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Abstract
Background Camellia oleifera, an essential woody oil tree in China, propagates through grafting. However, in 
production, it has been found that the interaction between rootstocks and scions may affect fruit characteristics. 
Therefore, it is necessary to predict fruit characteristics after grafting to identify suitable rootstock types.

Methods This study used Deep Neural Network (DNN) methods to analyze the impact of 106 6-year-old grafting 
combinations on the characteristics of C.oleifera, including fruit and seed characteristics, and fatty acids. The 
prediction of characteristics changes after grafting was explored to provide technical support for the cultivation 
and screening of specialized rootstocks. After determining the unsaturated fat acids, palmitoleic acid C16:1, cis-11 
eicosenoic acid C20:1, oleic acid C18:1, linoleic acid C18:2, linolenic acid C18:3, kernel oil content, fruit height, fruit 
diameter, fresh fruit weight, pericarp thickness, fresh seed weight, and the number of fresh seeds, the DNN method 
was used to calculate and analyze the model. The model was screened using the comprehensive evaluation index of 
Mean Absolute Error (MAPE), determinate correlation R2 and and time consumption.

Results When using 36 neurons in 3 hidden layers, the deep neural network model had a MAPE of less than or equal 
to 16.39% on the verification set and less than or equal to 13.40% on the test set. Compared with traditional machine 
learning methods such as support vector machines and random forests, the DNN method demonstrated more 
accurate predictions for fruit phenotypic characteristics, with MAPE improvement rates of 7.27 and 3.28 for the 12 
characteristics on the test set and maximum R2 improvement values of 0.19 and 0.33. In conclusion, the DNN method 
developed in this study can effectively predict the oil content and fruit phenotypic characteristics of C. oleifera, 
providing a valuable tool for predicting the impact of grafting combinations on the fruit of C. oleifera.
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Introduction
C.oleifera, an evergreen shrub or small tree in the Camel-
lia of the Theaceae, is an essential woody edible oil tree 
in southern China with a cultivation history of over 2000 
years [1]. It is an edible oil obtained by pressing the ripe 
seeds of C.oleifera. With a unique woody oil in China, it 
has been known as a treasure in oil since ancient times 
[2]. The unsaturated fatty acids, including oleic acid, lin-
oleic acid, and linolenic acid in the seed oil of C.oleifera, 
are up to 83%~95%, ranking high among all edible vegeta-
ble oils [3–5]. Grafting is the primary means of breeding 
and improving C.oleifera varieties in high-quality, high-
yield cultivation. Adopting grafting seedling cultivation 
technology can not only fully leverage the advantages of 
rootstock varieties, improve the quality of scion varieties, 
and increase the yield of C.oleifera trees, but also expand 
the planting range of C.oleifera, reduce planting costs, 
and increase economic benefits [6–8].

Since the interaction between rootstock and scion is 
a common phenomenon in plant grafting, the rootstock 
affects the flowering, fruiting, and traits of the scion 
through gene exchange [9–13]. These changes may be 
beneficial for improving fruit quality but can also have 
an adverse effect. It has an impact on the stability of the 
product. Research has found a significant rootstock and 
scion interaction in the grafted seedlings of C.oleifera 
[14–17], and scions control root growth after graft-
ing [14], and the effect of scions on nutrient absorption 
[18]. There are significant differences in tree potential 
and growth among different varieties [19]. Therefore, 
for C.oleifera, which is mainly propagated by grafting, 
obtaining stable fruit characteristics and making grafting 
beneficial for fruit stability are issues of interest. Nowa-
days, changes in fruit characteristics after grafting under 
the influence of the interaction mechanism between 
rootstock and scion are commonly used based on long-
term observation and measurement analysis to screen 
for rootstocks with high affinity that are beneficial for 
improving tree or fruit quality [20, 21]. This process costs 
more time and human resources. It is not conducive to 
the rapid promotion and application of high-quality vari-
eties. Thus, there is a need for a prediction fruit charac-
teristics technology after grafting for early selection in 
the rootstock so that it can reduce the rootstock’s effect.

There have been many significant achievements in AI 
research in agriculture. It has made significant progress 
in the Internet of Things control, pest control, variety 
identification, and yield prediction, especially in wheat, 
corn, and rice [22, 23]. However, in the complex growing 
environment of forestry, the diversity of topographical 
and climatic environments makes the study and applica-
tion of forestry still in forest resource investigation. At the 
same time, the vast market demand for C.oleifera, China’s 
most promising woody oil tree, and the supply-demand 

contradiction between production and demand are 
pressing for rapid improvement in quantity and qual-
ity. Predicting growth and yield is currently one of the 
most challenging problems in precision agriculture, 
and many models have been proposed and validated so 
far. This issue requires multiple datasets, as growth and 
yield depend on many factors, such as climate, weather, 
soil, fertilizer use, and seed variety [24]. This indicates 
that predicting growth and yield is a challenging task. 
Today, predictive models can reasonably estimate growth 
and yield, but better yield prediction performance is still 
needed. The rational and efficient use of AI to promote 
the development of the C.oleifera industry is of great 
significance at both economic and strategic levels.Tradi-
tional machine learning (ML) methods, such as decision 
trees, naive Bayesian algorithms, fuzzy logic, support 
vector machines, and gradient enhancement algorithms, 
typically require manual participation in feature extrac-
tion and preprocessing steps before model use [25]. 
Handcrafted feature extraction and non-standard pre-
processing measures limit model scalability, making the 
analysis time-consuming and challenging. Experts with 
sufficient knowledge are always necessary and considered 
critical [26]. Support Vector Machine (SVM) is widely 
used in research fields such as data classification and 
prediction [27–31] due to its effectiveness in machine 
learning and reliance on structural risk minimization. In 
addition to classification and prediction, Support Vector 
Regression (SVR) is another application of SVM that spe-
cifically addresses regression problems. For example, Guo 
et al. introduced an active multi-classification method 
based on SVM [32]. Furthermore, it successfully distin-
guished the level of moldiness in corn granules using SPA 
and SVM [33]. Random forests are based on the concept 
of Bagging. Random forest adds a new feature to Bagging: 
randomly choosing a random number of features and 
constructing a tree with them, repeating this procedure 
many times, and continuously averaging all the predic-
tions made by all trees [34]. Therefore, random forests 
have processed errors’ bias and variance components and 
have been proven robust [35]. Currently, RF algorithms 
have been applied to agricultural research. For example, 
sugarcane yield was estimated by RF algorithm according 
to different prediction ranges and achieved good results 
[36]. It also established a rice yield estimation model and 
conducted model precision evaluation [37].

Over the past decade, neural networks have covered 
almost all scientific fields and become an essential ingre-
dient for various real-world applications. Deep neural 
networks (DNN) have multiple characteristics of non-
linear mapping, which can fit highly complex functions. 
It can autonomously learn and find relevant informa-
tion between them and continuously improve the opti-
mization results. It has become an indispensable tool in 
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various applications such as image classification, speech 
recognition, or natural language processing. These tech-
niques have achieved high prediction accuracy, and in 
many cases, they are comparable to human performance. 
Due to the continuous development of modern compu-
tational methods, data-based prediction methods are 
increasingly being applied in various fields [38, 39]. This 
method provides fast and accurate results for agricul-
tural applications, such as predicting greenhouses’ inter-
nal temperature or transpiration rate [40, 41]. It used 
deep learning techniques such as convolutional neural 
networks and recurrent neural networks to predict soy-
bean yield in the United States based on a sequence of 
remotely sensed images taken before the harvest [42, 
43]. Their model outperformed traditional remote-sens-
ing-based methods by 15% regarding Mean Absolute 
Percentage Error (MAPE). The convolutional neural net-
works were used to predict crop yield based on satellite 
images [44]. Their model uses 3D convolutions to include 
spatiotemporal features and outperforms other machine 
learning methods. Khaki and Wang et al. designed a deep 
neural network model (Fig. 1) for predicting corn yields 
at 2247 locations from 2008 to 2016 [45]. Wang et al. 
designed a deep learning framework to predict soybean 
crop yields in Argentina, and they also achieved satis-
factory results by using transfer learning methods to 
predict soybean yields in Brazil with less data [46]. The 
key to a deep neural network model is that it does not 
require the specification of appropriate functions to fit 
the relationships between the data. It can learn and find 
the relevant information between them autonomously 
and continuously improve the optimization results. The 
DNN also provides a general approximation framework, 

meaning that no matter what function we want to learn, 
the deep neural network can represent such a function 
[47, 48]. Deep neural networks belong to the class of 
representation learning models that can find the under-
lying representation of data without handcrafted input 
of features and have multiple stacked nonlinear layers 
that transform the raw input data into higher and more 
abstract representations at each stacked layer [49]. As the 
network grows more profound, more complex features 
are extracted, contributing to the results’ higher accu-
racy. Given the suitable parameters, DNNs are known to 
be universal approximation functions, meaning they can 
approximate almost any function, although finding suit-
able parameters may be challenging [50, 51].

Compared with the aforementioned neural network 
models in the literature, which were shallow networks 
with a single hidden layer, deep neural networks with 
multiple hidden layers are more potent in revealing 
the fundamental nonlinear relationship between input 
and response variables [49], but they also require more 
advanced hardware and optimization techniques to 
train. For example, the neural network’s depth (number 
of hidden layers) significantly impacts its performance. 
Increasing the number of hidden layers may reduce the 
classification or regression errors. Still, it may also cause 
the vanishing/exploding gradients problem that prevents 
the convergence of the neural networks [45, 52–55].

In summary, the success of DNNs in solving problems 
depends on several factors, including the training data’s 
size, type, quality, and preprocessing steps. What sets 
DNNs apart is their ability to learn and discover corre-
lations between data autonomously, without the need 
to specify appropriate functions to fit the relationships. 

Fig. 1 The structure of DNN modle
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Deep neural networks can represent any function we 
want to know, providing an accurate framework for pre-
dicting various indicators in C.oleifera grafting assem-
blages. This will enable practical data analysis and 
technical guidance for C.oleifera grafting. In this study, 
we wish to obtain a robust DNN algorithm predictive 
model that can quickly and accurately predict the oil 
content and phenotypic characteristics of C.oleifera fruit 
bodies to help us predict in advance the effect of grafting 
combinations on fruit properties. I have provided prac-
tical data analysis and technical guidance for C.oleifera 
grafting.

Materials and methods
Materials
We conducted a study in Guanshang Town, Zhangshu 
City, Jiangxi Province, China, collecting fruits from trees 
over 6-year-old of 12 varieties, including CL3, CL4, 
CL18, CL23, CL27, CL40, CL53, CL166, etc. 106 graft-
ing combinations were obtained by scions and half-sib-
ling seed rootstocks of 12 varieties (Table S1 and Table 
S2). The fruits of these tree combinations were collected 
for the determination of characteristics. Five trees, each 
of similar age, good growth, and free from pests or dis-
ease, were selected for each combination. We randomly 
selected and measured 30 fruits from each combination. 
After peeling and drying the seeds, we proceed to the 
subsequent measurement. Each test consisted of three 
biological replicas. All samples were collected by insti-
tutional, national, or international guidelines and legisla-
tion. The local forestry management authority authorized 
the collection of all samples for this study.

Determiation of Fruit characteristics
To measure the characteristics of fruit, including the 
weight (g), height (mm), and diameter (mm) of fresh 
fruits, the weight of dried seeds (g), dried kernels (g), and 
kernel oil content (g), we can use a vernier caliper with 
a sensitivity of 0.01 mm and a 0.01 g electronic balance. 
Additionally, we can calculate the fruit shape index, ker-
nel ratio of dried seeds, oil content of dried kernels ratio, 
and dry seed oil content using specific formulas. The fruit 
shape index is calculated by dividing the fresh fruit height 
by the fresh fruit diameter and multiplying the result by 
100%. The oil content of dried kernels can be calculated 
by dividing the weight of kernel oil by the weight of dried 
kernels, multiplied by 100%. The dry kernel oil ratio can 
be calculated by dividing the weight of kernel oil by the 
weight of dry seeds, multiplied by 100%. The dry seed oil 
ratio is calculated by multiplying the kernel oil content 
by the kernel-fruit ratio of dry seeds and multiplying the 
result by 100%.

The oil extraction from seeds by Soxhlet extraction (SE)
All samples of C. oleifera seeds were powdered by a 
laboratory plant grinder. Approximately 10  g of ground 
sample were weighed and recorded as w0 (g), then trans-
ferred to a Soxhlet extractor filled with 180 mL petroleum 
ether (60–90 ℃), and extracted at 88 ℃ for 6 h. Finally, 
the solvent was evaporated under vacuum. The residual 
was dried at 60  C in a vacuum to a constant weight of 
w1(g). The oil content is calculated and expressed by the 
formula: w = w1/w0 100%. Experiments were carried out 
on three biological replicas.

Fat analysis of the extracted oil of C. Oleifera by GC
As FA of C. oleifera oil presented in the form of fatty 
acid triglycerides in general, it must be transformed to 
be methyl esters of fatty acids means of sodium hydrox-
ide. 0.2 ml of the extracted C. oleifera oil were put in 10 
mL tube. Two millilitres of 0.5  mol/L sodium hydrox-
ide–methanol was added into the tube, shook, and then 
placed at 60 ℃ in water-bath for 30 min, 5 mL nhexane 
were added. The supernatant was taken for injection to 
a gas chromatography spectrometer (HP6890 series, Agi-
lent Techologies Inc.), equipped with a Hp-5 capillary 
column (30 m 0.25 mm 0.25 lm). The injector and detec-
tor temperature were set at 280 ℃. The oven temperature 
was programmed from 100 ℃ to 270 ℃ with a speed of 
5 ℃/min and a final hold of 5 min. The signals from the 
detector were integrated as normalised percentages from 
the calibration curve by the HP software, and the main 
four individual fatty acid (oleic, linoleic, palmitic, stea-
ric acid) were expressed as % of the total fatty acids. The 
unsaturated acids were considered as the sum of the oleic 
acid and linoleic acid.

Deep neural network (DNN)
This study used the combination of rootstock and 
scion varieties as input. It measured the parameters of 
C.oleifera outputs, including y1: Palmitoleic acid C16:1, 
y2: cis-11 eicosane acid C20:1, y3: unsaturated fatty acid, 
y4: oleic acid C18:1, y5: linoleic acid C18:2, y6: linolenic 
acid C18:3, y7: oil content, y8: fruit height, y9: fruit diam-
eter, y10: fresh fruit weight, y11: pericarp thickness, y12: 
fresh seed weight, respectively. Since there were signifi-
cant variations in fruit phenotypic characteristics among 
different varieties, five parameters, namely fruit height, 
fruit diameter, fresh fruit weight, fresh seed weight, and 
number of fresh seeds, were selected instead of the vari-
ety number. The hidden layer between the input and out-
put layers can consist of one or more layers. The number 
of layers and neurons depends on the number of samples 
and the complexity of the task. Generally, a deeper and 
more layered model can improve accuracy by provid-
ing better nonlinear expression ability. This enables the 
model to learn complex transformations and adapt to 
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more complex feature inputs. However, more network 
parameters also require more time and samples for 
training.

We collected 30 fruits from each grafting combina-
tion, measured their characteristics, and took the average 
as a sample. Due to missing data in the two combina-
tions, to ensure the authenticity and consistency of the 
data, we cleaned and sorted the data, resulting in datas-
ets of 106 valid samples. Of the datasets in 106 samples, 
74 are used for training and 21 for validation, while the 
rest are used for testing. Using the Relu activation func-
tion in the hidden layer is necessary for the network to 
learn nonlinear functions. The output layer uses the lin-
ear transfer function directly, and each hidden layer is 
connected with a dropout function (with a dropout rate 
of 0.1) to temporarily discard network information and 
reduce overfitting. The DNN uses the Adaptive Moment 
Estimation(Adam) optimizer for training (200 epochs), 
with a learning rate of 0.01. The loss function selects the 
Mean Squared Error (MSE), while the evaluation index 
selects the Mean Absolute Percentage Error (MAPE) to 
measure the performance of the model. The model that 
performed the best was selected based on the MAPE val-
ues of the validation set, and comprised 5 fully connected 
layers (1–5) and 8 neurons (2, 4, 8, 16, 32, 64, 128, 256) 
with different numbers.

 
MSE =

1

m

m∑

i=1

(yi − ŷi)
2 (1)

m: the number of input samples, yi : the true value of the 
sample, ŷi : the predicted value of the sample.
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100%

n

n∑

i=1

∣∣∣∣
ŷi − yi
yi

∣∣∣∣ (2)

After the model is established, the prediction accuracy 
of the dependent variable is evaluated by calculating the 
correlation coefficient, which is calculated when com-
paring the actual value with the predicted value. The 
determination (R2) is one of the most commonly used 
methods, independent of the model, used to evaluate the 
statistical parameters of the developed model (Eq. (3)).

 
R2 =

∑n
i=1 (ŷ − y)2

∑n
i=1 (y − ȳ)2

ŷ: prediction, y: true, ȳ : the average of the true, n: num-
ber of samples.

This article constructs a double loop that combines the 
number of hidden layer layers and the number of neurons 
to form a network model. The training and validation sets 

are inputted to obtain the minimum MAPE value in each 
epoch and store the corresponding model information.

Data analysis
The experimental data were organized and analyzed 
using PyCharm 2020, Anaconda 3, and Tensorflow 2.1. 
The regression equation were analyzed and plotted using 
GraphPad 8.4.

Results
Characteristics of C.oleifera under different grafting 
combinations
C.oleifera is a valuable oil crop with a wide range of 
applications. To study the effect of different rootstock 
and scion combinations on the quality of C.oleifera, we 
conducted a comprehensive evaluation by taking into 
account the following parameters: Palmitoleic acid C16:1, 
cis-11 eicosane acid C20:1, unsaturated fatty acids, oleic 
acid C18:1, linoleic acid C18:2, linolenic acid C18:3, ker-
nel oil content, fruit height, fruit diameter, fresh fruit 
weight, pericarp thickness, and fresh seed weight. We 
found that the fruit varieties in C.oleifera significantly 
differ under different rootstock and scion combinations 
(Table S1 and Table S2). Different combinations of root-
stocks and scions can significantly affect the fruit char-
acteristics of C.oleifera. When CL18, CL40, and CL53 
are scions, there are differences in fruit characteristics 
among different grafting combinations. Grafting CL18 
onto the half-sib rootstock of CL22, CL21, and CL27 sig-
nificantly increased the height and diameter of the fruit, 
with significant differences compared to the original 
rootstock. Grafting with CL26 and CL40 half-sib root-
stocks resulted in a lower pericarp thickness while graft-
ing with CL27 had the highest thickness. The CL40 had 
the highest grafting consequences on the stock, while 
the fruit diameter was highest after grafting on the CL21 
half-sib rootstock. It has the highest grafting conse-
quences and minor fruit diameter compared to the CL4 
half-sib rootstock and is significantly different from the 
other combinations. After grafting with CL59 and CL4 
half-sib rootstocks, the thickness of the pericarp is lower. 
CL53 has the highest fruit height and diameter after 
grafting with CL3 half-sib rootstock during scion, while 
it has the lowest after grafting with CL21 half-sib root-
stock, which is entirely different from the performance 
of CL26 as rootstocks. When CL59 and CL40 are root-
stocks, the fruit pericarp thickness after grafting is the 
lowest, while it is the highest after grafting with CL21 
half-sibling rootstock.

As an essential characteristics in the production value 
of C.oleifera, the content of oil and fatty composition 
were found to differ among grafted varieties in this study, 
and rootstocks may impact the content of oil and fatty 
composition (Table S2). CL18 reaches its highest value 
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at CL26 half-sibling rootstock, followed by CL59 half-
sibling rootstock, while this stock has the lowest value, 
showing significant differences after grafting with mul-
tiple stock varieties. When the CL40 is grafted onto the 
CL27 half-sibling rootstock, it reaches the highest, fol-
lowed by the CL59, and the CL21 and CL40 half-sibling 
rootstock are the lowest. The CL21 and CL27 half-sibling 
rootstocks are also lower among the CL53 half-sibling 
rootstock combinations, while the CL59 half-sibling 
rootstock is the highest. The CL59 half-sibling rootstock 
may affect the improved oil content. In addition, the 
content of oleic acid is an essential indicator for evaluat-
ing the quality of the oil of C.oleifera, and grafted oleic 
acid exhibits differentiated performance. When CL59 
is used as the rootstock, there is a significant propor-
tion of oleic acid content among various combinations. 
When the CL21 half-sibling rootstock was used as the 
rootstock, there was a decreasing trend in the oleic acid 
content of CL18 and CL40, whereas CL53 showed a sig-
nificant increase. From these two indicators, the CL59 
half-sibling rootstock may have a significant regulatory 
effect on the oil content and oleic acid content. Further-
more, it can also be seen that some varieties of rootstocks 
have different effects on the oil composition and fruit 
characteristics.

The MAPE values of fruit characteristics for different 
grafting combinations
After data segmentation and processing, 40 model com-
binations were constructed, ranging from 2 neurons in 
1 hidden layer to 256 neurons in 5 hidden layers. These 
combinations were used to construct different levels 
of DNN, train the network, and predict 12 phenotypic 
characteristics to obtain the minimum MAPE value for 
different combinations in the DNN model under 12 char-
acteristics (Table S3). When the MAPE value is greater 
than 25, the difference between the predicted and actual 
values is too significant, and the prediction is not accu-
rate, so the data are discarded. Although it is impossible 
to achieve the optimal performance of the model on each 
feature, observing the performance of the model on the 
12 characteristics by ranking the average of the 12 char-
acteristics helps to evaluate the overall performance 
of the model. To evaluate the performance of the DNN 
model in predicting 12 fruit characteristics, we ranked 
all MAPE values by taking the average. It was found that 
the average values obtained from 3 hidden layers and 16 
neurons were the lowest (Table S3). So, it was selected as 
the optimal model. Then, during the training and valida-
tion of the training and validation sets, both the train loss 
and val loss values gradually decrease with the increase of 
epoch, and the loss values of each characteristic gradu-
ally decrease. After reaching the bottom, it gradually 

stabilizes (Fig.  2), indicating excellent convergence on 
both the training and validation sets.

Prediction results of fruit performance characteristics 
under different model combinations
To further verify the model’s accuracy, linear regression 
equation analysis was performed on the predicted and 
measured values of the test and validation sets (Fig.  3). 
Overall, the predicted and measured values fit well 
together. However, there are differences in determination 
(R2) between characteristics, such as R2 values below 0.1 
for y6 and y7. The R2 remains high, reaching a maximum 
of 0.88, including y5, y8, y11, y12, y4, and y10. Interest-
ingly, these characteristics are critical to C.oleifera as a 
wood oil tree. The changes in kernel oil content of woody 
oil tree such as olive and oil palm are often predicted by 
visual methods such as image and spectrum combined 
with algorithms such as ANN, DNN, and CNN in dif-
ferent cultivation environments [56–60]. However, there 
are few reports on predicting fruit characterisrtics after 
grafting based on genetic characteristics, especially when 
the oil characteristics are mainly quantitative genetic 
characteristics. So, the DNN algorithm could predict the 
characteristics of the fruit early after grafting and under-
stand the impact of differentiated rootstock on the fruit 
of the scion, indicating that the model has a high value in 
predicting the fruit characteristics of C.oleifera.

Comparison results with support regression vector (SVR) 
and random forest (RF) models, DNN
The performance difference between traditional machine 
learning methods and DNN models in predicting pheno-
typic characteristics of fruits is further compared (Table 
S4). The same training and validation sets were run on 
SVR and RF models to obtain MAPE and R2 values (Table 
S5 and Table S6) and compare them with the results of 
DNN models. Among the 12 fruit characteristics, the 
MAPE value of DNN compared to SVR can be reduced 
by up to 7.27, the R2 value can be increased by up to 0.19, 
the MAPE value of DNN compared to RF can be reduced 
by up to 3.28, and the R2 value can be increased by up to 
0.33 (Table 1). Compared to the SVR and RF models, the 
DNN is able to reduce the error, especially for y2, which 
significantly improves the test set. Of particular note, the 
DNN model has shown significant advantages in predict-
ing y11, with an improvement of 0.14 compared to the 
SVR model and 0.56 compared to the RF model (Table 1).

Discussion
Regulatory effect by grafting on the fruit characteristics 
and oil content of C.oleifera
Grafting is an ancient plant reproduction technique 
where the scion and rootstock are grafted and healed to 
form a new plant [61, 62]. Rootstock plays an essential 
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Fig. 2 Evaluation of changes in loss plot across 200 epochs of training and testing datasets with 12 fruit characteristics. yl: palmitoleic acid C16:1, y2: cis-11 
eicosanoic acid C20:1, y3: unsaturated fatty acid, y4: leic acid C18:1, y5: linoleic acid C18:2, y6: linolenic acid C18:3, y7: kernel oil content, y8: fruit height, y9: 
fruit diameter, y10: fruit weight, yll: pericarp thickness, y12: fresh seed weight

 



Page 8 of 13Yang et al. Plant Methods           (2024) 20:23 

role in affecting scion growth [11, 63], growth, develop-
ment, yield, and potential flowering and fruit quality by 
releasing or improving the absorption and transporta-
tion of mineral nutrients, hormones, and carbohydrates, 
thereby affecting the increase in fruit yield, quality, and 
quality [646566]. Therefore, the choice of appropri-
ate rootstock is an important determining factor for 
achieving high and stable fruit performance. This study 

observed differences in fruit characteristics, oil content, 
and fatty acid composition among scions of the same 
variety under the action of differentiated rootstocks after 
grafting. Of particular concern is that the half-sib root-
stock of CL21 and CL59 significantly affects the char-
acteristics of each variety. This indicates that using only 
species as the selection criteria for oil tea rootstocks may 
pose a risk to yield quality after oil tea grafting. At the 

Fig. 3 Actual and predicted values by regression validation with R2. yl:Palrnitoleic acid C16:1; y2: cis-11 eic-osane acid C20:1; y3: unsaturated fatty acid; y4: 
oleic acid C18:1; y5: linoleic acid C18:2; y6: linolenic acid C18: 3; y7: kernel oil content y8: fruit height; y9: fruit diameter; y10: fresh fruit weight; y11: pericarp 
thickness; y12: fresh seed weight
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same time, it also indicates that the interaction between 
rootstocks and scions in C.oleifera is not only the regula-
tion of root growth by scions [6768], but also reflected in 
the influence of fruit characteristics. Due to the signifi-
cant impact of rootstocks on the physiological character-
istics and other aspects of the growth and development 
of grafted plants, the reduction of scion growth is one of 
the most interesting phenomena. Therefore, it is neces-
sary to explore the critical mechanisms of regulating fruit 
characteristics between rootstocks and scions and under-
stand the role of hormones and other substances in the 
development of the entire post-grafting period.

The quality of fruit through characteristics data prediction 
after grafting achieves early selection of rootstock
Deep neural networks belong to phenotype learning 
models with multiple stacked nonlinear layers that trans-
form the raw input data into higher and more abstract 
representations for each stacked layer [69]. Enabling it to 
extract more complex features as the network deepens 
can help improve the accuracy of the prediction. There-
fore, it is widely used to predict crop yield and fruit char-
acteristics in many plants, including corn yield [70–73], 
firmness, soluble solids content (SSC) and growth char-
acteristics of apple [73, 74], the volume of carrot and 
apple [75, 76], classification in bananas [77], the inci-
dence of the blister moth in leaves of apple [78], stress 
response in orange [79]. These studies have demonstrated 
the effectiveness and reliability of deep learning models. 
This study uses a DNN model to predict 12 personality 
characteristics of fruits. Under the optimal model, the 
MAPE of fruit pericarp thickness (y11) was the highest 
on the validation set, at 16.39, while the MAPE of unsatu-
rated fatty acids (y3) was the lowest, at 2.38 (Table S3), 
showing a significant difference. It is commonly believed 
that the higher the correlation, the lower the MAPE value 
and the more accurate the prediction. This may be due 
to the different correlations between the input and pre-
dicted features, which is also a factor for the difference 
in MAPE. In addition, if the actual and predicted values 
perform nicely in regression for certain fruit character-
istics, the values range from 0 to 1. The positive value of 
R2 can be considered similar to the accuracy obtained by 
regression [80]. In this study, all characteristics have R2 
values between 0 and 1, but y6 and y7 have relatively low 
values. This may be due to the small range of valid values 
(Table S4), which resulted in a small proportion of pre-
diction error to actual values. However, the correlation 
between predicted and actual values was low, affecting 
the prediction results (Table S4).

It should be noted that the R2 values for key fruit char-
acteristics that affect the yield of woody oil trees, includ-
ing fruit height, fruit weight, fresh seed weight, and oil 
quality oleic and linoleic acid content, are relatively high. 

In contrast, the MAPE values are still relatively low. This 
suggests that DNN can be used for the early selection of 
rootstock before grafting, reducing the impact of root-
stock and scion interactions on fruit characteristics after 
grafting.

The prediction of fruits in C.oleifera can be better achieved 
with DNN
SVR and RF, as traditional machine learning meth-
ods, have been widely applied to estimate production, 
environmental changes, and other factors. Data-driven 
machine learning methods have shown great potential 
in parameter estimation. Deep learning algorithms such 
as DNN have quickly become the primary method for 
predicting feature extraction in recent years. These three 
methods have been widely used in many studies, such as 
remote sensing classification [81, 82], landslide monitor-
ing [83], and drought monitoring [84]. In recent years, 
there have been studies using SVR, RF, and DNN for crop 
yield prediction [42, 85]. This study evaluated the perfor-
mance of SVR, RF, and DNN models by R2 and MAPE. 
Among the three algorithms compared, the DNN algo-
rithm showed an improvement in MAPE values com-
pared to SVR and RF (Table 1), indicating the advantages 
of using DNN for prediction.

Generally, in fruit characteristics prediction, obtain-
ing a large amount of actual fruit data was difficult, and 
it took a lot of labor, resource, and time to collect sample 
data in the field. Therefore, extracting effective charac-
teristics from limited samples is particularly important. 
The DNN model can handle nonlinear datasets and has 
a certain tolerance for noise and interference. It can also 
achieve complex feature transformations through multi-
layer neural networks and activation functions without 
the need for tedious feature engineering, which is beyond 
the capabilities of SVR and RF [86]. In this study, by rea-
sonably setting the number of layers, number of neurons, 
optimization function, dropout layer, activation function, 
and iteration number of DNN, DNN surpassed RF in 9 
features (y1, y2, y5, y6, y7, y8, y10, y11, y12) and SVR in 
7 characteristics (y1, y2, y3, y5, y8, y11, y12). SVR out-
performed RF in 7 characteristics (y4, y5, y6, y7, y8, y9, 
y10). SVR used the inner product kernel function instead 
of nonlinear mapping to high-dimensional space. A few 
support vectors determined the final result, which not 
only helped to seize the key samples and remove a large 
number of redundant samples but also showed that the 
algorithm was simple and had good “robustness.” There-
fore, the performance of SVR was second only to DNN 
(Fig. 3; Table 1). RF might lead to over-fitting when there 
is limited training data. Although the RF might overfit 
when training small sample data, it was an integrated 
algorithm that could effectively enhance the performance 
of a single classifier [87]. Generally, RF could achieve 
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higher accuracy and lower variance and deviation to pro-
duce more satisfactory results [88]. Therefore, the perfor-
mance of RF was only slightly worse than that of DNN 
and SVR (Table 1). This study’s SVR, RF, and DNN mod-
els could produce acceptable results for fruit character-
istics prediction (Table 1). This article further compared 
the results of using SVR, RF, and DNN with the results 
of other studies. Ang et al. (2020) used DNN compar-
ing with SVR, RF, and accuracy between oil palm yield 
and actual yield [89]. After backward elimination, the 
DNN achieved the highest prediction accuracy among 
the other models, with a 14% increase in R2 and a 1% 
decrease in MAPE. In this study, critical characteristics 
such as oleic acid, linoleic acid, fruit height, and fruit 
weight in fruits of C.oleifera have more declining MAPE 
values and increasing R2 in the DNN. Therefore, this 
paper’s prediction of fruit characteristics results was reli-
able. Interestingly, although the kernel oil content of fruit 
(y7) has a lower MAPE value, the R2 value is lower. This 
may be related to the influence of genetic characteristics 
and environmental factors on kernel oil content.

Conclusion
This study focused on C.oleifera and found differences in 
fruit characteristics between the same variety and differ-
ent rootstocks after grafting. Therefore, the research uses 
pre and post-grafting fruit phenotype data to establish a 
model for predicting fruit characteristics using deep neu-
ral networks.By setting different levels of hidden layers 
and the number of neurons, it was found that when using 
3 hidden layers and 16 neurons, the overall performance 
achieved the best. The MAPE values of this model on the 
test set are 0-17.69. Compared to the traditional SVR and 
RF models, the DNN achieves a MAPE improvement rate 
of 7.27 and 3.28 for the 12 characteristics on the test set 
and a maximum R2 improvement value of 0.19 and 0.33, 
which is better than the SVR and RF models. It indicates 
that the DNN model is more accurate and stable, avoid-
ing traditional machine learning model selection. They 
can predict the phenotypic characteristics of fruit after 
grafting with C.oleifera. This achievement can provide 
adequate technical support for improving the cultiva-
tion of tung oil trees. In addition, accurate prediction 
and evaluation systems can be developed by adding more 
C.oleifera varieties, enriching fruit prediction parameters 

and input characteristics, improving model accuracy, 
and other means to help determine the impact of vari-
ety grafting on fruit characteristics, thereby reducing the 
time and labor costs of related experiments.
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