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METHODOLOGY

A rapid approach to investigate 
spatiotemporal distribution  
of phytohormones in rice
Wen‑Jing Cai†, Tian‑Tian Ye†, Qing Wang, Bao‑Dong Cai and Yu‑Qi Feng*

Abstract 

Background: Phytohormones play crucial roles in almost all stages of plant growth and development. Accurate and 
simultaneous determination of multiple phytohormones enabled us to better understand the physiological functions 
and the regulatory networks of phytohormones. However, simultaneous determination of multiple phytohormones in 
plant is still a challenge due to their low concentrations, structural and chemical diversity, and complex matrix of plant 
tissues. Therefore, development of a simple and selective method for the simultaneous determination of multiple 
phytohormones is highly needed.

Results: We developed a clean‑up strategy for profiling of multiple phytohormones, which can overcome the chal‑
lenge of structural and chemical diversity. By using a one‑step dispersive solid‑phase extraction (DSPE) combined 
with UPLC–MS/MS, 54 phytohormones including auxins, ABA, SA, JA, GAs and CKs were simultaneously analyzed 
from a single rice sample extract. Using the developed method, we investigated the spatiotemporal distribution of 
phytohormones in rice. The profiling of various tissues of rice at different growth stages revealed the complexity of 
metabolic regulation and allocations of phytohormone species.

Conclusion: A rapid one‑step method was developed for the simultaneous analysis of six groups of phytohormones, 
including cytokinins, auxins, salicylic acid, jasmonates, abscisic acid and gibberellins in a single run, using UPLC–
ESI–MS/MS. The proposed method was successfully applied to investigate spatiotemporal distribution of multiple 
phytohormones in rice. The spatiotemporal information obtained may be helpful for better understanding of phyto‑
hormones functions throughout life cycle of rice when integrated into transcriptome and other omics data.

Keywords: UPLC–MS/MS, Phytohormones, Spatiotemporal distribution, Rice

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Phytohormones are a group of naturally occurring, 
organic substances which influence physiological pro-
cesses at low concentrations [1]. They play crucial roles in 
almost all stages of plant growth and development, from 
embryogenesis to senescence. In addition, they also regu-
late response of plant to biotic and abiotic stress [2]. Phy-
tohormones have been categorized into several groups 
based on their structures and physiological functions, 

including auxins, cytokinins (CKs), abscisic acid (ABA), 
jasmonates (JAs), salicylates, gibberellins (GAs), eth-
ylene (ET), brassinosteroids (BRs), polyamines, signal 
peptides and the more-recently-discovered hormones, 
strigolactones (SLs) [1]. Each class of phytohormone has 
characteristic biological functions. However, increasing 
evidence shows that multiple phytohormones can medi-
ate plant growth and development by additive, synergistic 
or antagonistic actions [3–7]. Phytohormone concentra-
tion and distribution are determinants of phytohormone 
action [8]. Therefore, studies on phytohormone func-
tions and regulation networks primarily rely on sensi-
tive and high-throughput methods for quantification 
of endogenous phytohormones in plants. Accurate and 
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simultaneous determination of multiple phytohormones 
enabled us to better understand the physiological func-
tions and the regulatory networks of phytohormones. 
Hirano et al. [9] presented the dynamic changes of each 
phytohormone during rice microspore/pollen (MS/
POL) development by analysis of endogenous levels of 
ABA, CKs, GAs and IAA combined with the transcrip-
tome results in mature anther. According to spatial and 
temporal distribution of CKs and the related gene func-
tion assays, Rijavec et  al. [10] found that CKs may per-
form highly contrasting roles in the filial endosperm and 
maternal tissues of developing seed in maize. Based on 
phytohormone profiling and RNA-seq analyses, Chao 
et  al. [11] discovered the specific combination of phy-
tohormones involved in bud differentiation and shoot 
growth at different time points. Hence, simultaneous 
profiling of multiple classes of hormones, especially inte-
grated with the results of related gene expression pro-
filings, is a powerful tool to reveal the mechanisms and 
interactions of phytohormones in different growth and 
development stages of plants [10].

There are two ways to get information about the con-
centrations of multiple phytohormones in plant samples. 
One is to divide the sample to multiple portions for inde-
pendent analysis of multiple classes of phytohormones 
respectively [9]. However, this requires a large amount of 
plant sample, which cannot meet the increasing demand 
for analysis of limited amounts of plant samples, such as 
a tiny organ of a rice. The other way is to develop meth-
ods for simultaneous determination of multiple phytohor-
mones in one sample. Simultaneous analysis of multiple 
phytohormones is challenging due to their structural and 
chemical diversity, and the low contents in plant samples, 
usually at the nanomolar level, as well as the complex 
plant matrix. Therefore, it’s of great significance to design 
a feasible strategy for simultaneous analysis of multiple 
phytohormones. Great efforts have been made. Addi-
tional file 1: Table S1 presents a summary of representa-
tive analytical methods for simultaneous determination of 
multiple phytohormones. Multiple steps involving liquid–
liquid extractions or solid-phase extractions, as well as 
combinations of them have been used for the removal of 
the sample matrix and enrichment of multiple phytohor-
mones [12–30]. Kojima et al. [12] developed a multi-step 
strategy for determination of 43 phytohormones includ-
ing auxins, ABA, GAs and CKs. The phytohormones in 
rice were stepwise separated into several fractions by mul-
tiple solid-phase extraction (SPE). “MS-probe” bromo-
choline was used for derivatization of fractions containing 
auxin, ABA and gibberellins to increase the MS detection 
sensitivity. Subsequently, phytohormones in each fraction 
were, respectively, analyzed using UPLC–MS/MS [12]. 

Cao et  al. [14] reported a method using liquid chroma-
tography-triple quadrupole mass spectrometry (LC–MS/
MS) for the profiling and quantification of 43 phytohor-
mones and their major metabolites, including auxins, 
abscisic acid, jasmonic acid, salicylic acid, cytokinins and 
gibberellins in a single sample extract purified by binary 
extraction using commercial polymer anion exchange 
resin (PAX) and polymer cation exchange resin (PCX), 
respectively. Liu et al. described a method for simultane-
ous analysis of 24 acidic and alkaline phytohormones, in 
which a binary SPE using Oasis MCX cartridges for cati-
ons and Oasis MAX cartridges for anions was employed 
for purification and enrichment of phytohormones. Alka-
line and acidic phytohormones were eluted from different 
SPE cartridges, respectively. The two fractions of elution 
were combined for UPLC–MS/MS analysis [15]. Obvi-
ously, these multiple SPE strategies were tedious and 
time-consuming. One-step methods can be more effi-
cient. Recently, Meulebroek et al. [26] developed a generic 
extraction protocol combining an UPLC-Orbitrap-MS 
detection method for analysis of eight phytohormones 
(GA3, ABA, IAA, JA, SA, Z, BA and BL) in both tomato 
fruit and leaf tissue. Crude plant extract was just passed 
through a 30  kDa Amicon® Ultra centrifugal filter unit 
prior to LC–MS analysis. Pan et  al. described a proto-
col for quantitative analysis of major phytohormones in 
crude plant extracts by high-performance liquid chro-
matography–mass spectrometry. Dichloromethane was 
used to extract and purify seven major classes phytohor-
mones from plant extract before LC–MS analysis [28, 31]. 
Although these one-step sample preparation protocols 
are simple and fast, the matrix effect does exist and the 
efficiency of purification should be further improved. Cai 
et al. [19] developed a method to comprehensively profile 
phytohormones, including 8 cytokinins (CKs), indole-
3-acetic acid (IAA), abscisicacid (ABA), jasmonic acid 
(JA) and 10 gibberellins (GAs) by Fe3O4@TiO2-based 
magnetic solid-phase extraction coupled with ultra-per-
formance liquid chromatography-electrospray tandem 
mass spectrometry (Fe3O4@TiO2-based MSPE-UPLC–
MS/MS). Whereas, to date, these materials are not readily 
available in most laboratories.

In the current work, we have developed a clean-up 
strategy for profiling of multiple phytohormones, which 
can overcome the challenge of structural and chemi-
cal diversity. By using a one-step dispersive solid-phase 
extraction (DSPE) combined with UPLC–MS/MS, 54 
phytohormones including auxins, ABA, SA, JA, GAs 
and CKs were simultaneously analyzed from a single rice 
sample extract. Using the developed method, we have 
investigated the spatiotemporal distribution of phytohor-
mones in rice.
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Results and discussion
Method for rapid quantification of phytohormones
Graphitized carbon black (GCB) has been widely used 
in QuEChERS method for sample cleanup because it 
can remove chlorophyll through π–π interaction with 
porphyrin ring of chlorophyll [32–34]. In this study, we 
choose GCB for cleanup of plant samples. The overall 
procedure for extraction and purification of phytohor-
mones is summarized in Fig.  1. Acetonitrile is used to 
extract phytohormones from plant [29], and graphitized 
carbon black (GCB) sorbent is employed for dispersive 
solid-phase extraction (DSPE) cleanup. In order to obtain 
an optimal extraction efficiency, three parameters includ-
ing the amount of GCB, water content of sampling solu-
tion and extraction time were optimized (Additional 
file  1: Fig. S1). As the amount of GCB increased, more 
amount of analytes were adsorbed and less remained 
in the supernatant, resulting in decreased recoveries. 
When sampling in ACN, analytes would be adsorbed 
by GCB via hydrophilic interaction, so addition of H2O 
could improve the recoveries. Finally, 10 mg of GCB for 
DSPE, 80% ACN (v/v) for sampling and 3 min for extrac-
tion were employed for further experiments. Under the 
optimized conditions, the absolute recoveries of 54 phy-
tohormones spiked in 80% ACN (v/v) and plant sam-
ple matrix were investigated respectively by using the 

proposed DSPE. The recoveries in standards were calcu-
lated by comparing standards that were extracted with 
standards without extraction. The recoveries in matrix 
samples were calculated by comparing samples that 
were spiked and then extracted with those, which were 
extracted and then spiked. Internal standards were added 
to the samples before injection to UPLC–MS/MS to cali-
brate errors of instrument detection. And the results are 
listed in Additional file  1: Table S3. Recoveries of most 
phytohormones in sample matrix were higher than in 
standards. This might be because that the sample matrix 
may block GCB binding sites so that less phytohormones 
were absorbed to the GCB and more phytohormones 
remained in the supernatant, resulting in higher recover-
ies in sample matrix.

Ultra Performance Liquid Chromatography (UPLC) 
was employed for separation of 54 phytohormones. The 
chromatograms are shown in Fig.  2. Fifty-four tested 
analytes achieved baseline separation by UPLC, except 
for DZ7G and DZOG, MeStZ and MeScZ. Appropriate 
precursor to product ion transitions for each compound 
(54 molecular species) and their respective deuterium-
labeled internal standards were determined by UPLC–
ESI–MS/MS (Additional file 1: Table S2). Cytokinins and 
auxins were detected in the positive ion mode, ABA, JA, 
SA and gibberellins were identified in the negative ion 
mode. A polarity-switching mode enables the analysis of 
compounds with different preferred ionization modes. In 
order to enhance the sensitivity of UPLC–ESI–MS/MS, 
six separate functions were implemented in the MRM 
mode so that only ions eluted during the specified reten-
tion windows were monitored. The reproducibility and 
accuracy of the proposed method were evaluated with 
intra-day and inter-day measurements. The intra-day 
precisions were obtained with extractions of five samples 
over a day, and the inter-day precisions were obtained by 
extracting samples in continuous three days. The RSDs of 
inter- and intra-day precision were below 11.8%, and the 
relative recoveries were in the range of 80.3–120.4%, indi-
cating good reproducibility and accuracy of the method 
(Additional file 1: Table S5). The limits of quantifications 
(LOQs) were calculated as the signal-to-noise ratios of 
10:1 on standards with 3 replicate injections, ranging 
from 0.05 fmol for 2MeStZ to 29.92 fmol for cZOG in 
cytokinins, from 0.18 fmol for GA1 to 27.5 fmol for GA9 
in gibberellins, 12.88 fmol for IAA, 93.29 fmol for SA and 
1.12 fmol for JA (Additional file 1: Table S4). The LOQs 
are comparable with the majority of the methods in Addi-
tional file  1: Table S1. However, the presented method 
has the advantage of being faster than most other meth-
ods and can analyze multiple phytohormones in a single 
UPLC–ESI–MS/MS run (Additional file 1: Table S1).

Fig. 1 Schematic representation of the extraction and purifica‑
tion protocol for rapid quantification of phytohormones. IS internal 
standards
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Spatiotemporal distribution of phytohormones in rice
To evaluate the spatiotemporal distribution of phy-
tohormone species in rice. Root and leaves of rice (cv. 
‘Zhenshan 97B’) plants were harvested at seedling stage 
and tillering stage. Root, senescent leaves, frag leaf and 
ear were harvested at grain-filling stage and mature 
grain stage. Then the endogenous hormone contents 
were analyzed. Among the 54 phytohormones investi-
gated, 36 were quantified, including 18 CK species, 10 
GA species, 5 JA species, IAA, ABA, and SA. The meas-
urement results are shown in Additional file 1: Table S6. 
And the examples of chromatograms of rice tissue (rice 
ear at filling stage) are shown in Fig.  3. Accumulation 
of phytohormones displayed substantial variation in 
their abundance in different tissues of rice at different 
stages, as shown in the heat map (Fig. 4a). More species 

of hormones were detected in ear of rice at grain-fill-
ing stage than in other tissues, of which most showed 
higher concentrations. These indicated that phytohor-
mones play important roles in seed development of rice 
[35].

In terms of cytokinins, cis-zeatin (cZ)-type cytokinins 
were dominant in all rice tissues investigated at all 
growth stages (Fig.  4b). The most abundant CK metab-
olite detected was cisZ-O-glucoside (cZOG) (Fig.  4a), 
being consistent with the previous reports [8, 36]. Glu-
cosides were the major form of accumulated cytokinins 
in all tissues investigated, which are inactive and are 
thought to play a role in homeostasis of the hormones 
[1]. To better explain the dynamic change of endogenous 
levels of phytohormone species in rice, a metabolic path-
way was shown in Fig. 5. In root, DZR was only detected 

Fig. 2 The MRM chromatograms of 54 phytohormones analyzed by UPLC–ESI–MS/MS. a Peak 1–54; b peak 1–7; c peak 22–27; d peak 38–42; 1, 
tZ7G; 2, tZ; 3, DZ; 4, cZOG; 5, DZ7G; 6, DZOG; 7, cZ; 8, DZ9G; 9, tZ9G; 10, cZ9G; 11, iP7G; 12, iP; 13, DZR; 14, tZR; 15, GA8; 16, cZR; 17, GA29; 18, iP9G; 19, 
12OHJA; 20, GA23; 21, SA; 22, 2CltZ; 23, GA3; 24, iPR; 25, 2MeStZ; 26, 2MeScZ; 27, GA1; 28, IAA; 29, GA6; 30, 2MeStZR; 31, 2MeStZR; 32, ABA; 33, GA13; 34, 
GA5; 35, GA19; 36, GA20; 37, GA44; 38, JA; 39, IBA; 40, GA34; 41, 2MeSiP; 42, GA51; 43, GA53; 44, 2MeSiPR; 45, GA7; 46, GA4; 47, GA24; 48, JA‑leu; 49, JA‑phe; 
50, GA15; 51, GA9; 52, 2BSiP; 53, GA12; 54, OPDA. The full names and abbreviations of the phytohormones can be found in “Chemicals and reagents” 
section
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at tillering stage. Contents of iP9G increased as the plants 
grown up. tZ9G, cZ9G and DZ9G increased from seed-
ling stage to filling stage, but declined at mature grain 
stage. In frag leaf, cytokinin precursors such as DZR 
and cZR accumulated in frag leaf at mature grain stage. 
However, glucosides decreased in frag leaf when the 
rice grown mature, except for tZ9G and cZOG. For ear, 
almost all the cytokinins investigated decreased in the 
mature ear, except for DZ.

As for gibberellins, distinct tissue-specific accumula-
tion patterns were observed. GA7, GA51 and GA34 were 
mainly accumulated in ear. Bioactive GA4 was detected 
in most of the tissues investigated except for senescent 
leaves at filling stage and tissues at mature grain stage. 
GA7 was only detected in ear of rice at filling stage. For 
root, GA precursor GA53 and downstream GA51 accumu-
lated in root at mature grain stage. Bioactive GA4 showed 
significant reduction in root when the rice grown mature. 

Fig. 3 The chromatograms of detected phytohormones in rice ear at grain‑filling stage
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Fig. 4 Spatiotemporal distribution of phytohormones in rice. a Heat map of spatiotemporal distribution of phytohormones. Red and blue colors 
indicate higher and lower concentrations, respectively. The color scale is shown at the right. Phytohormone species whose concentrations were 
under the quantification limit in all organs are not shown in the heat map. The value in each block is the concentration (average value, n = 3) as 
ng g−1 FW. ND not detected under the quantification limit. See Additional file 1: Table S6 for original data of measurement results. b Total amount of 
cytokinins (Total CK), cZ‑type cytokinins (Total cZ‑CK), cytokinin glucosides (Total gluc), and gibberellins (Total GAs) in the results of A are shown as 
ng g−1 FW. The proportions of cZ‑type cytokinins [(%) cZ‑CK] and cytokinin glucosides [(%) Gluc] are indicated as percentage values
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Fig. 5 Endogenous levels of cytokinins, gibberellins and jasmonates in rice tissues at seedling stage, tillering stage, grain‑filling stage and mature 
grain stage. The amounts of the hormones are shown as histograms with the SD (n = 3). The y-axis is concentration as ng g−1 FW. The x-axis repre‑
sents the four growth stages. The details of each metabolic pathway are described by Hirano et al. [9]
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For frag leaf, GA precursor GA53 and downstream GA8 
accumulated at mature grain stage. For ear, GA precur-
sor GA53 accumulated in mature ear, while the down-
stream GAs decreased, including the bioactive GA4 and 
GA7, and the deactivated GA8. GA19 accumulated in ear 
at grain-filing stage, but decreased to a very low level 
in mature ear, being consistent with the result Suzuki 
reported [37]. The decrease in GA19 content at mature 
grain stage may indicate vigorous consumption of GA19, 
which acts as a pool GA in the biosynthetic pathway to 
GA7, GA51, GA34 and GA8, which highly accumulated in 
ear at grain-filing stage.

The rice tissues also contained large amounts of 
ABA, IAA, OPDA, JA and SA. ABA showed higher 
concentrations in leaf than in root at seedling stage 
and tillering stage, and the content kept steady. From 
grain-filling stage to mature grain stage, ABA increased 
in senescent leaves, but did not change in the other 
tissues. IAA showed the lowest accumulation in root. 
However, an extremely high accumulation in ear was 
observed. The high accumulation of IAA in ear is con-
sistent with the highly expressed genes related to auxin 
biosynthetic and metabolic processes, polar auxin 
transport, homeostasis and auxin-mediated signal-
ing [35]. Concentration of JA declined in all tissues as 
the plants grown mature. Taken together, these results 
indicate that our analysis could show the spatiotempo-
ral distribution pattern of the phytohormones in rice, 
and that the phytohormones are differentially distrib-
uted in rice tissues at different growth stages. However, 
for the further understanding of phytohormone func-
tion, some important clues obtained by transcriptome 
and other omics are needed.

Conclusions
In this study, we have developed a rapid one-step method 
for the simultaneous analysis of six groups of phytohor-
mones, including cytokinins, auxins, salicylic acid, jas-
monates, abscisic acid and gibberellins in a single run, using 
UPLC–ESI–MS/MS. The proposed method was success-
fully applied to investigate spatiotemporal distribution of 
multiple phytohormones in rice. The spatiotemporal infor-
mation obtained may be helpful for better understanding 
of phytohormones functions throughout life cycle of rice 
when integrated into transcriptome and other omics data.

Methods
Chemicals and reagents
Phytohormones standards: indole-3-acetic acid (IAA), 
indole-3-butyric acid (IBA), abscisic acid (ABA), salicylic 
acid (SA), jasmonic acid (JA), 2H-jasmonic acid (2H-JA) 
Jasmonic acid-leucine (JA-Ieu), Jasmonic acid-pheny-
lalanine (JA-phe), 12-OH-jasmonic acid (12-OH-JA), 

12-oxophytodienoic acid (OPDA), gibberellins (GA1, 
GA3, GA4, GA5, GA6, GA7, GA8, GA9, GA12, GA13, GA15, 
GA19, GA20, GA23, GA24, GA29, GA34, GA44, GA51, GA53); 
trans-zeatin (tZ), cis-zeatin (cZ), transzeatin-7-glucoside 
(tZ7G), trans-zeatin-9-glucoside (tZ9G), cis-zeatin-
9-glucoside (cZ9G), cis-zeatin-O-glucoside (cZOG), 
dihydrozeatin (DZ), dihydrozeatin-7-glucoside (DZ7G), 
dihydrozeatin-9-glucoside (DZ9G), dihydrozeatin-O-
glucoside (DZOG), isopentenyladenine (iP), N6-isopen-
tenyladenine-7-glucoside (iP7G), N6-isopentenyladenine 
9-glucoside (iP9G), trans-zeatin-riboside (tZR), cis-
riboside (cZR), dihydrozeatin riboside (DZR), isopen-
tenyladenine riboside (iPR), 2-chloro-trans- zeatin 
(2CltZ), 2-methylthio-trans-zeatin (2MeStZ), 2-meth-
ylthio-cis-zeatin (2MeScZ), 2-methylthio-trans-zeatin-
riboside (2MeStZR), 2-methylthio-cis-zeatin-riboside 
(2MeScZR), 2-methylthio-N6-isopentenyladenine 
(2MeSiP), 2-methylthio-N6- isopentenyladenine ribo-
side (2MeSiPR), 2-benzylthio-N6-isopentenyladenine 
(2BSiP) and stable isotope-labeled standards: [2H2]IAA, 
[2H6]ABA, [2H4]SA, [2H2]GA1, [2H2]GA4, [2H2]GA5, 
[2H2]GA6, [2H2]GA7, [2H2]GA8, [2H2]GA9, [2H2]GA12, 
[2H2]GA15, [2H2]GA20, [2H2]GA24, [2H2]GA34, [2H2]GA44, 
[2H2]GA51, [2H2]GA53, [2H5]tZ, [15N4]cZ, [2H5]tZ7G, 
[2H5]tZ9G, [2H3]DZ, [2H5]DZ9G, [2H7]DZOG, [2H6]iP, 
[2H6]iP9G, [2H5]tZR, [2H3]DZR, [2H6]iPR were all pur-
chased from Olchemim Ltd. (Olomouc, Czech Repub-
lic). Acetonitrile (ACN, HPLC grade) was obtained from 
Tedia Co. (Fairfield, OH, USA). Ultra-pure water used 
throughout the study was purified with Milli-Q system 
(Milford, MA, USA). Formic acid (FA, 88%) was pur-
chased from Sinopharm Chemical Reagent (Shanghai, 
China). Graphitized carbon black (GCB) was purchased 
from BOSHI Biotechnology Co., Ltd (shanghai, china, 
http://www.boshibio.com.cn).

Plant materials
Rice (Oryza sativa ssp. indica cv. Zhenshan 97B) (kindly 
provided by Dr. Qian Qian from State Key Laboratory 
of Rice Biology, China National Rice Research Institute) 
plants were grown under natural field conditions during 
the rice-growing season (from June to October). Root 
and leaves were harvested at seedling stage and late-till-
ering stage. Root, senescent leaves, frag leaf and ear were 
harvested at grain-filling stage and mature grain stage. 
All the samples were harvested at 10:00–12:00 h, placed 
in liquid nitrogen immediately, and stored at −80  °C. 
Samples were taken from three different plants per line 
for three biological replicates.

Sample pretreatment
As shown in Fig.  2, plant tissues (root, leaf and ear) 
(50 mg FW) were frozen with liquid nitrogen, grounded 

http://www.boshibio.com.cn
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into powder with liquid nitrogen and then transferred 
into a 1.5-mL centrifuge tube. [2H2]IAA (1.0  ng), [2H6]
ABA (1.0 ng), 2H-JA (1.0 ng) [2H4]SA (50 ng), [2H2]GA1 
(0.5 ng), [2H2]GA4 (0.5 ng), [2H2]GA5 (0.5 ng), [2H2]GA6 
(0.5 ng), [2H2]GA7 (0.5 ng), [2H2]GA8 (0.5 ng), [2H2]GA9 
(0.5  ng), [2H2]GA12 (0.5  ng), [2H2]GA15 (0.5  ng), [2H2]
GA20 (0.5  ng), [2H2]GA24 (0.5  ng), [2H2]GA34 (0.5  ng), 
[2H2]GA44 (0.5  ng), [2H2]GA51 (0.5  ng), [2H2]GA53 
(0.5  ng), [2H5]tZ (0.1  ng), 15N4-cZ (0.1  ng), [2H5]tZ7G 
(0.1 ng), [2H5]tZ9G (0.1 ng), [2H3]DZ (0.1 ng), [2H5]DZ9G 
(0.1 ng), [2H7]DZOG (0.1 ng), [2H6]iP (0.1 ng), [2H6]iP9G 
(0.1  ng), [2H5]tZR (0.1  ng), [2H3]DZR (0.1  ng), [2H6]iPR 
(0.1 ng) mixture (in 5 μL ACN) was quickly added to the 
samples to serve as internal standards (I.S.) for the quan-
tification. Then ACN (0.5 mL) was added and the mixture 
was vortexed for 30 s. After standing at −20 °C for 12 h, 
the supernatant was collected upon centrifugation at 
10,000×g under 4 °C for 20 min. Subsequently, the super-
natant was evaporated to dryness under a mild nitrogen 
stream at 35 °C and redissolved in 0.5 mL ACN contain-
ing 80% ACN (v/v). The sample solution was added into 
a 1.5-mLvial containing 10 mg graphitized carbon black. 
The mixture was vortexed vigorously for 3  min and the 
supernatant was transported to a 1.5-mL vial followed by 
evaporating to dryness. The residues were redissolved in 
5% ACN (v/v) (50 μL) and 10 μL was injected for UPLC–
MS/MS analysis.

Instruments and analytical conditions
Analysis of phytohormones was performed on a UPLC–
ESI (+/−)–MS/MS system consisting of a AB SCIEX 
4500 triple quadrupole mass spectrometer (Foster City, 
CA, USA) with an electrospray ionization source (Turbo 
Ionspray), a Shimadzu LC-30AD.

HPLC system (Tokyo, Japan) with two 30AD pumps, a 
SIL-30AC auto sampler, a CTO-30A thermostat column 
compartment, and a DGU-20A5R degasser. Data acqui-
sition and processing were performed using AB SCIEX 
Analyst 1.6 software (Foster City, CA, USA).

The HPLC separation was performed on a on a Shim-
pack XR-ODS Ш column (75 mm × 2.0 mm i.d., 1.6 μm) 
purchased from Shimadzu (Tokyo, Japan) at 40  °C. 
A 52-min gradient of 0.1% FA (A) and ACN (B) was 
employed for the separation with a flow rate of 0.4 mL/
min. A gradient programme of 4  min 5–5% B, 6  min 
5–7% B, 10 min 7–20% B, 20 min 20–80% B, 2 min 80–5% 
and 5 min 5% B was used.

Multiple reaction monitoring (MRM) and the appro-
priate product ions were chosen to quantify phyto-
hormones (Additional file  1: Table S2). The optimized 
conditions of MRM experiments were as follows: cur-
tain gas, 40 psi; ion spray voltage, 5000 V for positive ion 
mode and −4500 V for negative ion mode; turbo heater 

temperature (TEM), 500  °C; nebulizing gas (Gas 1), 55 
psi; heated gas (Gas 2), 40 psi. Data acquisition, peak 
integration, and the calculations were performed using 
Analyst 1.6.1 software (AB Sciex).
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