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Abstract 

Background  The phenotypic traits of leaves are the direct reflection of the agronomic traits in the growth process 
of leafy vegetables, which plays a vital role in the selection of high-quality leafy vegetable varieties. The current 
image-based phenotypic traits extraction research mainly focuses on the morphological and structural traits of plants 
or leaves, and there are few studies on the phenotypes of physiological traits of leaves. The current research has devel-
oped a deep learning model aimed at predicting the total chlorophyll of greenhouse lettuce directly from the full 
spectrum of hyperspectral images.

Results  A CNN-based one-dimensional deep learning model with spectral attention module was utilized for the esti-
mate of the total chlorophyll of greenhouse lettuce from the full spectrum of hyperspectral images. Experimental 
results demonstrate that the deep neural network with spectral attention module outperformed the existing stand-
ard approaches, including partial least squares regression (PLSR) and random forest (RF), with an average R2 of 0.746 
and an average RMSE of 2.018.

Conclusions  This study unveils the capability of leveraging deep attention networks and hyperspectral imaging 
for estimating lettuce chlorophyll levels. This approach offers a convenient, non-destructive, and effective estimation 
method for the automatic monitoring and production management of leafy vegetables.
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Background
Lettuce is essential to a healthy human diet. It is a leafy 
green vegetable that is widely grown and widely con-
sumed, and China holds the title of being the largest 

lettuce producer in the world [10, 11]. In recent years, 
there has been a notable rise in the production of lettuce 
cultivated within controlled environmental systems. In 
contrast to traditional field cultivation, controlled envi-
ronment cultivation has emerged as a prevalent method, 
enabling year-round lettuce and vegetable production 
irrespective of geographical and climatic limitations [2, 
5].

The plant phenotype results from a complex interplay 
of genetic and environmental factors. It encompasses all 
the physical, physiological, and biochemical characteris-
tics, including structural traits and composition, as well 
as the various processes associated with plant growth 
and fruit development. Green plant leaves engage in the 
process of photosynthesis, which transforms absorbed 
solar energy into organic substances [17]. Additionally, 
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they play a vital role in facilitating the exchange of water 
vapor and carbon dioxide through small openings known 
as stomata. Furthermore, leaves acquire oxygen through 
respiration. This entire process collectively generates the 
essential energy required for plant growth and meta-
bolic activities [15]. The phenotypic traits of leaves serve 
as indicators of a plant’s capacity to respond, adapt, and 
self-regulate in ever-changing environmental conditions 
[25]. For leafy vegetable species commonly consumed 
by humans, such as lettuce, cabbage and various green 
vegetables, the morphological and physiological traits of 
leaves can reflect the growth status of leafy vegetables. 
Chlorophyll is a group of main pigments used for pho-
tosynthesis in green plants and is closely related to the 
physiological state of plants [12, 25]. Monitoring chloro-
phyll content can reflect the health of plants, and thus the 
evaluation and prediction of leaf chlorophyll is of great 
significance for lettuce cultivation.

With the development of computer vision and digital 
imaging technology, hyperspectral imaging (HSI) has 
become increasingly feasible. HSI combines machine 
vision and spectroscopy to furnish concurrent spatial and 
spectral data pertaining to the observed object [16]. The 
hypercube data acquired from the HSI sensor comprises 
complete spectral details for each pixel, in addition to 
texture or statistical attributes for each wavelength band 
[13]. HSI has demonstrated significant potential as a non-
invasive tool, offering insights into physical morphologi-
cal, as well as physiological and biochemical properties of 
plants. Nowadays, this technique has been widely used 
in plant phenotyping [9]. Guo et  al. [7] investigated the 
quantitative relations between leaf chlorophyll content 
and three kinds of canopy hyperspectral parameters in 
tobacco. Zhang et al. [26, 27] employed the partial least 
squares regression (PLSR) algorithm to establish a pre-
diction model for estimating the relative canopy chloro-
phyll content of sugar beet using proximal hyperspectral 
imagery. Rehman et  al. [14] proposed a deep learning 
model utilizing 1-D convolutional neural network (CNN) 
designed to estimate the relative water content (RWC) 
of maize plants using mean spectral reflectance. Simi-
larly, Zhou et al. [30] established a sugar content predic-
tion 1-D CNN model for HSI of green plums. In terms 
of lettuce, Eshkabilov et  al. [6] estimated nutrient levels 
of the lettuce cultivated within a hydroponic tub culture 
system. using HSI technique along with principal com-
ponent analysis (PCA) and PLSR method. In a recent 
investigation by Yu et al. [24], deep learning models were 
employed to forecast water stress levels in lettuce using 
hyperspectral data. Several studies have been undertaken 
to predict parameters such as fresh weight, nitrate, pH 
value, soluble solid content and pigment content of let-
tuce using hyperspectral data [6, 18, 28]. Nevertheless, 

most current proximal hyperspectral-based studies rely 
on multivariate analysis methods. These methods often 
entail intricate feature engineering, which require con-
siderable expertise and multiple fine-tunings. Concur-
rently, deep learning methods like CNNs are capable to 
automatically extract features from image data, present-
ing novel opportunities for more streamlined and effi-
cient feature engineering. Therefore, it is necessary to 
explore and develop methods for estimating chlorophyll 
content using full hyperspectral spectra with the help of 
deep learning to mitigate the computational challenges 
arising from the inherent high dimensionality of hyper-
spectral data.

The purpose of this study are as follows: (1) To develop 
a convenient deep learning approach incorporating 1-D 
CNN, attention modules, and hyperspectral data for esti-
mating the chlorophyll content of lettuce; (2) The effect 
of the spectral attention module with a gating mecha-
nism for assisting the deep CNN model to learn the 
importance of the hyperspectral bands was analyzed; (3) 
Comparing the estimation performance of the developed 
deep learning model against that of linear partial least 
squares (PLS) and random forest (RF) regression models, 
all utilizing the full spectrum.

Methods
Plant materials
In the study, 161 seedlings of “1507 lixiang” lettuce vari-
ety were planted. Each lettuce seedling grew in a pot 
containing a substrate mixture of 3:1:1 of peat soil, per-
lite and vermiculite, which provided a certain amount of 
base fertilizer. These pots were placed inside an artificial 
climate chamber (relative humidity 85%) at the Zhejiang 
Academy of Agricultural Sciences, Hangzhou, China 
(30°18′N, 120°12′E). During the three single-factor (tem-
perature, light intensity and photoperiod) lettuce growth 
experiments, imaging was conducted every 7  days after 
most of the lettuces had grown their fourth leaf, and a 
total of 478 samples were obtained. The parameter set-
tings and the number of lettuce plants in each treatment 
group are shown in Table 1. Under professional supervi-
sion, lettuce in the climate chamber was watered every 
2 or 3  days after planting, and no fertilizer was applied 
throughout the experiment.

Determination of chlorophyll content
Measurements were carried out every week after treat-
ment. The biggest fully expanded leaves from each treat-
ment were used for measurements. Leaf total chlorophyll 
levels were assessed using a chlorophyll meter (SPAD-
502; KONICA MINOLTA, Osaka, Japan). Three locations 
were randomly selected within 50% region from the leaf 
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base to measure the total chlorophyll content of leaves, 
and the average was calculated.

Hyperspectral image system
A line-scanning hyperspectral imaging system operat-
ing in the visible near-infrared (Vis–NIR) range, span-
ning from 387 to 1003 nm with a bandwidth of 1.3 nm, 
was utilized for capturing hyperspectral images of lettuce 
within a controlled, darkroom environment. The Vis–
NIR hyperspectral imaging setup comprised a camera 
(Pika XC2, Bozeman, MT, USA) equipped with a 17 mm 
focal length lens, four 35-W tungsten halogen lamps as 
the light source, and a precision displacement platform 
driven by a stepper motor (Fig. 1). The entire system was 
under the command of a computer fitted with compat-
ible data acquisition software. The camera was positioned 
at 0.65 m from the platform. Before image collection, the 
system was preheated for 30 min in advance to stabilize 
the light source.

Hyperspectral image acquisition and calibration, 
processing
Each individual lettuce was positioned on a displacement 
platform and transported to the hyperspectral camera’s 
field of view using a slider. Before capturing hyperspec-
tral images, the light source of the hyperspectral cam-
era was preheated. Subsequently, the parameters of the 
hyperspectral camera, such as focal length, exposure 
time, and gain and scanning speed were adjusted using 

data acquisition software. Hyperspectral images of let-
tuce from a top-down perspective were captured within 
the wavelength range of 387–1003 nm. Due to variations 
in lettuce size at different stages, the size of the hyper-
spectral images of lettuce ranged from [1600 × 1000] to 
[1600 × 1400] pixels across 231 bands.

The raw hyperspectral images were preprocessed to 
mitigate the impact of sensor noise, including dark cur-
rent, and to correct for non-uniform spectral responses 
due to varying illumination across different spectral 
bands. A white plastic panel was utilized as a reference 
to calibrate the illumination across the images. The dark 
references were collected to remove the dark noise origi-
nating from the hyperspectral sensor. Specifically, this 
was done by turning off all light sources in the dark room 
and covering the lens with its opaque black lens cap. The 
reflectance of HSI was then calibrated using the following 
equation:

where Iraw is the raw hyperspectral image, Id is the dark 
reference image obtained by covering the camera lens, Iw 
is the white reference image. The white reference image 
and dark reference image were recorded, respectively, 
under the same experimental conditions as the lettuce 
image acquisition. The calibration of raw hyperspec-
tral images was performed using the data acquisition 
software. To mitigate the influence of high noise levels 

(1)Reflectance =
Iraw − Id

Iw − Id

Table 1  Plant materials and treatments

* The bold items indicate the constant values of the other two parameters during the single-parameter experiment

Group Temperature/℃ Light intensity /lux Photoperiod (light: dark)/
hours

Treatment 22 25 28 16,000 20,000 24,000 16: 8 12: 6 8: 4

Number of plants 18 17 18 18 18 18 18 18 18

Sample size 72 68 72 36 36 36 50 54 54

Fig. 1  The materials and imaging equipment
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observed at the initial and concluding segments of the 
spectrum, the spectral range considered for subsequent 
analysis was confined to 437 − 919 nm for hyperspectral 
data, encompassing 180 bands.

Image processing involves eliminating the background 
information from the hyperspectral image while retain-
ing the information related to the object. An 8-bit color 
image was synthesized using a combination of R, G, and 
B bands in 16-bit hyperspectral images, and the Otsu 
threshold segmentation method and morphological pro-
cessing were used to create a mask for green color and 
remove the background. The foreground pixels belong-
ing to lettuce were extracted by pixel-by-pixel multipli-
cation of the binary mask with the hyperspectral image. 
The segmented lettuce region was defined as the region 
of Interest (ROI). The mean spectral reflectance for fur-
ther analysis was calculated by averaging the reflectance 
values of all pixels in each band within the ROI and nor-
malizing the average spectrum to the 0–1 range with 
Min–Max Scaling.

Models for predicting chlorophyll content of lettuce
The spectral reflectance of plants carries abundant infor-
mation about their growth and health, encompassing 
various physiological and biochemical characteristics. 
Building upon prior research [14, 24], this study employs 
the Inception module in deep learning. This model takes 

the mean spectral reflectance as its input and generates 
estimations of total chlorophyll levels in lettuce. While 
deep networks based on the Inception module have 
previously been utilized to predict water stress in maize 
leaves and lettuce, there is limited existing research on 
their application for predicting total chlorophyll content 
in lettuce.

As shown in Fig. 2, the inception-like model used in the 
study included the input layer, spectral attention module, 
a convolutional layer and pooling layer, and an inception 
module followed by two fully connected layers. The con-
volution layer with stride 2 and the pooling layer with 
stride 3 performed downsampling after convolving the 
mean spectral reflectance, resulting in an output feature 
map of 1/6 size compared to the input. The Inception 
module was modified to accept 1-D feature maps. The 
Inception module consists of three parallel convolutional 
submodules with varying kernel sizes (1 × n, n = 1, 3, 5), 
along with an average pooling layer. After concatenating 
the four-branch feature maps generated by the inception 
module, the estimated value of the total chlorophyll was 
output through two fully connected layers, where the 
activation function ReLU was applied between the two 
fully connected layers.

The complexity of high-dimensional spectra in HSI 
poses a significant hurdle in both data interpretation and 
practical utilization. However, the process of wavelength 

Fig. 2  Flowchart for predicting chlorophyll in lettuce using the hyperspectral image and the developed 1-D CNN model
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selection offers an effective means of mitigating this chal-
lenge by reducing the dimensionality of spectral data 
while preserving critical information [29]. Hence, there is 
a need in the spectral regression network to consolidate 
the spectral information from various bands while dis-
tinguishing them. In addition, we hope that this spectra 
module to be task-driven and able to learn adaptively in 
an end-to-end spectral regression network. For this pur-
pose, a spectral attention module with a gating mecha-
nism was employed to assess the importance of various 
spectral bands and recalibrate them (Fig. 3). Inspired by 
the “squeeze and excitation” networks [8], the “squeeze 
and excitation” block (SE block) was employed to learn 
the spectra information and recalibrate channel-wise 
responses adaptively. This spectral attention module was 
placed after the input and before the first convolutional 
layer. After inputting the mean spectrum into the mod-
ule, a vector was generated using global average pool-
ing to serve as channel-wise descriptors. Following this, 
two fully connected layers were applied to this vector to 
capture nonlinear interactions among the channels. Sub-
sequently, the processed vector was activated by the sig-
moid function to generate a weight vector, which acted 
as a scaling factor for the various spectral bands. There-
fore, the model used in this study was built by the full 
spectrum.

Data augmentation and training strategy
In order to augment the spectral data, the offset and 
slope of the spectral data were changed randomly in a 
small range. The offset was varied within a range of ± 0.10 
times the standard deviation of the spectral curve, and 
the slope was randomly adjusted to values uniformly dis-
tributed between 0.95 to 1.05.

In a fivefold cross-validation, the dataset of 478 images 
was divided into 5 equal sections. Each section was used 
as the validation set once, with the remaining parts used 
for training. This process was repeated for 5 times. This 
folding technique maximizes the use of limited data, 
ensuring each training process utilizes a distinct set, pre-
venting bias, and mitigating the risk of overfitting.

During the training phase, the Adam optimizer was 
employed to update the parameters of the deep CNN. 
Initially, the learning rate was configured at 0.0001, with 
a batch size of 6. To assess the model’s performance, the 
mean squared error (MSE) with the L2 norm regulari-
zation was utilized as the regression loss function dur-
ing training. To manage the training process effectively, 
we implemented a cosine annealing strategy for learning 
rate adjustments. Specially, the total number of train-
ing epoch was set to 500 and the learning rate was reset 
every 200 epochs.

Comparison with other standard approaches
PLSR is a widely used method for multivariate data 
analysis. PLSR simplifies the association between multi-
ple variables by mapping them onto a set of orthogonal 
feature vectors [19]. This approach is often applied to 
the detection of plant physiological phenotypes, mainly 
when using multispectral or hyperspectral images [1].

Random forests (RF) is an ensemble learning method 
that integrates multiple decision trees by means of bag-
ging [3]. This is also one of the common techniques used 
for plant physiological component detection. Previ-
ous studies have demonstrated that it shows good per-
formance in plant growth traits estimation, which can 
achieve an accuracy comparable to that obtained using 
SVM [23, 28].

Fig. 3  Schematic of the spectral attention module. a the spectral weight vector is used to reweight the spectral bands. b the real attention value 
vector from the spectral attention block. The deeper blue indicates the higher weight value
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Grid search was used to optimize the parameters of the 
above model, which included the key parameter ‘number 
of components’ of PLSR and the key parameter ‘number 
of trees’ of RF. Regarding the features selected in PLSR 
and RF models, two feature selection scenarios were con-
sidered: (1) full hyperspectral spectra; (2) sensitive spectral 
wavelength.

Metrics for model evaluation
The model’s performance was assessed through the com-
putation of the following metrics: root mean square errors 
(RMSE), normalized root mean square error (NRMSE) and 
the correlation coefficient of determination (R2). Metrics 
are defined as follows:

(2)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ki)
2

where n is the number of samples, ki is the i-th predicted 
trait, yi is the i-th ground truth trait, y is the average of 
ground truth.

Results and analysis
Estimation results of the developed model
The performance of the model developed for estimating 
the chlorophyll trait of lettuce on the test sets, as evalu-
ated in a five-fold cross-validation, is presented in Table 2 
and illustrated in Fig.  4. The results demonstrated that 
there was a robust correlation between the chlorophyll 
values obtained through direct measurements and the 
predictions generated by our CNN-based model. For 
chlorophyll trait, the regression model exhibited good 
estimation capabilities, achieving an average R2 of 0.746 
and an average RMSE of 2.018.

Performance Comparison with standard estimation 
methods
The PLSR model used for comparison was constructed 
using the entire spectrum to predict chlorophyll content 
of lettuce. The performance metrics of the PLSR model 
are detailed in Table  3 and illustrated in Fig.  5, demon-
strating an average R2 of 0.703 and an average RMSE of 

(3)NRMSE =

√

1

n

∑n
i=1

(yi − ki)
2

y

(4)R2
= 1−

∑n
i=1

(yi − ki)
2

∑n
i=1

(yi − y)2

Table 2  Regression error statistics for chlorophyll traits using the 
proposed method

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.035 0.1037 0.739

2 1.960 0.1036 0.749

3 1.870 0.0935 0.730

4 1.868 0.0993 0.751

5 2.358 0.1236 0.762

Average 2.018 0.1047 0.746

Fig. 4  Chlorophyll estimation results using the proposed model. a–e displays the results from cross-validation
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2.247. Overall, the PLSR model utilizing the full spec-
trum exhibited comparatively lower predictive capacity 
when contrasted with the deep CNN model.

Similar to the PLSR method, the RF model using the 
complete lettuce spectrum (Table  4). Through a grid 
search, the number of trees was determined to be set 
at 1500. While the RF model achieved an impressive R2 
score of 0.781 on the fifth test set (Fig.  6.e), the overall 
performance of RF for chlorophyll estimation yielded an 
average R2 of 0.682, accompanied by an average RMSE of 
2.297. This suggests that the RF regression model based 
on the full spectrum is less robust than the deep model 
developed in this work.

Improvement of attention module on the deep learning 
model
The spectral attention module based on SE block was 
incorporated to boost the performance of the 1-D CNN 
network. Experiments were conducted to investigate the 

impact of the spectral attention module. As depicted in 
Table 5, when applying the 1-D inception network with-
out the attention module for chlorophyll estimation, the 
average R2 was inferior to that achieved by the developed 
model (as shown in Table 2). These results imply that the 
recalibrated spectra offer improved discrimination. In 
essence, the spectral attention module based on SE block 
aids the base network in discerning the most critical 
spectral bands.

Comparison with regression models with wavelength 
selection
Spectral regression models with wavelength selection 
were also involved in the comparison. In terms of wave-
length selection algorithms, successive projection algo-
rithm (SPA) was employed for multivariate calibration. 
This method generated a series of wavelength subsets 
by iteratively adding one wavelength at a time based on 
its contribution to the calibration model. SPA has been 
demonstrated to be an effective strategy for simplifying 

Table 3  Regression error statistics for chlorophyll traits using 
PLSR

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.126 0.1084 0.716

2 2.191 0.1159 0.701

3 2.107 0.1054 0.688

4 2.255 0.1198 0.638

5 2.555 0.1340 0.771

Average 2.247 0.1167 0.703

Fig. 5  Chlorophyll estimation results using PLSR model. a–e displays the results from cross-validation

Table 4  Regression error statistics for chlorophyll traits using RF

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.228 0.1136 0.689

2 2.356 0.1246 0.665

3 2.266 0.1133 0.613

4 2.191 0.1164 0.662

5 2.443 0.1281 0.781

Average 2.297 0.1192 0.682
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models (Juanjuan [4, 26, 27]. The subset with the least 
redundancy and the best performance is selected in the 
process [20]. For hyperspectral data in this study, the 
number of variables selected by SPA ranges from 3 to 15 
wavelengths because of the differences in the partitioning 
of the data set in cross-validation. It is worth noting that 
in each cross-validation, the wavelengths used by PLSR 
and RF are the same.

Table  6 and Table  7 showed that regression models, 
constructed based on the optimal bands which selected 
by SPA, have lower performance than the correspond-
ing regression models constructed directly using the full 
spectral samples. Instead of using the average spectral 
reflectance, the first derivative of the reflectance (FDR) 
data was employed as the input for the machine learning 
regression model (Table 8 and Table 9). The combination 
of wavelength selection algorithms with appropriate data 

preprocessing improves the performance of machine 
learning models to some extent. However, it still lags the 
1-D CNN based deep regression network developed in 
this work (Table 2).

Fig. 6  Chlorophyll estimation results using RF model. a–e displays the results from cross-validation

Table 5  Regression error statistics of the 1-D inception network 
without attention module for chlorophyll traits

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.081 0.1061 0.727

2 1.994 0.1055 0.740

3 1.988 0.0994 0.693

4 1.940 0.1031 0.731

5 2.391 0.1254 0.752

Average 2.079 0.1079 0.729

Table 6  Regression error statistics for chlorophyll traits using 
PLSR (with SPA)

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.280 0.1162 0.673

2 2.338 0.1236 0.642

3 2.181 0.1091 0.632

4 2.422 0.1287 0.581

5 2.788 0.1462 0.663

Average 2.402 0.1248 0.638

Table 7  Regression error statistics for chlorophyll traits using RF 
(with SPA)

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.194 0.1119 0.697

2 2.463 0.1303 0.603

3 2.310 0.1155 0.587

4 2.418 0.1284 0.583

5 2.837 0.1487 0.651

Average 2.444 0.1270 0.624



Page 9 of 11Ye et al. Plant Methods           (2024) 20:22 	

Discussion
To a considerable extent, the core of crop sciences lies 
in the understanding of how agronomic traits are either 
selected by breeders or regulated by agronomists [22]. 
The advancement of plant phenotyping techniques has 
enabled the successful utilization of image-based meth-
ods for acquiring phenotypic data pertaining to both 
morphology and physiology. In contrast to the consider-
able focus on morphological traits like leaf senescence, 
plant height, and growth period, there is a noticeable 
gap in the capacity for precisely phenotyping physi-
ological traits, which falls short of current demands. As 
mentioned above, existing studies using hyperspectral 
imaging to estimate chlorophyll traits in lettuce leaves are 
dominated by machine learning, and the performance of 
deep learning techniques to estimate chlorophyll traits of 
lettuce leaves still needs to be investigated. In this study, 
we developed a method to nondestructively estimate the 
chlorophyll of lettuce leaves using hyperspectral tech-
niques and deep learning. In general, when dealing with 
a large amount of hyperspectral image spectral data, 
the selection of feature wavelengths is an essential step, 
through which the redundancy of data can be reduced 
[21]. Instead of using the traditional wavelength selection 
algorithm, this study uses a spectral attention module 
based on a gated mechanism to analyze and dynamically 
weight the importance of the full spectral bands. The 
benefit of this is that the spectral attention module can 

be more easily embedded into existing deep networks 
and learn the weights of spectral bands based on samples 
during model building, which implicitly completes the 
process of wavelength selection in a data-driven manner. 
When compared to PLSR and RF estimators, the CNN 
model developed for chlorophyll traits exhibited superior 
estimation accuracy in this study. These results under-
score the strengths of the CNN model in autonomously 
learning task-oriented features from hyperspectral image 
data. In particular, the spectral attention module can help 
CNN models cope with the challenges of the high dimen-
sionality of full hyperspectral data.

Due to the high cost and complex image processing 
process of hyperspectral imaging systems, the application 
of hyperspectral imaging systems in controlled environ-
ments is mostly in scientific research or project dem-
onstrations rather than practical production in China. 
Therefore, we plan to design a leafy vegetable transmis-
sion device and an automatic acquisition, calibration and 
processing flow of hyperspectral data for leafy vegeta-
ble production scenarios in the controlled environment, 
pending further research.

Despite the limited scope of utilizing data exclu-
sively from a single lettuce variety under single-factor 
experimental conditions without additional fertilizer, 
the results validate the robustness of the deep learning 
approach developed in this paper for the non-destructive 
estimation of chlorophyll content in lettuce plants of the 
specific variety under various treatment conditions (tem-
perature, light intensity, photoperiod). This finding opens 
the possibility of further exploration of the developed 
spectral attention CNN framework for applications such 
as estimating chlorophyll using hyperspectral images of 
different varieties of lettuce or other leafy crops. Conse-
quently, forthcoming research endeavors can expand the 
dataset by gathering hyperspectral samples from a wider 
variety of leafy vegetable species, diverse treatment con-
ditions and management practices. This will not only 
bolster the model’s ability to generalize but also allow 
for a more comprehensive exploration of how different 
leafy vegetable species, environmental treatments and 
management practices influence the performance of the 
model.

Conclusions
In this study, we have engineered a one-dimensional 
deep learning model based on CNNs specifically 
designed for predicting the total chlorophyll of a sin-
gle variety of greenhouse lettuce from the mean spec-
tral reflectance. Our model incorporates a customized 
1-D Inception module as its core architecture, ena-
bling the effective extraction of multi-scale spectral 
features. Furthermore, a spectral attention module has 

Table 8  Regression error statistics for chlorophyll traits using 
PLSR (with SPA + FDR)

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.422 0.1235 0.630

2 2.184 0.1155 0.688

3 2.044 0.1022 0.676

4 2.267 0.1204 0.633

5 2.440 0.1279 0.742

Average 2.271 0.1179 0.674

Table 9  Regression error statistics for chlorophyll traits using RF 
(with SPA + FDR)

Number of test sets RMSE ↓ NRMSE ↓ R2 ↑

1 2.249 0.1146 0.681

2 2.133 0.1128 0.702

3 2.098 0.1050 0.659

4 2.661 0.1414 0.494

5 2.567 0.1346 0.714

Average 2.342 0.1217 0.650
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been introduced to assess the significance of different 
hyperspectral bands. This module performs dynamic 
band-wise recalibration tailored to specific tasks, sub-
stantially enhancing the network’s representational 
capacity. What sets the developed approach apart is its 
data-driven spectral attention module, which allows 
our 1-D CNN model to harness the complete spectral 
information without necessitating additional wave-
length selection or dimensionality reduction, allow-
ing end-to-end predictions. This not only simplifies 
the methodology but also makes it more practical for 
real-world applications. To validate our model’s perfor-
mance, comprehensive comparisons with two standard 
methods (PLSR and RF) were conducted on a dataset 
consisting of hyperspectral imagery of lettuce culti-
vated under various treatments. The quantitative analy-
sis demonstrates that the inception model employed 
in this study achieved the lowest RMSE and superior 
R2 values on fivefold cross-validation, outperforming 
existing standard methods.

Based on the comparative evaluation performed in 
this research, it can be inferred that the deep model 
utilized in this work shows significant potential in 
enhancing total chlorophyll content estimation using 
hyperspectral images of a single lettuce variety grown 
in a controlled environment. This advancement holds 
particular promise for high-throughput plant pheno-
typing applications, aiding in the automation of leafy 
vegetables monitoring and production management.
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