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Abstract 

Background: Stomatal behavior in grapevines has been identified as a good indicator of the water stress level 
and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However, 
most of the current approaches involve manual measurement of stomatal features. The main aim of this research is 
to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope 
images as the input. The proposed approach, which employs machine learning and image processing techniques, 
can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological 
features.

Results: First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a 
large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a com-
bination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata 
detection approach was compared with an existing fully automated template matching technique and a semi-auto-
matic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance 
of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the 
detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletoni-
zation method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only 
partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmen-
tation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further 
comparisons made with manually traced stoma openings indicated that the proposed method is able to estimate 
stomata morphological features with accuracies of 89.03% for area, 94.06% for major axis length, 93.31% for minor axis 
length and 99.43% for eccentricity.

Conclusions: The proposed fully automated solution for stomata detection and measurement is able to produce 
results far superior to existing automatic and semi-automatic methods. This method not only produces a low num-
ber of false positives in the stomata detection stage, it can also accurately estimate the pore dimensions of partially 
incomplete stomata images. In addition, it can process thousands of stomata in minutes, eliminating the need for 
researchers to manually measure stomata, thereby accelerating the process of analysing plant health.
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Background
Microscopic study of leaf epidermises aid researchers 
to gain a better understanding on the overall behavior 
and health of plants [1]. A microscope image of a leaf 
epidermis can provide a clear view of guard cells, epi-
dermal cells, stomata and plant leaf veins. Among these 
elements, stomata, surrounded by guard cells, play a 
major role in protecting the plant against water loss and 
regulating the gas exchange with the external environ-
ment [2, 3]. As a result, the behavior of stomata provides 
key information on the water stress level, food produc-
tion rate and the overall health of the plant [1, 4–6]. In 
an agricultural scenario, analysing stomatal behavior can 
lead to better resource management and yields [7, 8].

However, examining stomatal behavior from a micro-
scope image is not a straightforward task. Different plants 
have different leaf structures, and biologists with expert 
knowledge are required to correctly identify and meas-
ure stomatal morphology. Currently, the most common 
approach to achieve this goal involves manual measure-
ment of stomata pore dimensions using softwares such as 
 ImageJ® [9]. These type of tools require the user to man-
ually mark the points of interest such as pore boundaries, 
stoma length and width so that the tool can produce the 
relevant measurement results.  ImageJ® also provides 
additional plugins in order to make tasks such as stomata 
identification easier, but users still need to manually tune 
parameters for each image to achieve reasonable results 
[10–12]. Even with the aid of such tools, the process of 
manually measuring stomata morphology is both time 
consuming and cumbersome. Due to the time constraints 
imposed by manual measurements, biologists are forced 
to select only a few stomata for measurement from each 
captured microscope image, and build statistical relation-
ships and models using fewer data-points [13]. However, 
more robust statistical models can be built if all available 
data are measured. The solution therefore, would be to 
develop a fast, fully automated method which can accu-
rately measure stomatal morphological features without 
any human intervention.

Several studies can be found on automatic detection 
and measurement of stomatal morphology. One of the 
first studies to investigate the possibility of automati-
cally measuring stomata pore features was conducted 
by Omasa and Onoe [14]. In this research, a Hanning 
filter alongside a series of morphological operations is 
utilized in measuring the pore opening of sunflower sto-
mata. However, this approach does not focus on correctly 
identifying stomata from a large microscope image in the 
presence of other background elements such as veins and 
dust particles. Instead, this method requires the input 
to be an image containing a single stoma. The work pre-
sented by Karabourniotis et al. [15] applies UV radiation 

to leaves, which as a result causes guard cells to emit a 
blue florescence. The plant leaves are then captured 
using a fluorescent microscope and the resulting images 
are filtered and segmented to extract stomata and guard 
cells. Even though this method produces reliable results, 
it requires a relatively featureless background as well as 
methods of applying UV radiation to the leaf. In addition, 
the work presented by Sanyal et al. uses image process-
ing techniques on microscope images to classify different 
tomato types based on stomata structure [16]. A water-
shed technique is employed to extract a single stoma 
from a nearly featureless background. However, the pro-
posed method would not perform well in the presence of 
multiple stomata and a feature-rich background.

More sophisticated approaches which aim to extract 
and measure stomata from feature-rich backgrounds 
can be found in the researches conducted by Laga et al. 
[13] and Liu et al. [17]. The work presented by Laga et al. 
[13] follows a template matching approach to identify 
and measure the stomata pore opening of wheat plants. 
Wheat has a very consistent leaf epidermal structure with 
wheat stomata roughly aligned in the same direction, 
which makes it suitable candidate for template match-
ing. However, for irregular leaf structures this method 
requires more templates, and has the tendency to pro-
duce false positive results especially when there are vein 
structures which look similar to stomata. Furthermore, 
the stoma pore detection approach used in this research 
assumes that both the stoma and the guard cell bounda-
ries are clearly captured by the microscopic image. How-
ever, in a practical scenario, the images captured are not 
perfect, and contain plenty of partially captured stomata. 
More recent research conducted by Liu et al. [17] focuses 
on detecting and measuring grapevine stomata by utiliz-
ing maximum stable external regions (MSER). Although 
less time consuming than using the  ImageJ® tool, this 
semi-automatic method still requires the users to interac-
tively choose correct results from a given image and man-
ually tune a set of parameters for each image. In addition, 
this approach always identifies stomata pore openings as 
symmetric ellipses, which is not the case in reality.

In this paper, we aim to develop a fully automated 
method to identify and measure stomata pore dimen-
sions of grapevines, using microscope images. The 
images are prepared by applying a layer of resin and nail 
polish onto the leaf surface, and then carefully remov-
ing the nail polish layer which carries an imprint of the 
leaf epidermis. The final microscope image is generated 
by placing the nail polish impression on a microscope 
slide. The microscope images used for this research 
contain feature-rich backgrounds and the quality of the 
images captured vary depending on external conditions. 
Unlike previous work, where classical image processing 
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techniques are used, the authors of this paper have 
opted to adopt a machine learning based cascade object 
detector to identify the stomata in a microscopic image. 
A similar cascade classifier has been previously applied 
to estimate the density of stomata in oak leaves [18]. 
However, compared to the work in [18] which uses 
Haar-like features for classification, the work presented 
in this paper utilizes HOG features to build the cas-
cade object detector. Using a HOG descriptor, which is 
known to perform well in capturing the overall shape 
of an object, allowed the authors to build an accurate 
classifier using a less number of training samples (550 
positive samples and 210 negative samples) compared 
to the work in [18] (10,000 positive samples and 3000 
negative samples). It will be later shown that the train-
ing time required for a HOG based classifier is drasti-
cally lower compared to the Haar based COD proposed 
in [18] which took several days to train. A lower training 
time allows researchers to easily modify the proposed 
approach to train for different plant types with limited 
computing resources.

Once the stomata are automatically identified using 
the proposed COD algorithm, these regions of interest 
are cropped out and segmentation and skeletonization 
techniques are applied to the cropped image in order to 
measure the stoma pore boundary. Contrary to existing 
methods which require sharp, clean microscopic images 
for processing, the proposed approach, with the help of 
skeletonization, can estimate the stoma pore boundary 
under imperfect conditions where the stoma and guard 
cell boundaries are not fully visible, due to errors in 
applying resin, peeling off the nail polish layer etc. Here, 
skeletonization refers to the process of reducing a region 
to a skeletal remnant whilst preserving the connectivity 
features of the original image [19, 20]. The final result 
is a fully automated start-to-end stomata detection and 
measurement solution, where the input is a microscopic 
image of varying quality, and the output a set of stomatal 
morphologies.

The performance of this two stage method is then com-
pared with the MSER method proposed by Liu et al. [17] 
and template matching method proposed by Laga et  al. 
[13] using 50 microscopic images of cabernet sauvignon. 
Results show that the proposed approach is able to iden-
tify stomata more reliably, and produces accurate results 
in measuring the stomata pores.

The paper is organized as follows. In the “Methods” 
section, the image processing and machine learning tech-
niques used to identify and measure stomatal properties 
are discussed in detail with examples. The experimental 
results of the study and comparisons with existing meth-
ods are presented in the “Results” section. The last sec-
tion concludes the paper.

Methods
The main aim of this work is to develop a fully automated 
solution for stomata measurement, where a microscopic 
image is used as the input to the system and the corre-
sponding morphological features of the stomata in the 
image are treated as the final output. The proposed meth-
odology consists of two stages. The first stage aims at 
correctly identifying the stomata in a given microscopic 
image. Once, the stomata are automatically identified and 
cropped out from the original image, the second stage 
analyses and measures the morphological features of each 
individual stoma. The steps involved in both of these stages 
are discussed in detail from the next section onwards.

Cascade object detection algorithm to identify regions 
of interest
Cascade object detection (COD) algorithm is a multi-
stage classification learner, where each stage is made 
up of a collection of weak learners. Each of these stages 
are trained using a technique called boosting. For the 
work presented in this paper, a COD which uses the 
Viola–Jones algorithm for face detection is re-trained 
for the purpose of identifying stomata [21, 22]. The COD 
approach inherently assumes that a large percentage of 
the image does not contain an object of interest. This in 
fact serves well for the question at hand, where the area 
covered by the stomata is small compared to the overall 
microscopic image area.

The COD approach is also known for reliably clas-
sifying objects of which the aspect ratio doesn’t change 
drastically. Furthermore, this method is better suited for 
situations where there are no out of plane rotations of 
the object. Thus, COD can be identified as a good can-
didate for the stomata detection since all stomata lie on a 
2D plane and have minor aspect ratio changes. Also note 
that the COD method employed for this task uses Histo-
gram of Oriented Gradients (HOG) as the main learning 
descriptor [23]. The implementation procedure for the 
COD algorithm consists of two major steps.

1. Train the cascade object detection classifier using a 
set of positive images (images containing stoma) and 
a set of negative images (images of veins, dust parti-
cles and other features). The overall simplified opera-
tional procedure for an n stage cascade classifier is 
presented in Fig. 1. A detailed representation of the 
operations carried out by the initial stage and a gen-
eral stage of the classifier are shown in Figs. 2 and 3 
respectively.

2. Slide a window over the microscope image and use 
the trained COD classifier to check for a stoma inside 
the window. If a stoma is detected inside the sliding 
window, define that area as a region of interest (ROI).
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Figure 4 shows the COD classifier at work. The bound-
ing boxes which contain stoma are cropped and then sent 
to the second stage where binary segmentation methods 
alongside skeletonization techniques are applied to meas-
ure the pore morphology.

Stomata pore measurement via binary image 
segmentation and skeletonization
Once the ROIs are identified and cropped, the next 
step is to detect and measure the stomatal pore in each 
ROI. Before proceeding with the pore measurements, 

it is important to observe the nature of the stoma cap-
tured. A closer look at the ROIs indicate that the stomata 
observed can be categorized into two types as,

1. Stomata with complete pore boundaries (see 
Fig. 5a.1).

2. Stomata with incomplete (discontinuous) pore 
boundaries (see Fig. 5b.1).

In order to develop reliable statistical models and 
relationships involving leaf epidermises, it is important 

Fig. 1 The operational procedure of an n-stage cascade classifier

Fig. 2 Function of the initial stage of a cascade object detector
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to collect as much data as possible from a given micro-
scope image. To the best of our knowledge, all previous 
research inherently discard stomata with low quality and 
require sharp, clean, complete boundaries in order to 
derive pore measurements. In this work, a skeletoniza-
tion based approach is proposed to overcome this issue 

and estimate pore boundaries for low quality stomata 
with discontinuous pore boundaries.

The stomatal pore measurement stage has two 
sub-stages:

1. Binary image segmentation: estimates pore meas-
urements for high quality, complete stomata.

2. Skeletonization and ellipse fitting: estimates pore 
measurements for low quality incomplete stomata.

First, all cropped stomata images are fed through the 
binary image segmentation method. The binary image 
segmentation method can accurately estimate the sto-
matal pore areas for high quality images. However, this 
method fails when processing low quality images with dis-
continuous boundaries. Therefore, whenever this method 
fails in identifying the stomatal pore area, the correspond-
ing low quality image is then fed into the skeletoniza-
tion and ellipse fitting method. Adopting such a method 
ensures that pore boundaries are identified for the major-
ity of the stomata detected under varying image quality.

Binary image segmentation
The following set of steps are employed to estimate the 
stoma morphology for complete pore boundaries.

Fig. 3 Function of a general stage of a cascade object detector

Fig. 4 A sample result of the COD based stomata detection method. 
The green crosshairs represent actual stomata. The yellow bounding 
boxes show automatically detected regions of interest (ROIs)
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1. The image is sharpened, converted to grayscale and 
then converted to a binary image.

2. Independent regions (disconnected from each other) 
are identified on the binary image.

3. The region representing the stomatal pore opening is 
identified based on two assumptions: (a) the stoma 
is closer to the center of the ROI, (b) the pore area 
is smaller than a predefined upper limit. The upper 
limit of the pore area represents the approximate 
maximum area that can be covered by a stomatal 
pore. This parameter depends on the resolution and 
the zoom level of the microscopic image. The upper 

limit can be defined by briefly observing the original 
images and gaining an understanding on how large a 
typical stoma is (pixelwise).

4. The pore opening is marked and the morphological 
features such as area, major axis length, minor axis 
length and eccentricity are measured.

A visual representation of this method is shown in Fig. 6. 
This simple approach produces reliable results when 
the stoma is of good quality. However, if the stoma pore 
boundary is discontinuous, the binary image of the stoma 
would not contain a independent region which agrees 
with the two assumptions made in step 3 (see Fig.  5b.2 
for such a condition). Therefore, such images are dis-
carded and handed over to the skeletonization and ellipse 
fitting method. A detailed description of the skeletoniza-
tion approach is presented in the next section.

Skeletonization and ellipse fitting
Image skeletonization refers to the process of reducing 
a selected region to a skeletal remnant which represents 
the medial axis of that region [19]. The following set of 
steps are applied to the images discarded by image seg-
mentation sub-stage, with the aim of estimating stoma 
morphological features in the presence of discontinuous 
pore boundaries.

1. The image is sharpened, converted to grayscale and 
then converted to a binary image.

2. Independent regions (disconnected from each other) 
are identified on the binary image.

3. The binary image is inverted.
4. The independent regions on the image are skel-

etonized (also known as deriving medial axes). Each 
skeletal remnant would be a vector containing pixel 
coordinates.

5. The skeletal remnant associated with the pore bound-
ary is then identified based on two assumptions: (a) 
the skeletal remnant associated with the stoma is 

Fig. 5 Examples of stomata captured with varying quality. a.1 Stoma 
with a complete pore boundary. a.2 Binary segmentation result for 
a complete pore boundary. b.1 Stoma with an incomplete pore 
boundary. b.2 Binary segmentation result for an incomplete pore 
boundary

Fig. 6 The binary image segmentation process. a Original image. b Binary image. c Identify pore region. d Pore boundary overlaid on the original 
image
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closer to the center of the ROI. (b) The length of the 
skeletal remnant lies between a pre-defined upper 
and lower limit.

6. Once the correct skeletal remnant is identified, gen-
erate an ellipse which fits the points of the skeletal 
remnant.

7. This ellipse is then used as a mask on the binary 
image derived in step 2. The independent region 
inside this mask is identified as the stoma pore.

A visual representation of this step-by-step approach 
is shown in Fig.  7. Skeletonization and ellipse fitting, 
together with binary image segmentation ensures that 
morphological features are measured for a large percent-
age of the initially detected ROIs. Compared to the tra-
ditional approach of manually measuring stomata which 
drastically limits the number of stomata which can be 
measured, this novel approach provides a comprehensive 
solution which provides pore measurements for a large 
number of stomata in quick time.

Results
The performance of the two stage stomata measure-
ment method was compared with Liu’s MSER approach 
and Laga’s template matching approach. Programs 
for all three methods were developed using  Matlab® 
R2017a.

Training procedure
The training step of COD was conducted using 550 posi-
tive samples where each image contained a single stoma, 
and 210 negative samples which contained other leaf 
epidermis features such as veins and dust particles. The 
classifier consists of 8 stages, and utilizes HOG features 
as the main descriptor. The visual representation of the 
HOG features on positive samples are shown in Fig.  8. 
The training process took approximately 7  min, inside 
the  Matlab® environment on a 2.2 GHz  Intel® Core 
i7-4702MQ CPU with 16 GB RAM. Note that COD 
training with HOG features takes drastically less process-
ing time compared to the classifier used in [18] which 
took several days to train.

Data collection
The trained classifier was then tested on a separate 50 
microscope images collected from cabernet sauvignon 
leaves containing 2012 stomata. The images were pre-
pared using the conventional approach, where a layer of 
resin and nail polish are applied to the leaf epidermis, 
and an imprint of the leaf surface is captured by remov-
ing the nail polish layer and placing it on a microscope 
slide. The microscope images were captured using an 
 Olympus® DP73 camera attached to an  Olympus® BX53 
microscope. The image resolution was set at 4800 × 3600 
pixels, with a magnification of 8.6 pixels/μm.

Stomata detection
The stomata detection capability of the proposed COD 
approach was put to test first. In order to measure the 
performance improvements of the proposed method, two 
other existing methods, namely, Laga’s template match-
ing approach and Liu’s maximum stable extremal region 
approach, were applied to the same 50 images. Since Liu’s 
MSER approach is not a fully-automated method, we 
tuned the MSER parameters such that it provided best 
possible results for the given image set, and then auto-
mated the process in order to make the three methods 
more comparable. The template matching method was 
implemented using 20 stoma templates. Detailed imple-
mentation instructions for both template matching and 
MSER methods can be found in [13] and [17].

The corresponding results obtained after applying 
these three methods to 50 microscopic images are pre-
sented in Tables 1 and 2. The proposed method not only 
generated the highest number of true positives, it also 
resulted in the least number of false positives. Thus, the 
results clearly reflect the superiority of the the cascade 
classifier compared to the other two existing autonomous 
approaches. Further statistical analysis of the results 
showed that the proposed COD approach had the high-
est precision, recall and accuracy rates among the three 
methods (see Table 2). It is also the only method to sur-
pass an F1-score of 0.80. The low number of false positive 
results generated by COD can be identified as the main 
reason contributing to this superior F1-score.

Fig. 7 Skeletonization and ellipse fitting process. a Original image. b Binary image. c Derivation of independent line segments via skeletonization. 
d Fit ellipse to the skeletal remnant representing the pore opening. e Binarize the region inside the ellipse and identify regions. f Pore boundary 
overlaid on the original image
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Stomata measurements
The next step was to test the performance of the second 
stage of the proposed approach. In this stage, the main 
aim of the algorithm was to estimate the morphological 
features of the stomata pores. For this experiment, the 
1742 ROIs detected through the COD method were used 
as the input. The corresponding results are presented in 
Table  3. Out of 1742 identified ROIs, the binary image 
segmentation method combined with skeletonization 

was able to generate results for 1267 stomata while dis-
carding 475 ROIs. Further analysis showed that the 475 
ROIs discarded by the pore estimation method included 
false positives generated by the COD as well as stomata 
of which the pore boundary could not be identified with 
any confidence, due to the image being out of focus or 
stoma being partially captured. Next, the generated 1267 
estimations were visually inspected. These inspections 
showed that this approach was able to correctly identify 
the pore boundaries 86.27% of the time. The inaccurate 
results (174 out of 1267 ROIs) often identified the guard 
cell boundary as the stoma opening. However, this small 
number of inaccuracies does not pose a threat to the final 
result, as the user can easily visually inspect and remove 
such results from the dataset. It is important to note that 
the time spent on discarding inaccurate results via visual 
inspection is negligible compared to the time consumed 
in manually marking over a 1000 stoma pore openings.

Let us now consider the correctly marked stomata. It 
is important to measure how the automatically generated 
stomatal pore measurements compare with manually 

Fig. 8 HOG feature visualization for positive samples

Table 1 Numerical results obtained for template matching, MSER and COD methods, using 50 microscopic images con-
taining 2012 stomata

The numbers for the proposed method were italisized to emphasize the improvement of the proposed approach

Actual number of stomata ROIs detected True positive False positive False negative

Template matching 2012 2331 1324 1007 688

MSER 2012 1398 746 652 1266

COD (proposed) 2012 1742 1597 145 415

Table 2 Statistical results obtained for  template match-
ing, MSER and COD methods, using 50 microscopic images 
containing 2012 stomata

The numbers for the proposed method were italisized to emphasize the 
improvement of the proposed approach

Precision (%) Recall (%) Accuracy (%) F1-score

Template match-
ing

56.64 65.50 43.95 0.60

MSER 53.36 37.08 28.00 0.44

COD (proposed) 91.68 79.37 74.04 0.85
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marked stomatal pores traced using tools similar to 
 ImageJ®. In order to make this comparison, the stoma 
boundary was manually marked under expert supervision 
for 70 randomly generated ROIs. These manually marked 
boundaries were considered as the ground truths. Then 
the manually measured parameters were compared with 
the measurements generated by the proposed automated 
method. The following equations were used to estimate 
the major axis length, a, and minor axis length, b,

where, A is the area of the stoma pore and E is the eccen-
tricity of the detected pore. The corresponding results of 
the experiment are presented in Table 4. Here, the term 
accuracy is defined as,

where, Y is the actual value, and Ŷ  is the estimated value. 
According to the results, the pore area traced by the auto-
mated method is always slightly larger than the manually 
marked area but holds an accuracy reading of 89.03%. 
However, the eccentricity values are highly accurate as 
the errors in major and minor axis length measurements 
are quite uniform (i.e: similar estimation errors in a and b 
would not highly affect the term b/a). The average accu-
racies for both major axis length and minor axis length 
surpass 90%, with accuracy readings of 94.06 and 93.31% 
respectively. A side-by-side visual comparison between 
the ground truth and the estimation for 12 test images is 
presented in Fig. 9.

(1)a =
√

A

π
√
1− E2

,

(2)b =

√

A
√
1− E2

π
,

(3)Accuracy (%) = |(Y − Ŷ )/Y | × 100,

Observing the results, it can be concluded that the fully 
automated method is able to provide accurate morpho-
logical measurements for 1093 stomata out of 2012 avail-
able stomata in a small amount of time. Please note that 
the two stages together have discarded 890 stomata due 
to various reasons such as stoma being too blurry, not 
properly captured etc. The time consumed by an Intel 
i7 computer with 16 GB RAM to process the 50 images 
of high resolution (4800  ×  3600 pixels) was measured 
to be 10 min (roughly 12 s to process 40 stomata). These 
results suggest that the proposed approach can save a 
huge amount of time in processing large sets of micro-
scopic data, when compared to manual approaches.

Discussion
As per the results, the proposed two stage fully auto-
mated method is able to out-perform existing stomata 
detection method as well as accurately measure stoma 
pore dimensions. The reasons which result in such an 
improvement are discussed next.

Figure  10 shows the results generated by the three 
methods for a sample microscopic image. The template 
matching approach works well in highlighting areas con-
taining stomata as shown in Fig. 10a. Note that this is the 
first time the template matching approach was applied to 
a leaf structure with stomata oriented in all directions. In 
this scenario, the template matching method is prone to 
highlighting other epidermal elements such as veins and 
dust particles which align well with some stomata and 
have similar thicknesses. This causes the template match-
ing method to generate a high number of false positives. 
On the other hand, the MSER approach proposed by Liu 
et  al. searches for stable elliptical regions in the image. 
Thus, their approach is not robust enough to differentiate 
between stoma pore openings, outer guard cell walls and 
veins containing elliptical patterns. This results in a high 
number of false positives as well. In addition, this method 
tends to discard stomata pores of which the interior is 
not stable enough for detection. These issues are clearly 
illustrated in Fig. 10b.

The proposed cascade object detection approach 
identifies stomata by learning their overall appearance. 
Thus, it is able to identify stomata in a more robust man-
ner, whilst keeping the number of false positives to a 

Table 3 Results obtained for stomata pore estimations for 1742 ROIs

The numbers for the proposed method were italisized to emphasize the improvement of the proposed approach

Number of ROIs 
as input

Discarded ROIs Accurate pore identifi-
cations

Inaccurate pore identi-
fications

Identification 
accuracy

Binary image segmentation 
with skeletonization and 
ellipse fitting

1742 475 1093 174 86.27%

Table 4 Comparison of automatic stomatal pore measure-
ments with manual measurements derived using  ImageJ®

Number 
of stomata 
compared

Avg. area 
accuracy

Avg. 
eccentricity 
accuracy

Avg. major 
axis length 
accuracy

Avg. minor 
axis length 
accuracy

70 89.03% 99.43% 94.06% 93.31%
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minimum. However, this method too would ignore sto-
mata which look considerably different from the train-
ing data set (e.g: blurred stomata, partially captured 
stomata). Furthermore, as a learning algorithm, the per-
formance of the proposed cascade classifier is subject to 
change depending on the hyper-parameters (number of 
stages, number of false positives allowed per stage etc.) 
used during learning as well as the nature of the train-
ing dataset used. Special attention should be paid to the 
size and the features captured by the training datasets in 
order to produce the best possible results. This cascade 
classifier approach can successfully perform with a wide 
range of leaf types. However, the classifier would require 
re-training with suitable training data for leaf types with 
considerably different stomata or background structure.

Let us now consider the stomata pore measurement 
process. The proposed pore measurement methodol-
ogy, which involves binary image segmentation com-
bined with skeletonization and ellipse fitting, does not 
require stoma boundaries to be sharp and continuous 
like Laga’s template matching approach. It is fully capable 
of estimating stoma pore dimensions even in cases where 

the pore boundary is only partially visible in the image. 
However, in order to estimate the pore dimensions for a 
partially complete boundary, the boundary should be at 
least 60–70% complete. In other words, the implemented 
ellipse detection algorithm struggles to derive a confi-
dent estimate for boundaries which are more than 50% 
incomplete. This is one main reason for the stomata pore 
measurement stage to discard 475 ROIs from the 1742 
detected ROIs (see Table 3).

Conclusions
This paper presented a fully automated start-to-end solu-
tion for estimating stomatal morphological features of 
grape leaves. This two stage approach, which comprises 
of a cascade object detector to identify stomata in an 
image, and a combination of segmentation, skeletoniza-
tion and ellipse fitting techniques to measure the stomata 
pore opening, was able to perform better than recently 
developed automated stomata detection methods. The 
COD approach identified stomata with a precision of 
91.68% and an F1-score of 0.85. Out of the identified sto-
mata, this approach managed to correctly trace the pore 

Fig. 9 A sample segment of stomata pore measurement results. A red trace represents a manually marked (ground-truth) stoma pore. A green 
trace represents automatically measured pore for the same stoma
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boundary of the stoma 86.27% of the time. Comparisons 
with ground truths show that the proposed approach 
measures the pore area with an accuracy of 89.03% the 
eccentricity with an accuracy of 99.43%. Compared 
to existing pore measurement methods, the proposed 
approach can estimate pore dimensions for stoma with 
incomplete pore boundaries. All the tests were con-
ducted using grape leaves of type cabernet sauvignon. 

The authors intend to extend this research to test on dif-
ferent varieties of grapes and other plant types.
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