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Wheat grain width: a clue for re‑exploring 
visual indicators of grain weight
Abbas Haghshenas1, Yahya Emam1*    and Saeid Jafarizadeh2 

Abstract 

Background:  Mean grain weight (MGW) is among the most frequently measured parameters in wheat breeding and 
physiology. Although in the recent decades, various wheat grain analyses (e.g. counting, and determining the size, 
color, or shape features) have been facilitated, thanks to the automated image processing systems, MGW estimations 
have been limited to using few number of image-derived indices; i.e. mainly the linear or power models developed 
based on the projected area (Area). Following a preliminary observation which indicated the potential of grain width 
in improving the predictions, the present study was conducted to explore more efficient indices for increasing the 
precision of image-based MGW estimations. For this purpose, an image archive of the grains was processed, which 
were harvested from a 2-year field experiment carried out with 3 replicates under two irrigation conditions and 
included 15 cultivar mixture treatments (so the archive was consisted of 180 images including more than 72,000 
grains).

Results:  It was observed that among the more than 30 evaluated indices of grain size and shape, indicators of grain 
width (i.e. Minor & MinFeret) along with 8 other empirical indices had a higher correlation with MGW, compared with 
Area. The most precise MGW predictions were obtained using the Area × Circularity, Perimeter × Circularity, and Area/
Perimeter indices. Furthermore, it was found that (i) grain width and the Area/Perimeter ratio were the common factors 
in the structure of the superior predictive indices; and (ii) the superior indices had the highest correlation with grain 
width, rather than with their mathematical components. Moreover, comparative efficiency of the superior indices 
almost remained stable across the 4 environmental conditions. Eventually, using the selected indices, ten simple 
linear models were developed and validated for MGW prediction, which indicated a relatively higher precision than 
the current Area-based models. The considerable effect of enhancing image resolution on the precision of the models 
has been also evidenced.

Conclusions:  It is expected that the findings of the present study, along with the simple predictive linear models 
developed and validated using new image-derived indices, could improve the precision of the image-based MGW 
estimations, and consequently facilitate wheat breeding and physiological assessments.
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Background
Although number of grains per unit of area is known to 
be the most important component of wheat yield [1, 2], 
grain weight and its related features (e.g. size and shape) 
are still under consideration of researchers for improv-
ing the yield capacity (e.g. see [3–6]). Accordingly, wheat 
grain has been well-explored visually in the recent dec-
ades, either using uncomplicated methods and 2D 
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indices [4, 7–11] or employing more complex techniques 
of 3D reconstruction [12–14]. In spite of the fact that the 
current advanced technology of X-ray computed tomog-
raphy has provided almost any kind of data required for 
geometric assessment of wheat grain e.g. see [15–18], 
utilizing this approach is time consuming, expensive, 
and limited to comparatively less available specific CT 
scanners. Moreover, reconstruction and analysis of 3D 
structures requires a more sophisticated level of image 
processing. In contrast, 2D analysis of grins based on 
common digital images, is low-cost, fast, and may be car-
ried out using a relatively wide spectrum of hardware 
(e.g. commercial cameras, scanners, manual to full auto-
mated imaging systems). Therefore, even real-time (or 
near real-time) evaluation of a huge number of grains 
have been possible for various purposes in research and 
industry.

The techniques utilized for image-based grain analysis 
can be categorized under the term of high-throughput 
phenotyping (HTP), which has been emerged as an effi-
cient paradigm in response to the need for keeping the 
feasibility of investigations in the current complex and 
large-scale breeding programs.

The most frequent sensors used in HTP are the effi-
cient, inexpensive, and widely available RGB cameras [19] 
A simple processing of an RGB image of grains along with 
utilizing appropriate indices of size, color, and shape, can 
thoroughly and rapidly quantify the phenotype of grain 
samples. It seems most reasonable to select the projected 
area (Area) as the most relevant image-derived index 
for estimating grain weight; as this indicator provides a 
2D representation of the 3D grain size (compared with 
the one-dimensional criteria e.g. grain width or length). 
Accordingly, studying the relationship between the area 
and weight of individual grains, Kim et al. [20] introduced 
a single power model equation for estimating wheat grain 
weight, (i.e. weight = area1.32 ), which provided a higher 
precision compared with the linear model.

In a preliminary analysis conducted with the aim of 
evaluating the variations of grain size and shape in wheat 
cultivar mixtures (see [21]), it was observed acciden-
tally that grain weight had a relatively higher correlation 
with grain width, compared with the well-assessed index 
of projected grain area. This observation encouraged a 
more comprehensive analysis for potentially improving 
the image-based estimation of wheat grain weight. There-
fore, the purposes of the present study were (i) assessing 
and documenting the relative advantage of grain width; 
(ii) seeking more efficient image-derived indices for pre-
dicting grain weight; and (iii) considering the technical 
requirements emerged during analyses, effect of image 
resolution enhancement on the weight prediction was 
also evaluated.

Results
Evaluation of image‑derived indices
Seeking more robust image-derived indices for grain 
weight prediction, an image archive of wheat grains was 
processed, which were harvested from a 2-year field 
experiment carried out with 3 replicates under two 
irrigation conditions and included 15 cultivar mixture 
treatments. As shown in Fig.  1, enhancing the image 
resolution improved the quality of grain segmentation 
and ellipse fitting, considerably. This improvement was 
consequently reflected in the precision of the correla-
tions and linear models developed for prediction of 
MGW (which will be discussed later).

Principal component analysis (Fig.  2) indicated that 
in comparison with area (R = 0.905), the grain width 
had a stronger relationship with MGW; regardless of 
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Fig. 1  Output of image segmentation for extracting grains and 
fitting the best ellipses. A A single image from the archive with more 
than 400 wheat grains. As an example, the grains in the white frame 
are processed in the next parts of the figure. B Output of resolution 
enhancement; C Result of image segmentation. A same thresholding 
is used for both resolutions; D Fitting the best ellipses to the single 
grains
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which width indicator was used (R = 0.921& R = 0.916 
in the cases of using Minor and MinFeret, respectively).

Besides the two control indices i.e. Area and Kim index, 
the correlation of MGW with 33 other preliminary indi-
ces were also tested; among which 10 indices with com-
paratively higher correlations than the two controls were 
selected for further analyses (Table  1). Figure  3 shows 
the correlations between MGW and the selected indices 
derived from the enhanced resolution images. The indi-
ces of Area × Circ., Perim. × Circ., and Area/Perim. had 
relatively stronger relationships with MGW. Table 2 also 
indicates the variations in the correlation coefficients (R) 
in various environmental conditions. It is obvious that 
almost in every condition, the selected indices had a com-
paratively higher relationship with mean grain weight, 
compared with Area and Kim index. Also, the three indi-
ces mentioned before (i.e. Area × Circ., Perim. × Circ., 
and Area/Perim) had the highest R values, almost in 
every conditions. Moreover, in consistency with the fact 
shown in Fig.  1, the enhanced resolution improved the 
correlations considerably.

Effect of treatments on the indices
Analysis of variance (ANOVA; Table  5) also indicated 
that the effects of year, mixture treatments, and water 
stress were very significant on MGW, as well as the 
two control and 10 selected indices (data not shown; 
P < 0.0001). As it was expected according to the high 
correlations between MGW and the image-derived 
indices, the variation of the indices followed completely 
the changes in MGW; i.e. the post-anthesis water stress 
reduced the values significantly (e.g. MGW reduced 
from 39.291  mg under well-irrigation to 36.157  mg 
under deficit-irrigation conditions, averaged between 
2  years; data not shown). In average, MGW also 
reduced significantly from 39.264 mg in the 1st season 
to 36.184 mg in the 2nd season (noteworthy, the effect 
of season on grain yield and most agronomic features 
were significant. For more information, see [21]). All 
of the 12 indices showed a similar trend. As a whole, 
values of MGW and the correlated visual indices were 
lower in the higher yielding treatments (or condi-
tions) and vice versa; mainly due to the strong negative 
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Correla�on matrix (Pearson)
Variables MGW Area Major Minor
MGW 1 0.905 0.646 0.921
Area 0.905 1 0.848 0.918
Major 0.646 0.848 1 0.569
Minor 0.921 0.918 0.569 1
Values in bold are different from 0 with a significance level alpha=0.05

Correlation matrix (Pearson)
Variables MGW Area Feret MinFeret
MGW 1 0.905 0.623 0.916
Area 0.905 1 0.833 0.931
Feret 0.623 0.833 1 0.588
MinFeret 0.916 0.931 0.588 1
Values in bold are different from 0 with a significance level alpha=0.05

Fig. 2  Principal Component Analysis (PCA) of mean grain weight (MGW) and basic image-derived indicators of grain size, i.e. major and Feret 
(indices of grain length), minor and minimum Feret (indicators of grain width), and area. Obviously, the one-dimensional indicators of grain width 
reflect the variations of MGW more precisely than the two-dimensional factor of area
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relationship between grains m−2 and MGW on one 
hand, and the high correlation between grain yield and 
grains m−2 at the other hand (see [21]). The main impli-
cation of this observation for the present study was that 
the variations of the visual indices were highly consist-
ent with those of MGW; regardless of the sources of 
variation, i.e. significantly different growing seasons, 
water stress, or mixture treatments.

Model validation
Figure  4 represents the performance of the linear mod-
els developed using the selected indices for predicting 
MGW (here the images with enhanced resolution were 
used). As it was expected based on the previous results, 
all of the ten linear models predicted MGW with a more 
accuracy compared with the two control indices (RMSE 
values ranged between 1.003 to 1.201, for the Area × Circ. 

Table 1  List of the empirical image-derived indices tested in the present study

At the first step, the correlations between mean grain weight and the preliminary image-derived indices were tested. Then, the indices with a higher correlation 
coefficients (R) than those of the two control indices, i.e. "Area" and "Kim index", were selected for further analyses. Kim index (i.e. Area1.32) was derived from the study 
of Kim et al., 2021. For definition of the other basic indices, see the ImageJ user guide on "Analyze particles…" at https://​imagej.​nih.​gov/​ij/​docs/​guide/​146-​30.​html

Preliminary indices Selected indices

Area Area

Perimeter (Perim.) Minor

Major MinFeret

Minor Area/perim

Circularity (Circ.) Area × Circ

Feret Minor/Solidity

skewness (Skew) MinF/Solidity

kurtosis (Kurt) Area × Solodity

MinFeret (MinF) Perim. × Circ

Aspect ratio (AR) A1 (Area × Perim. × Circ. × Solidity × MinF)

Round A2 (Area × Perim. × Circ. × Solidity × Minor)

Solidity Kim index

Minor/Major

MinF/Feret

Area/MinF

Area/Minor

MinF/Minor

Area/perim

Minor/Perim

MinF/Perim

Area/(Perim.^2)

MinF × Area/Perim

Area/MinF

Area/Minor

Circ. × Solidity

Area × Circ

MinF × Circ

MinF/Solidity

Feret/Solidity

Area × Solodity

Feret × MinF × Solidity

Perim. × Circ

A1 (Area × Perim. × Circ. × Solidity × MinF)

A2 (Area × Perim. × Circ. × Solidity × Minor)

Kim index

https://imagej.nih.gov/ij/docs/guide/146-30.html
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and MinFeret/Solid. models, respectively; Fig. 4). Results 
of cross-validation and also model parameters have 
been shown in Table  3. As expected, root mean square 
errors of cross-validation, followed the pattern of RMSEs 
reported earlier, i.e. errors of Area × Circ. < Perim. × Ci
rc. < Area/Perim. Table  3 also represents the reduction 
percentages of RMSE due to the enhanced resolution 
by the factor of 10. As a whole, the effect of resolution 
enhancement was more considerable on the precision of 
the indices which were based on shape properties (e.g. 

the products of circularity), rather than the size-based 
features (Area, or MinFeret).

Further evidence and implications for the role of grain 
width
For better understanding of the relationship between the 
best predictive indices and the basic grain shape param-
eters, additional correlations were also conducted. In this 
evaluation, the data of all single grains (i.e. 19,596 grains) 
of monocultures were used, and Major and Minor were 
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Fig. 3  The correlations between mean grain weight (MGW) and image-derived indices. Here, the images with enhanced-resolution were used
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chosen as the measurers of the grain length and width, 
respectively. As shown in Table 4, it was found that:

	(i)	 The superior indices had the highest correla-
tions with Minor (grain width), rather than with 
their mathematical components. For instance, see 
the correlation between Area/Perim. and Minor 

(R = 0.987) vs. the correlation between the Area/
Perim. ratio and the relevant parameters i.e. Area 
(R = 0.973) and Perimeter (R = 0.875; Table 4).

	(ii)	 Among the main grain dimensions, Area had the 
highest correlation with Minor (grain width), while 
Perimeter depended most on Major (grain length).
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	(iii)	 The correlation between the two main grain axes, 
i.e. Major and Minor, was not such high (R = 0.608) 
that one could be estimated precisely based on the 
other. It implies a relatively independence between 
the grain growth (and/or filling) along the length 
and width directions.

These findings have been also represented in Fig.  5, 
which indicates the comparative correlations of Major 
and Minor with the basic shape features and superior 
predictive indices. Besides, Supplementary file 1 provides 
more detailed information and graphs of the respective 
correlations as affected by various treatments of irri-
gation and cultivars. As a whole, the trends described 
above remained almost consistent across different irri-
gation conditions and/or cultivars with dissimilar ripen-
ing dates; in spite of that the effects of season, irrigation 
treatment, and cultivars on the grain length and width 
were very significant (Table  5). Besides, as indicted in 
Table  5, the significantly different classes of MGW and 
Minor in various cultivars were exactly the same.

Discussion
The idea of the present study was exploring more effi-
cient visual indices for wheat MGW prediction, other 
than 2D grain area. For this purpose, various empiri-
cal indices of grain size and shape were evaluated using 
image processing. It was observed that among the size 
criteria, the one-dimensional indices of grain width (i.e. 
Minor and MinFeret) had relatively higher correlations 
with MGW, compared with the two-dimensional index of 
grain area, or perimeter (the latter of which was filtered 
out in the preliminary assessments; R = 0.801 when the 
enhanced-resolution images were used, data not shown). 
This observation inspired that there might be also other 

unexplored indices for MGW, which originate from the 
exclusive physiology of wheat crop, e.g. the processes 
associated with the grain filling capacity. Therefore, the 
correlation of MGW with some of the conventional shape 
indices and also several empirical criteria were tested.

Area × Circ., Perim. × Circ., and Area/Perim. were the 
superior indices in prediction of MGW using the linear 
models, and indicated a relatively consistent performance 
across the various conditions. Furthermore, almost 
under every of the 4 environmental conditions, other 
selected indices could predict MGW with a higher pre-
cision compared with area. Besides the applicable aspect 
of this finding, it is also an evidence for the possibility of 
improving wheat grain weight estimation by exploring 
new visual indicators. Based on the formula of the circu-
larity index used in ImageJ (see https://​imagej.​nih.​gov/​ij/​
docs/​guide/​146-​30.​html), all of the three superior indices 
have a common factor i.e. the Area/Perim. ratio:

(1)Circularity =
4π × Area

Perimeter2

Therefore :

(2)

Area× Circularity = Area×

(

4π × Area

Perimeter2

)

= 4π ×

(

Area

Perimeter

)2

(3)

Perimeter × Circularity = Perimeter ×

(

4π × Area

Perimeter2

)

= 4π

(

Area

Perimeter

)

Table 4  The coefficients of correlation (R) among the basic shape factors and the three superior synthetized indices used for mean 
grain weight prediction

In this analysis, data of 19,596 grains sampled from the monocultures of 4 early- to middle-ripening cultivars was used (enhanced-resolution images were processed).

All correlations were very significant (P < 0.0001).

The bolded values show the superior correlation of basic shape factors (i.e. Major, Minor, Area, Ellipse area, or Perimeter) in each row.

"Ellipse area" is the area of the best ellipse fitted on the grain, and calculated as follows (in the present evaluation, the difference between Area and Ellipse area was 
almost zero, i.e. in average less than % 2.3 × 10–8): Ellipse area = (Major/2)× (Minor/2)× π

Parameters Major Minor Area Ellipse area Perim Area/Perim Area × Circ

Minor 0.608

Area 0.849 0.932
Ellipse area 0.849 0.932 1

Perim 0.959 0.801 0.958 0.958

Area/Perim 0.719 0.987 0.973 0.973 0.875

Area × Circ 0.717 0.984 0.975 0.975 0.873 0.997

Perim. × Circ 0.719 0.987 0.973 0.973 0.875 1 0.997

https://imagej.nih.gov/ij/docs/guide/146-30.html
https://imagej.nih.gov/ij/docs/guide/146-30.html
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Fig. 5  The correlations among Major and Minor (representatives of grain length and width, respectively) and other basic shape factors, and 
also superior synthetized weight indicators. Major and Minor are the largest and shortest axes of the best ellipse fitted on each grain. Unit of all 
dimensions is pixel (the enhanced-resolution images of 19,596 grains sampled from all monocultures of early- to middle ripening cultivars grown 
during two seasons under well- and deficit-irrigation were used). For more details and coefficients see Table 4
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So, the formulae of the two other indices (i.e. 
Area × Circ.& Perim. × Circ.) might be slightly simpli-
fied, and consequently the computational cost could be 
reduced. Such conversions may be particularly impor-
tant in high-throughput phenotyping; where a consider-
able number of grains should be analyzed in real-time 
e.g. using high-speed imaging systems. Besides, these 
observations imply that the majority of the efficient indi-
ces evaluated in the present study are based on two fun-
damental factors: (i) grain width (measured by Minor & 
MinFeret), and (ii) the Area/Perim. ratio. Of course, addi-
tional correlation tests indicated that the Area/Perim. 
ratio, as the same as other superior indices, had in turn 
correlated strongly with grain width.

As described before, enhancing the image resolution by 
the factor of 10 improved the predictive precision of the 
indices considerably. However, this improvement was not 
equal for all of the selected indices; as those which were 
independent of the grain shape, were less influenced (e.g. 
the size indicators such as Area or MinFeret; see Table 3). 
In contrast, the shape-depended indices showed con-
siderably higher degrees of improvement in MGW pre-
diction (for instance, see the indices with the factor of 
Circularity, or even Minor, which is resulted from ellipse 
fitting; see Fig. 1). Therefore, it is necessary to ensure the 
desirable image resolutions (which is achievable either 
at the time of imaging/scanning, or using interpolation), 
before running the analyses.

Noteworthy, since in the present study the weight 
analysis was designed and carried out based on the aver-
age values, generalization of the findings and models for 
estimating weight of individual grains might require fur-
ther assessments. However, considering that each of the 
180 samples was consisted of more than 400 grains, it is 
expected that both types of estimations (i.e. MGW and 
individual grain weight) should be highly correlated. As 
an evidence for this fact, it was observed that similar to 
the study of Kim et al. [20], Kim index provided a more 
precise grain weight estimation than Area. More impor-
tantly, slopes of the corresponding linear models calcu-
lated in both studies were almost similar (see Table  3); 
despite the differences in the genotypes, treatments, 
imaging systems, lighting, and probably the image pro-
cessing algorithms:

Kim et al. :

{

Weight = (3.46× Area)− 15.99

Weight = (27.02×Width)− 50.48

(units: mg, mm2, and mm).
Besides the technical advantageous for developing phe-

notyping platforms, findings of the present study might 
also be readily used in wheat physiology and breeding 
approaches. For instance, the relatively stronger relation-
ship between MGW and grain width (vs. length or even 
area) may provide valuable implications for the grain 
development and/or filling processes; particularly despite 
the fact that (i) grain filling is an acropetal process and 
mainly occurs in the grain length direction, and (ii) the 
2D grain area provides the information of 2 out of the 3 
dimensions (so theoretically, it is expected to be a more 
significant weight contributor compared with the one 
dimensional traits such as grain width). Moreover, it was 
evidenced that the superior predictive indices had the 
highest correlations with grain width, which had even 
exceeded the same correlations of the indices with their 
own mathematical components (see Table 4, Fig. 5, and 
Additional file 1). Therefore, having a frequent and prom-
inent appearance in the present study, grain width seems 
to be a fundamental and unique trait in grain physiology 
and weight assessments. The results also seem to be con-
sistent with the findings of Gegas et al. [9] who provided 
the genetic evidences for an emerging phenotypic model 
where wheat domestication has transformed a long thin 
primitive grain to a wider and shorter modern grain. In 
addition, comparative variations and contribution of the 
two main axes to grain weight may open new window 
into the grain development assessments and yield physi-
ology. Indeed, grain length and width might be supposed 
as the components of weight, or in a more general view, 
as the subcomponents of wheat grain yield. Conduct-
ing sufficient researches, such framework could provide 
valuable information about the pattern of grain develop-
ment or filling in the main perpendicular dimensions, 
particularly under various conditions; e.g. in the present 
study, post-anthesis water stress (50% of filed capacity) 
reduced the grain length and width significantly by 1.38% 
& 5.13%, respectively, in monocultures; which overall led 
to 8.64% reduction in MGW (Table 5). This suggests that 
the water stress treatment had affected the grain exten-
sion (the interaction of development and filling) along 
the width direction more considerably than along the 
grain length. In contrast, the effect of growing season 
on the grain length was higher than on the grain width 
(i.e. reduced the respective values in the second year by 
2.48% vs. 1.57%, respectively; which resulted in 6.57% 

Present study :







Weight = (3.45× Area)− 10.50
Weight = (25.75×MinFeret)− 38.21
Weight = (26.22×Minor)− 37.43
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MGW reduction). Therefore, it can be concluded that 
the season had more affected the earlier developmen-
tal grain phases (in which the potential of final length 
is determined), while the post-anthesis water stress had 
influenced –more considerably- the later phenological 
stages and filling period (which contributes more to grain 
width). In a similar way, various pheno-physiological 
aspects of genetic or environmental effects on the wheat 
grain might be evaluated more finely in a subcomponent 
level of grain yield.

In addition to the main applications of the findings 
reported here, (i.e. grain weight predictions or physi-
ological assessments), the image-derived indices could 
be used for automated seed screening and grain sort-
ing purposes; e.g. the less-matured grains might be eas-
ily detected and filtered out by appropriate thresholding 
of grain dimensions or predictive indices. Determining 
the best quantitative thresholds requires further stud-
ies. Also, the superior visual indices introduced in the 
present study might be used as the selection criteria in 
breeding programs (e.g. see [6]); before which the effi-
ciency and stability of the indices should be tested using 
a more heterogeneous collection of genotypes grown 
under a broader environmental conditions. In general, 
the image-based MGW predictive method reported here, 
along with the other related applications could increase 
the speed, accuracy, and frequency (i.e. replication) of 
crop sampling and grain assessments; which in turn, 
might reduce the experimental error and improve the 
agro-physiological evaluations.

Conclusion
The present study was conducted to explore more effi-
cient image-derived indices for predicting wheat MGW. 
For this purpose, simple size and shape indices of cul-
tivar mixtures grown under 4 environmental condi-
tions (2 seasons × 2 water conditions) were analyzed. It 
was observed that MGW had a higher correlation with 
10 out of the more than 30 evaluated empirical indices, 
compared with the well-assessed indicators of projected 
area (i.e. Area & Kim index). The best MGW predictions 
were obtained using the Area × Circ., Perim. × Circ., and 
Area/Perimeter indices. In general, the majority of the 
superior indices had one of the two common factors 
in their structure, i.e. either were based on grain width 
(evidenced as Minor & MinFeret) or the Area/Perimeter 
ratio; the latter of which had in turn high correlation with 
the first. Therefore, having a prominent appearance in 
the present study, grain width was introduced as a fun-
damental predictive index for weight estimations. The 
comparative precision of the ten selected indices was 

stable under different environmental conditions. Moreo-
ver, it was observed that enhancing the image resolu-
tion by the factor of 10 could considerably improve the 
MGW predictions; particularly when the shape-based 
indices were used. In conclusion, it is expected that uti-
lizing the simple predictive linear models developed 
and validated using the superior image-derived indices, 
particularly grain width, could increase the precision of 
MGW estimations, and also facilitate wheat physiological 
assessments.

Methods
Field experiment
In order to explore new image-derived indices to improve 
prediction of wheat grain weight, an archive of images 
taken from the harvested grains of a 2-year field study 
was analyzed. The goal of the field experiment was study-
ing the responses of wheat cultivar mixtures with vari-
ous ripening patterns to normal and post-anthesis water 
stress conditions (see [21]); which was conducted during 
2014-15 and 2015-16 growing seasons at the research 
field of the School of Agriculture, Shiraz University, Iran 
(29°73´ N latitude and 52°59´ E longitude at an altitude 
of 1,810 masl). Mixture treatments were 15 mixing ratios 
of four early- to middle-ripening wheat cultivars (Cham-
ran, Sirvan, Pishtaz, and Shiraz, respectively) including 
the 4 monocultures and their every 11 possible mixtures, 
which were grown with 3 replicates under two well-irri-
gation and post-anthesis deficit-irrigation conditions. The 
experimental design was RCBD (Randomized Complete 
Block Design) in which all the 90 (2×2 meter) plots were 
arranged in a lattice configuration with 1 meter distances. 
Plant density was 450 plants/m2 and seeds were mixed in 
each year with equal ratios (i.e. 1:1, 1:1:1, and 1:1:1:1 for 
the 2-, 3-, and 4-component blends, respectively), consid-
ering their 1000-grain weights and germination percent-
ages. The planting date in the first and second growing 
seasons were November 20 and November 5, respec-
tively; and based on the soil test, 150 kg nitrogen/ha was 
applied (as urea) in three equal splits i.e. at planting, early 
tillering, and anthesis. No pesticide was used and weed-
ing was done by hand once at stem elongation.

Irrigation interval was 10 days based on local practices, 
and the amount of irrigation water was estimated using 
the Fao-56 Penman–Monteith model with local cor-
rected coefficients which was reduced to 50% of evapo-
transpirational demand from the first irrigation after 
anthesis. Late in the season, plants were harvested from 
the center of plots and yield components were estimated 
using a laboratory thresher and weighing.
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Imaging
Images were taken from the archive of an exclusively 
designed laboratory system (Visual Grain Analyzer, 
VGA), which was equipped with a Logitech HD Pro Web-
cam C920 mounted on an adjustable arm, a glass table 
with a 60 × 60  cm flicker-free white LED panel beneath 
it as the light source, and a professional software written 
in C# for real-time screening of the grains. Imaging was 
carried out for other purposes, so the properties were not 
necessarily designed for the present study. Accordingly, 
images were taken under ambient light from 43.5  cm 
above the samples (i.e. lens to the table), and the image 
dimensions were 960 × 720 pixels (i.e. the original reso-
lution was ≈ 7 MP). For each experimental plot, more 
than 400 grains were sampled randomly and arranged 
on the imaging table using a Vacuum Seed Counter, so 
that there was no contact between the grains. Therefore, 
the total dataset (including 90 images for each year) was 
consisted of the data of more than 72,000 single grains. 
Immediately after imaging, the grains of each image were 
weighed using a A&D EK-610i (d = 0.01 g) weighing bal-
ance. Mean grain weights were calculated by dividing the 
sample weight by the number of grains.

Image processing
Since the VGA system has not been commercialized or 
released yet, and also the analyses had to be kept repro-
ducible, only the data of grain size (for conversion of 
pixel to mm) was taken from this system; and all of 
the image analyses were carried out using ImageJ ver-
sion. 2.1.0/1.53c [22]. First, the grains were segmented 
from the background using the Color thresholding tool 
(Image > Adjust > Color thresholding). The thresholding 
method and color space were set as “Default” and HSB, 
respectively. Thereafter, size and shape features of grains 
were calculated using the Analyze particles tool. For this 
purpose, the attended features were selected in the Set 
Measurements menu (Analyze > Set Measurement), and 
Analyze Particles was run. Before running, the “Show 
Ellipses” option was selected, and no size or circularity 
filtering was applied on the sample. The output tables 
were saved as.csv files and used for next analysis. As 
described before, it was found that enhancing the image 
resolution could improve the estimations. Therefore, in 
another analyses, before running the “Analyze Particles”, 
the resolution of images was enhanced using the Bicu-
bic algorithm and by factor of 10 (i.e. both image dimen-
sions were multiplied by 10, so the image resolution was 

increased 100 times). Resizing the images was carried out 
using the Batch processing tool (Process > Batch > Con-
vert; and interpolation and scale factor were set to Bicu-
bic & 10, respectively).

Using the output of image processing, the averaged 
values of basic features of size and shape were calculated 
for each image, and the correlation of these visual indices 
with MGW were evaluated. The examples of basic indi-
ces included area, perimeter, the major and minor axes 
of the best fitted ellipses to the grains (Major & Minor; 
also see [4]), minimum (MinFeret) and maximum (Feret) 
caliper diameter, Circularity (a value between 0 to 1 for 
an infinitely elongated shape to a perfect circle), solidity 
(the ratio of area to the convex hull area), etc. Besides the 
basic features, the correlation of MGW with several syn-
thesized indices were also tested; which were the prod-
ucts or ratios of the basic indices. A1 and A2 were among 
the instances of synthesized indices which are the prod-
ucts of the 5 most efficient basic indices. The full list of 
the evaluated indices is represented in Table 1. Also for 
more detail of the definitions and formulae, see https://​
imagej.​nih.​gov/​ij/​docs/​guide/​146-​30.​html. Linear corre-
lations of MGW with the visual indices were compared 
with those of the two control criteria i.e. Area and Kim 
index ( Area1.32 ; taken from the paper of Kim et al. [20]), 
and the indices with a higher correlations than the con-
trols were selected as the final indicators of MGW. Using 
each of the selected indices, a linear model for predic-
tion of MGW was developed and evaluated. Although 
the analyses were based on the number of pixels (as the 
unit of dimension), in order to generalize the model 
parameters, outputs were also converted into mm using 
the data of VGA system. Moreover, ten-fold cross-vali-
dation (K = 10) was used in Rapidminer (Version 9.9) to 
validate the results of datamining models, in which the 
default values and settings of the software were chosen. 
All other analyses, including correlating, Principal Com-
ponent Analysis (PCA), and fitting the linear models 
were carried out using XLSTAT (Version 2016.02.28451; 
Addinsoft). Figure  6 represents the pipeline of image 
processing and analyses carried out in the present study. 
Noteworthy, the image archive used in this research 
(with the original resolution) along with the mean values 
of extracted quantities have been shared on Figshare, at 
[23]: https://​figsh​are.​com/​artic​les/​datas​et/​Images_​of_​
wheat_​grains/​18480​722. Moreover, the image processing 
and calculations reported here can be simulated using a 
user-friendly ImageJ macro (Visual Grain Analyzer, VGA 
v. 1.0.1), which has been shared on GitHub at : https://​

https://imagej.nih.gov/ij/docs/guide/146-30.html
https://imagej.nih.gov/ij/docs/guide/146-30.html
https://figshare.com/articles/dataset/Images_of_wheat_grains/18480722
https://figshare.com/articles/dataset/Images_of_wheat_grains/18480722
https://github.com/haqueshenas/Visual-Grain-Analyzer
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github.​com/​haque​shenas/​Visual-​Grain-​Analy​zer. Run-
ning the code with the default settings will reproduce the 
reported results.
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