarios, result-
ing in a 20% dimensionality reduction with an average
accuracy loss of around 1.50% (Table 3). Min_GRM is
able to identify the genotypes in the candidate set with
a high genetic relationship to the TS. This has the dis-
advantage of not considering the diversity within the
TRS, which can be extremely detrimental to GS perfor-
mance, as happened to Avg_GRM in [19]. Min_GRM
was designed to follow a similar concept as Avg GRM
while being able to better preserve diversity within the
TRS [53], which coincides with the results observed in
Fig. 7. Furthermore, Avg_ GRM and Min GRM outper-
formed CDmean in Lemeunier et al. [53]. The likely rea-
son behind it is the fact that, in Lemeunier et al. [53], the
dataset used was characterized by having a TS that occu-
pied only a subset of the genetic space spanned by the
candidate set. Therefore, if a suitable TRS size is set, it is
possible for Avg_ GRM and Min_GRM to find all geno-
types in the candidate set that overlap with the genetic
space of the TS, ie. all relevant diversity is selected.
This would be the optimal size, which can be efficiently
found using the Min_GRM optimization developed here
(Table 6, Additional file 3: Fig. S9). In our work, the can-
didate set and TS occupied mostly the same part of the
genetic space (Additional file 3: Fig. S13), and as a result,
the optimal size was very large. Further work is required
to test Min_GRM size optimization in datasets with a
distribution of TRS and TS in the genetic space similar
to the one in Lemeunier et al. [53]. In that scenario, we
hypothesize that a plot similar to Additional file 3: Fig. S9
would have the shape of the sum of as many different sig-
moidal curves as clusters are in the population, and the
optimal size would be the second inflection point of the
first one.

Finally, we optimized the TRS size and composition
and examined the predictive ability of various methods
in different segments of the TS. We found that, while
many methods had similar predictive abilities on the

Page 15 of 23

entire TS (Table 3), some methods performed better in
certain segments (Fig. 5). For instance, we observed that
methods that maximized diversity within the TRS (Avg_
GRM_self, Avg GRM_MinMax, PCA_CDmean and
PLS_CDmean), as well as random sampling, resulted in
homogeneous performance across all segments of the TS.
This highlights the importance of diversity for consistent
predictions. However, these consistent methods rarely
outperformed those using all data. In contrast, methods
that did not maximize diversity (Avg_ GRM, Min_GRM,
Tails_ GEGVs, Tails_GEGVs_sd1, and Tails), performed
substantially better than using all data in some segments,
while performing worse for others. This could be lever-
aged to improve predictions for key segments of the TS
(e.g. hybrids with the highest or lowest genotypic values).
However, this is only possible if a method consistently
outperforms all data for the same segment of interest in
all situations. This was usually true for Tails. GEGVs and
Tails GEGVs_sd1 for the top 5 and 10% hybrids in Fig. 5.
Further research in different datasets is needed to explore
this phenomenon.

Effect of common parents in training and test sets

In the literature, it has been described that the accu-
racy of predictions for a hybrid is heavily dependent on
how many of its parents have also acted as parents in
the TRS [56, 57]. We explored this and its interaction
with TRS optimization in Figs. 6, Additional file 3: Fig.
S12. The performance of different kinds of hybrids was
highly influenced by the trait and TS year, as shown in
Fig. 6. Generally an increasing number of common par-
ents between the TRS and TS resulted in higher predic-
tive ability, which is consistent with previous literature
[56]. However, in the case of GM and OIL for TS year 6,
the opposite was true. As discussed in [57], the predic-
tion of TO hybrids greatly benefits from the inclusion of
SCA in the model, emphasizing the importance of non-
additive effects in predicting these hybrids. The GBM
model used in this study can capture a wide range of non-
additive effects, which may explain the high predictive
ability for TO hybrids in certain scenarios. Furthermore,
differential genotype by environment interactions in the
two TS years may partially account for the different pat-
terns observed. To further explore the impact of the TS
year, we created Additional file 3: Fig. S14, which displays
the distribution of the different types of hybrids in the
genetic space for both TS years. Interestingly, while T1,
T2, and common hybrids occupied most of the genetic
space in in both TS years, TO hybrids were mainly clus-
tered in four regions in the bottom and bottom-right of
the plot in TS year 7, while they were more prevalent in
the top and right of the plot in TS year 6. These differ-
ences explain why the TS year had a significant impact on
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the performance of TO hybrids across all traits. Further-
more, TO hybrids were the least numerous group (Fig. 6),
ranging between 7.7 and 13.1% of the TS depending on
the scenario (around 300 to 400 hybrids). Their relatively
small sample size may have also played a role in the high
variability of their performance across scenarios.

In terms of the dispersion of predictive ability within
each scenario, T1, T2, and common hybrids demon-
strated exceptional consistency across all scenarios
(Fig. 6). However, the dispersion of TO hybrids varied
significantly among optimization methods. Methods
that relied on a random start (such as Random sampling,
Avg GRM_self, and PCA_CDmean) exhibited consider-
able dispersion, suggesting that slight variations in the
TRS caused substantial differences in TO hybrid predic-
tions, particularly for low heritability traits such as YLD
and GM. Although the dispersion was lower for Tails and
when all available data was utilized as a TRS (Entire_CS
in Fig. 6), it was still higher than for other hybrid types.
This highlights that the GBM model struggled to achieve
consistent results across random starts, further indicat-
ing the difficulty of predicting TO hybrids. In contrast,
when the Tails_ GEGVs_sdl optimization was performed,
the dispersion for TO hybrids was negligible, supporting
our hypothesis that this method removes confounding
effects in the training data.

Conclusions

This study focused on optimizing the utilization of his-
torical data for genomic prediction in a large-scale com-
mercial hybrid sunflower dataset. Through the use of
multi-objective optimization, we balanced the variables
of diversity, heritability, and the relationship between
the TRS and TS. This allowed us to consistently iden-
tify the optimal combination of years to be included in
the TRS, prioritizing high diversity while also consider-
ing the number of different years selected and main-
taining high average heritability and relationship to the
TS. In terms of optimization methods, the Min_GRM
approach proved effective in determining the optimal
size of the TRS. It could be combined with other meth-
ods for optimizing the composition, with Tails emerging
as the best-performing method. This resulted in a 20%
reduction in dimensionality while only slightly impacting
predictive ability. While Tails_GEGVs showed potential
for traits with low heritability and high complexity, out-
performing the use of all data for YLD and facilitating
more consistent modeling for TO hybrids, their predic-
tive performance varied across different scenarios. This
inconsistency underscores the need for further research
to fully comprehend the underlying reasons. Addition-
ally, our study revealed that, when the TS is segmented
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based on genotypic values, a highly diverse TRS results
in uniform predictive ability across all segments. In con-
trast, Tails GEGVs had the ability to exploit heterogene-
ity across segments, enhancing performance in key areas.
However, the performance improvement was not con-
sistent across all scenarios, indicating room for further
optimization. These observations offer crucial insights
for the optimal use of historical data in breeding pro-
grams, while also pointing out the areas where additional
investigation is required. Further validation is necessary
for self-pollinated crops and breeding programs with dif-
ferent population structures to fully assess its applicabil-
ity. Moreover, a simulation study could provide valuable
insights into the factors that influence Tails_GEGVs per-
formance and lead to its inconsistency across traits.

Methods

Plant material

In this study, we utilized a private dataset that contained
phenotypic observations of 32,489 sunflower hybrids
grown in more than 10 locations over a period of 7 years,
with a slight but not significant imbalance in the number
of locations tested per year. Due to confidentiality agree-
ments, we are precluded from identifying the exact num-
ber of locations, the years and the specifics of the plant
material and dataset. Instead, we denote the years as year
1 (oldest) through year 7 (most recent). We evaluated 3
traits, grain yield (YLD), grain moisture (GM), and per-
centage of oil (OIL).

We used a DNA marker chip consisting of 17,270
markers to genotype 3171 female and 5151 male paren-
tal lines. After excluding heterozygous loci, we predicted
the genotype of the hybrid offspring from their parental
lines. We used “snpReady” R package version 0.9.6 [58] to
perform quality control. We removed loci with a minor
allele frequency smaller than 0.01 or with more than
20% missing data, and hybrids with over 50% missing
data. The remaining missing values were imputed using
the k-nearest neighbors method in the “impute” R pack-
age, version 1.70.0 [59]. We obtained 16,492 hybrids with
BLUPs for the three traits and complete data for 10,145
markers after quality control.

Table 4 provides additional details about the traits con-
sidered, including the broad sense Cullis heritability [73]
and additive/dominance genetic variance for each trait.
For further information on how we obtained these esti-
mates, please refer to Note 3 in the Additional file 3.

Methods

Optimization pipeline

The optimization pipeline can be described in three
steps, summarized in Fig. 8:
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Fig. 8 Summary of the methodology used in this work. From the seven years available, two have been selected as test sets (TS) and for each one
the candidate sets (CS) can be selected manually of through optimization. For a given combination of TS-CS years, further optimization is possible
to find the actual hybrids used in the training set (TRS), which is a subset of the CS. The TRS is subsequently used to train the gradient boosting
machine (GBM) model employed to evaluate optimization performance. It is important to note that, when the TRS size is set to 100% of the CS,
no optimization can take place, as the entire CS would be used as TRS

Table 5 Combinations of years in the candidate and test sets in which the different training set optimization methods were tested.
For each test set year, the candidate set is initially composed of the previous year, and older years are progressively included, e.g.
5-3 indicates that the candidate set contains all data from years 3, 4, and 5. For a given combination of years in the candidate set,
optimization can be used to find an optimal subset of all hybrids tested in said years. This subset then becomes the training set. The
optimized training sets are subsequently used to calibrate genomic selection models. Finally, the predictive ability of the model in the
test set is used to evaluate the performance of the optimization of its training set

Candidate set years

Test set year

54
6-4

5-3
6-3

5-2
6-2

5-1 6
6-1 7
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Table 6 This table summarizes the TRS optimization methods employed in this study, indicating their purpose (either optimization of
size or composition) and type (whether genetic-based, phenotypic-based, or mixed and targeted or untargeted)

Method Purpose Type Mechanism
PCA_CDmean/ Composition Genetic/Mixed Dy = diag(Xrs, st X7s. a)
PLS_CDmean targeted X = X;RS;A//XTRS;A//;
Xo =X +11)7
Dy = diag(Xrs, anXoX XaXis.ap)
CDmean = —sum(D,/Dy)/nts
argmax(CDmean)
Avg_GRM_self Composition Genetic Avg_GRM_self = —mean(Grgs:Trs)
untargeted argmax (Avg_GRM_self)
Avg_GRM_MinMax Composition Genetic Avg_GRM_MinMax = mean(Grgs.7s) — mean(Grgs.Trs)
targeted argmax(Avg_GRM_MinMax)
Avg_GRM Composition Genetic Avg_GRM; = mean(Gi.7s)
targeted 1) Compute Avg_GRM for all hybrids in the candidate set
2) Select for the TRS the n7gs hybrids with the highest
Avg_GRM values
Min_GRM Composition Genetic Min_GRM; = min(Gy,7s)
targeted 1) Compute Min_GRM for all hybrids in the candidate set
2) Select for the TRS the nygs hybrids with the highest
Min_GRM values
Size Genetic 1) Optimize composition of training sets of increasing size using
targeted Min_GRM. Sizes tested range from 1 to entire candidate set
2) The fitness value for every TRS is the smallest Min_GRM
value among its hybrids
3) Plot TRS size against -fitness as in Figure S9
4) Fit sigmoidal function to the plot
5) Optimal TRS size is the one corresponding to the second
inflexion point of the sigmoidal
Tails Composition Phenotypic 1) Rank hybrids according to their genotypic values
untargeted 2) Select ”T% hybrids with highest genotypic values
and "2 hybrids with lowest genotypic values
Tails_GEGVs Composition Mixed 1) Rank hybrids according to their GEGVs
untargeted 2) Select £ hybrids with highest GEGVs
and 2= hybrids with lowest GEGVs
Tails_GEGVs_sd1 Composition and size Mixed 1) Scale GEGVs distribution to have u = 0,5d =1
untargeted 2) Select hybrids whose scaled GEGVs are lower than — « - sd

and hybrids with scaled GEGVs higher than « - sd

nger; the number of instances present in the set indicated in the subindex. For all matrices a subindex indicates that a subset is taken. For instance, Xrgs. 4y represents

the marker matrix whose rows are the individuals in the TRS and with all columns taken

TRS training set, TS test set, i an individual hybrid, G additive genomic relationship matrix, 4 shrinkage parameter, X can be the marker matrix or the markers can be
replaced with principal components (for PCA_CDmean) or partial least squares variables (for PLS_CDmean), diag(-) main diagonal of a matrix, mean(-) average of all
elements of a vector or matrix, / identity matrix, argmax(-) its argument has to be maximized, which was done using TrainSel heuristic, « parameter controlling TRS size

in Tails_GEGVs_sd1

1. Study the year effect in eleven scenarios with differ-
ent years in the candidate set and TS (Table 5). In this
step, all data in the candidate set years is used to train
the GBLUP and GBM models with the aim of eluci-
dating whether or not including increasingly older
historical data in the TRS improves predictive ability
(i.e., in Fig. 8, this corresponds to TRS size = 100% of
candidate set).

2. Perform multi-objective optimization to identify the
best combination of years to include in the TRS and

compare its results with the ones obtained in the
previous step. It is important to note that we did not
constrain the optimization to only considering the
scenarios in Table 5.

. Optimize the genetic composition of the TRS in the

same 11 scenarios as before (Table 5), i.e., from all
the hybrids phenotyped in the candidate set years,
a subset is taken to act as the actual TRS. Within
each scenario, the first step was finding the desired
TRS size. To that end, we used size optimization
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methods (Min_GRM and Tails_ GEGVs_sdl) and
we also tested sizes manually set (20, 40, 60 and 80%
of the entire candidate set). For each size, all meth-
ods for optimizing TRS composition were used and
they were evaluated using the predictive ability of
GS models calibrated with the corresponding opti-
mized TRS. We performed 10 repetitions for opti-
mization methods based on TrainSel, version 2.0
[60] (see Table 6 and Additional file 3, Note 6) and
we used 10 repetitions of the GBM model for each
TRS to account for the influence of the random start.
GBLUP model was not employed in this step due to
issues with computational time caused by the high
dimensionality of the data (number of genotypes
larger than number of markers)

Genomic selection models
For all models, we used a two-step approach. In the first
step, we removed environmental effects and estimated
Best Linear Unbiased Predictions (BLUPs) for each
hybrid. In the second step, we utilized the BLUPs and
genotypic information as inputs to train the model.

First step model:

y=1lu+XB+Zg+e 1)

where y is a vector of hybrid phenotypic records, 1
is a vector of ones, u is the intercept, f is a vector of
fixed effects corresponding to environmental effects
(year:location combinations), g is a vector of best lin-
ear unbiased predictors (BLUPs) for the random effects
of the genotype, € is a vector of residual random effects
and X and Z are design matrices for the environmental
and genotypic effects respectively. g and € follow a mul-
tivariate normal distribution of mean 0 and variance-

covariance structure [ ng and [ aez respectively, where ag2

is the genetic variance, o2 is the residual variance and I
is the identity matrix of the appropriate dimensions. The
BLUPs in g (of a much lower dimensionality than the
observations in y) will be used for all subsequent analy-
ses. While the primary advantage of BLUPs lies in their
ability to model genetic relationships by the integration
of variance-covariance structure instead of an identity
matrix, our decision to use an identity matrix was guided
by the need to balance computational feasibility with the
size of our dataset. The genomic data will be employed
in the second step models. In acknowledging the poten-
tial of alternative approaches, it is important to note that
employing BLUEs in the initial stage would be a viable
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method. This approach is currently under investigation
in our ongoing research, where we are working towards
implementing a fully efficient model [61, 62]. Further-
more, it could be discussed whether the environmen-
tal effect should be fixed or random. The environment
in this dataset can be regarded as a stochastic process,
which would be better modelled as a random effect.
However, the number of levels for the environment can
be relatively small in some of the scenarios, potentially
compromising the estimation of the variance component.
Setting the environmental effect as fixed removes the
number of environmental levels as a source of variation
for model performance across scenarios. Finally, we have
assumed homogeneous residuals, while heterogeneous
residuals across locations would have been more realistic.
The reason for it is that this allowed us to fit the model
in with the extremely computationally efficient Ime4 R
package, version 1.1-34 [63]. This was critical due to the
large dimensionality of our dataset.

It is important to mention that the first step was car-
ried out separately for the TS and the candidate set (set
of hybrids from which the TRS will be sampled by opti-
mization methods) to ensure that no information from
the TS was included in the TRS. When using data from
only one year for the first step, the environmental fixed
effects refer to the location rather than the year and loca-
tion combinations.

Two different models were used as a second step. For a
detailed comparison of their performance, please refer to
Additional file 3, Note 4.

GBLUP:

A linear mixed model based on the general combin-
ing ability (GCA) and specific combining ability (SCA) of
the parental lines was used. As a result, it can take into
account additive and dominance effects:

y=1pu+ Z1f +Zym+ Zsh + € (2)

Where y is a vector containing the BLUPs obtained in the
first step model, 1 is a vector of ones, u is the intercept,
f ~N(O, oszf) is the vector of random effects for the
GCA of the female parents, m ~ N (0, a,%,Gm) is the vec-
tor of random effects for the GCA of the male parents,
h ~ N(0, afH) is the vector of random effects for the
SCA for the hybrids and € ~ N (O, 0621 ) is the vector of
residuals. Gy and G, are the additive relationship matri-
ces for males and females respectively calculated from
genomic data using the VanRaden method [64] and H is
the dominance relationship matrix calculated from the
marker data of the hybrids [65]. ofz, 02,07 and o2 are the
variances for females, males, hybrids and residuals
respectively. This model was implemented using the
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Sommer R package, version 4.1.7 [66]. For further details
about the calculation of the relationship matrices, see
Additional file 3, Note 1.

Gradient boosting machine (GBM):

This model uses an ensemble of weak learners (decision
trees) sequentially built in such a way that each tree is fitted
on the residuals of the previous ones and minimizes them
[67]. The input of this model is a vector of BLUPs for the
hybrids in the TRS and its corresponding marker matrix.
An important previous step to maximize the performance
of this model and avoid overfitting is the tuning of its hyper-
parameters, which was carried out performing grid search
and cross validation within the candidate set (For more
details see Additional file 3, Note 4). This model is nonlin-
ear and, as a result, it can implicitly consider non-additive
effects such as dominance and epistasis. We implemented it
using the R xgboost package, version 1.7.3.1 [68].

Optimization of the years to be included into the training set
The first step when working with historical data is deter-
mining from which years the TRS data should originate. To
that end, we developed a multi-objective optimization using
TrainSel, version 2.0 [69] heuristic and simultaneously maxi-
mizing TRS diversity, relationship to the TS and heritability:

Diverstiy = —mean (GTRS;TRS)

Relationship to TS = mean (GTRS; TS) 3)
Heritability = mean (H ZTRS)

Where mean(:) indicates the average of a vector or
matrix, G is the additive relationship matrix between
hybrids, H? is a vector containing the heritability within
each TRS year and a subindex indicates that a subset of
the vector or matrix is taken, with TRS and T'S referring
to the years in the training and test sets respectively.

Training set optimization methods

For a given combination of years in the TRS, its genetic
composition can be further optimized by several TRS
optimization methods. In this scenario, all data from the
combination of years of interest conforms a candidate set
and TRS optimization methods are used to find an opti-
mal subset of it to be used as the actual TRS.

In this study, we based the classification of the opti-
mization algorithms on the input data. We labeled them
as “genetic-based” methods if they utilized only marker
data, “phenotypic-based” if they utilized only BLUPs
from the first step model, and “mixed” methods if they
utilized both. We also labeled them as “targeted” if they
required marker data from the TS and “untargeted” if
they did not [18, 22]. We implemented trait-specific
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optimization strategies for phenotypic-based and mixed
methods. While we could use all methods to optimize
the composition of the TRS, only certain methods were
appropriate for optimizing its size. We provide the equa-
tions for these methods in detail in Table 6.

Genetic-based methods PCA_CDmean (targeted).
CDmean [21] can be considered the gold standard for
TRS optimization, but its high computational cost [19]
makes its implementation in industrial-scale datasets dif-
ficult. Here, we used an implementation accelerated by
principal component analysis (PCA) on the marker data.
This implementation is equivalent to COMEAN?2 in [70].

Avg GRM_self (untargeted). This method minimizes the
average relationship within the TRS to maximize variability
[19].

Avg GRM_MinMax (targeted). It minimizes average
relationship within the TRS similarly to Avg GRM_self
but it also maximizes the average relationship between
TRS and TS [19].

Avg GRM (targeted). Maximize the average relation-
ship between TRS and TS (see Table 6 or OPT_MEAN in
[53] for more details).

Min_GRM (targeted). Maximize the minimum relation-
ship between the individuals of the TRS and any individ-
ual in the TS. (see Table 6 or OPT_MIN in [53] for more
details). Min_GRM has solely been utilized in literature
to optimize the TRS composition. However, we applied it
to optimize the size of the TRS as well. Testing all possi-
ble TRS sizes yielded a sigmoidal curve (Additional file 3:
Fig. S9), where the second inflexion point corresponds to
the optimal TRS size. Once the optimal size is determined,
the TRS composition can be optimized using Min GRM
or any other method. More information can be found at
Table 6 and Additional file 3: Fig. S9.

Phenotypic-based methods Tails (untargeted). To obtain
a TRS of a predetermined size nrs, we employed a selection
procedure based on the BLUPs from the first step model.
Specifically, we chose the n1rs/2 hybrids with the lowest
BLUPs and the n7gs /2 hybrids with the highest BLUPs from
the candidate set [47, 71]

Mixed methods PLS _CDmean (targeted). Similar to
PCA_CDmean but instead of relying on principal compo-
nent analysis to reduce dimensionality, it uses partial least
squares (PLS). More details can be found in Additional
file 3, Note 5.

Tails GEGVs (untargeted). We used GBLUP to com-
pute the GEGVs of all hybrids in the candidate set, fol-
lowed by Tails optimization using the GEGVs instead of
BLUPs from the first step model, in accordance with previ-
ous studies [47, 71]. We investigated multiple methods to
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optimize TRS size and composition simultaneously using
Tails_ GEGVs, using concepts such as nucleotide diver-
sity [72] (Additional file 3, Note 2, Table S1), and found
in preliminary analyses that Tails_ GEGVs_sd1 performed
the best. This strategy involves selecting individuals with
GEGVs below (mean — « - sd) for the lower tail and above
(mean + « - sd) for the upper tail, in a scaled GEGVs dis-
tribution with sd = 1 and i = 0. The value of a was set to
0.5 based on previous analyses.

Area under the curve

We evaluated the effectiveness of an optimization method
across different TRS sizes by quantifying its perfor-
mance through the area under the curve (AUC) metric, as
described by Fernandez-Gonzalez et al. [19]. Plotting the
predictive ability against the TRS size (Fig. 4), AUC corre-
sponds to the area under the curve that connects the avail-
able discrete values. We computed the AUC using Eq. 4.

nTRS—1
PA, + PA
AUC = Z {M - (TRS _size, 11 — TRS_size,,)
n=1 2

(4)
Where nTRS represents the number of TRS sizes tested
(four sizes, 20, 40, 60 and 80 % of the candidate set), PA
represents the predictive ability and TRS_size represents
the size of the TRS. To facilitate comparisons of AUC val-
ues across vastly different scenarios, they are expressed
in relative terms as percentage gains relative to random
sampling, as shown in the following equation:

AU Coptimization

AlUCyuiy =
g ( Aucmndom

- 1> x 100 )
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Additional file 1. Predictive ability of the gradient boosting machine
model across all scenarios and repetitions for the training set (TRS) opti-
mization methods tested using fixed values of the TRS size. The following
columns are included: Method: TRS optimization method used; TRS_size:
size of the TRS expressed as percentage of the candidate set size; Trait:
phenotypic trait; Method_iter: iteration number for the optimization
method; Model_iter: iteration number for the genomic selection model;
Predictive_ability: correlation of predictions in test set and the empirical
genotypic values; TS: year of the field trials used as test set; CS: years of
the field trials used as candidate set (1 = one year prior to test set year, 2
= two years prior to test set year, etc.).

Additional file 2. Predictive ability of the gradient boosting machine
model across all scenarios and repetitions for simultaneous optimization
of training set (TRS) size and composition. The same columns as in Addi-
tional file 1 were used with the exception of "Method_size_optimization'
(optimization method used to find optimal TRS size) and "Method_com-
position_optimization" (optimization method used to find optimal TRS
composition).
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Additional file 3. Additional analyses and results. Note 1, methodology
used for calculating the genomic relationship matrices. Note 2, additional
optimization methods tested in preliminary analyses and discarded due
to poor performance. Note 3, methodology for heritability and variance
components calculation. Note 4, additional details of the genomic selec-
tion models used. A comparison between the two models explained in
the main text and a Bayesian B model with only additive effects fitted with
BGLR R package [74] is also included. Note 5, detailed overview on the use
of partial least squares for PLS_CDmean. Note 6, description of TrainSel
hyperparameters used and detailed discussion about computational time
of optimization. Note 7, guidelines for the interpretation of the Pareto
front plots in multi-objective implementation and detailed analyses for
each scenario not covered in the main text. After Note 7, several figures
referenced in the main text were also included.
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