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Phenomics for photosynthesis, growth 
and reflectance in Arabidopsis thaliana 
reveals circadian and long-term fluctuations 
in heritability
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Abstract 

Background: Recent advances in genome sequencing technologies have shifted the research bottleneck in plant 
sciences from genotyping to phenotyping. This shift has driven the development of phenomics, high-throughput 
non-invasive phenotyping technologies.

Results: We describe an automated high-throughput phenotyping platform, the Phenovator, capable of screening 
1440 Arabidopsis plants multiple times per day for photosynthesis, growth and spectral reflectance at eight wave-
lengths. Using this unprecedented phenotyping capacity, we have been able to detect significant genetic differences 
between Arabidopsis accessions for all traits measured, across both temporal and environmental scales. The high 
frequency of measurement allowed us to observe that heritability was not only trait specific, but for some traits was 
also time specific.

Conclusions: Such continuous real-time non-destructive phenotyping will allow detailed genetic and physiological 
investigations of the kinetics of plant homeostasis and development. The success and ultimate outcome of a breed-
ing program will depend greatly on the genetic variance which is sampled. Our observation of temporal fluctuations 
in trait heritability shows that the moment of measurement can have lasting consequences. Ultimately such phe-
nomic level technologies will provide more dynamic insights into plant physiology, and the necessary data for the 
omics revolution to reach its full potential.
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Background
Photosynthesis is the primary entry point of energy 
into the biosphere and as such provides the foundation 
for life on earth. One prominent class of photosynthetic 
organisms are plants, which are responsible for the vast 
majority of the energy and biomass influx in the terres-
trial biosphere. They are also the basis of our economy, 

providing the majority of calories necessary to sustain 
humanity. It is clear that plant photosynthesis is the key-
stone for our existence, but we know surprisingly little 
about the extent and basis of variation in this most fun-
damental of traits [14]. The overarching reason for our 
lack of knowledge about intraspecific variation in photo-
synthesis is our inability to efficiently screen large num-
bers of plants. This epistemic Rubicon must be overcome 
for our survival, as photosynthesis is the only major pro-
ductivity-related trait which has yet to be improved [30]. 
To facilitate this, high-throughput phenotyping of photo-
synthesis must be developed.
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Obtaining phenotypic data is the most time consuming 
and labour intensive step of many biological experiments 
[21]. Despite this, the detail and extent of phenotypic 
data compares poorly with the increasingly complete 
genotype data now available [13, 22, 37]. This is not only 
due to the recent advances in genomics but also due to 
the complex multidimensional nature of phenotypes [21]. 
The vast number of phenotypic states that a genotype can 
occupy can be visualised as its phenotypic space, which is 
often referred to as its phenome. In practice the phenome 
is a theoretical entity which can never be fully charac-
terised. This was recognised by Houle et al. [22] leading 
them to propose that phenomics may be understood as 
the “acquisition of high dimensional phenotypic data on 
an organism wide scale”.

The phenotype is the result of the interplay between 
genetics and developmental, environmental and stochas-
tic influences, where the intensity, frequency, order and 
interaction of these influences affect the outcome. Tradi-
tionally, due to its labour intensive nature, phenotyping 
was only feasible for a single time point on a subset of the 
traits which comprise the phenome. To reveal, however, 
the dynamic and variable nature of the phenome, requires 
numerous measurements across developmental and envi-
ronmental gradients [21]. Some phenomic (in the sense 
of Houle et al.) quality datasets for endophenotypes, i.e. 
transcriptomics, metabolomics, proteomics, ionomics, 
lipidomics, and even RNA directly undergoing transla-
tion (translatomics) have been produced [24, 25]. But as 
they rely on destructive measurements they only provide 
a snapshot of the endophenome at the time of meas-
urement. These omics datasets not only lack dynamic 
insight but they also fail in another import aspect: they 
give no information about fluxes or growth. Yet, kinetic 
phenotypes or functional states, such as growth or pho-
tosynthesis, provide the most direct and integrative 
quantification of plant performance [24]. They represent 
the combined effect of all other phenotypic levels, so the 
relevance of, for example, variation in gene expression 
can be assessed at higher organizational levels.

Both photosynthesis and plant growth are ideal traits 
to assess the functional relevance of endophenotypic 
omics datasets. Plant size reflects the integration of met-
abolic and developmental processes and is a good indi-
cator of long term performance whilst photosynthesis 
and growth rate reflect more immediate physiological 
responses [9, 12]. Growth responses are most dynamic 
at the meristematic level [26] which is not amenable to 
rapid, frequent measurement, in contrast to plant size 
and photosynthesis, which together provide an ideal phe-
notypic window into genotype performance.

To this end we set about developing a high-through-
put phenotyping platform which would allow us to 

continuously phenotype a large number of plants for 
photosynthesis and growth. This will result in phenomic 
data, though we recognise that the full characterisa-
tion of the phenome, namely all possible phenotypic 
outcomes, across all levels of organisational, develop-
mental and environmental space, is beyond our current 
capabilities. Nevertheless this is a valuable step forward 
and will give high-dimensional phenotypic data which, 
in accordance with Houle et al. [22] can be considered 
phenomics.

High intensity screening of a particular trait will allow 
for temporally detailed estimation of heritability. Broad 
sense heritability is a measure of how much of the phe-
notypic variance in a population can be attributed to 
genetic variation rather than other factors, such as a non-
uniform environment [42]. It is often used to assess the 
potential responsiveness of traits to selection, whether 
natural or artificial [28, 31]. Whilst it is well recognised 
that heritability is trait, population and environment spe-
cific, its variation with time is less well studied. If herit-
ability shows significant time dependence then this will 
be of interest to breeders and evolutionary biologists, as 
the time point at which selection occurs will be crucial in 
determining the selection response. The ability to meas-
ure traits multiple times per day for prolonged periods in 
order to better understand the time-dependency of herit-
ability was an important factor in the design of the phe-
notyping system we describe here.

System development
Design considerations
While the rationale on designing the phenotyping system 
is described here, the actual experimental conditions and 
mathematical approaches used to analyse the phenotype 
data we collected are described in the “Methods” section.

The overarching goal of the phenotyper system, which 
we named Phenovator, was accurate quantification of the 
phenotypic variation, so as to estimate the genetic varia-
tion, in natural populations of Arabidopsis thaliana, using 
photosynthesis and growth as phenotypic indicators of 
plant performance. This required that any noise, whether 
technical, environmental or otherwise, be minimized so 
that the genetic signal could be accurately assessed. This 
is particularly important when dealing with traits like 
photosynthesis, which are environmentally responsive 
and exhibit limited phenotypic diversity within a species 
[14]. Thus the plant growth environment should be well 
controlled to minimize heterogeneity of the environment 
and allow high reproducibility. Key environmental vari-
ables which have a large effect on plant performance and 
often elicit a phenotypic response, are light, water, tem-
perature and nutrient availability. To control these inputs 
the Phenovator was located in a climate-controlled 
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growth chamber and equipped with an automated water-
ing system.

To allow repeated measurements of the same plants, 
and minimize any measurement effects, the measure-
ments must be non-invasive. We therefore developed an 
image-based phenotyping platform. A balance also had 
to be struck between the extensive (range) and inten-
sive (detail) capabilities of the Phenovator. We chose to 
measure a restricted set of phenotypes that are important 
indicators for plant performance (photosynthetic activity, 
size, and colour) and to measure these with a high fre-
quency, opting for intensity of measurement. Our optical 
measurement system was based on a camera. Other cam-
era-based phenotyping systems have been developed and 
in many the plants are moved to the phenotyping equip-
ment [2, 23, 39, 40]. This has the advantage that the num-
ber of plants that can be screened is only limited by the 
growing area, but the disadvantage is that the plants are 
not assayed under growth conditions and that the rate of 
throughput is decreased. In our system we opted to move 
the camera to the plants and as the camera can be moved 
at 6 m s−1 (much faster than a plant can be safely moved) 
we can image plants with a high-frequency, but the total 
growing area that can be imaged is limited by the camera 
movement system.

Since many phenotypes show spatial heterogeneity 
(see Fig. 1 for an example), it was essential to image the 
entire above-ground part of the plant (roots are outside 
the scope of this phenotyper). Since our target species, 
A. thaliana (Arabidopsis), forms a rosette, which until 
flowering is relatively flat, this could be achieved using 

a single camera. To be able to identify and characterise 
genetic variation we needed sufficient throughput to 
screen populations suited for genetic mapping, such as 
recombinant inbred line (RIL) populations or genome 
wide association (GWA) panels. The latter populations 
usually consist of 300 or more genotypes [27] which with 
four replicates per genotype yields a minimum screening 
capacity of 1200 plants. To capture short-term changes in 
the phenotype it was decided that it should be possible to 
measure all plants within 60 min. Finally it was essential 
that the entire system was automated, with control and 
data storage outside the growth room to minimize envi-
ronmental fluctuations (particularly carbon dioxide) due 
to people entering the room.

System design
The Phenovator we designed consists of five main parts: 
a supporting frame, an ebb and flood hydroponic system, 
an XY camera movement system, a camera and a com-
puter to control camera movement, imaging and data 
storage (Fig.  2). The supporting frame was constructed 
from 100  ×  100  mm2 box-section aluminium beams 
(www.maytec.org) to support X–Y rails and the basins in 
which plants were grown. It also provides the rigid, sta-
ble camera platform necessary for imaging. To be able to 
image quickly requires a platform that is sufficiently stiff 
to eliminate vibration after the camera movement is com-
plete. The camera movement system (www.elmekanic.nl) 
is capable of speeds of 6 m s−1 (though for safety reasons 
this is currently limited to only 1 m s−1) and allows high 
reproducibility of camera positioning. We use a so-called 
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Fig. 1 Distribution of photosystem II efficiency (ΦPSII) in a phosphate deficient Arabidopsis. a False colour ΦPSII image of a phosphate deficient 
plant, the scale bar on the right shows ΦPSII values from 0 (black) to 1 (green). b Image a plotted as a histogram of pixels at specific ΦPSII values. The 
distribution is bimodal hence the mean value fails to aptly represent the plant’s phenotype
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“ebb and flood” hydroponic irrigation system to water 
and feed the plants growing in a rockwool (www.grodan.
com) substrate (Fig.  2a). Rockwool is a synthetic, rela-
tively inert, fibrous substrate which allows manipulation 
of plant nutrition regimes [18].

The growth system (Fig.  2) is comprised of two irri-
gation basins, each with their own irrigation tank and 
pump, which allows for two different irrigation and 
nutrient regimes to be applied in the same experi-
ment. Each basin has space for 720 rockwool blocks 
40 × 40 × 40 mm in size giving a total capacity of 1440 
rockwool blocks. The rockwool blocks are held 20  mm 
apart by a PVC grid that is attached to a rigid stainless 
steel grid upon which the blocks rest. The PVC grid pre-
vents any sideways movement of the rockwool blocks 
which could cause the plants to shear, and is held 15 mm 
above the stainless steel base grid by spacers. The stain-
less steel grid provides structural integrity to the rock-
wool support system and is supported 5  mm above the 
bottom of the irrigation basin. The perforations in the 
grid allow for free circulation of nutrient solution, ensur-
ing that all blocks receive irrigation for approximately the 
same amount of time. A spacing of <5 mm between the 
stainless steel base and the irrigation basin was found to 
sometimes cause problems of root death, possibly due 
to trapping of nutrient solution and anaerobiosis. On 
top of the rockwool blocks there is a black plastic non-
reflective sheet of foamed PVC, 3 mm thick (Figs. 2a, 4). 
In this sheet, 3-mm countersunk holes were drilled at 
distances of 60  mm and positioned above the centre of 
each rockwool block. All three layers are held in place 
using threaded stainless steel pins which were welded to 
the stainless steel grid. Four support studs fit into sockets 
drilled into the irrigation basin to hold this grid in a fixed 

position. All materials were tested for phytotoxicity and 
corrosion resistance, and were washed thoroughly before 
use. The black plastic cover ensures that there is no algal 
growth, restricts soil dwelling organisms such as the lar-
vae of fungus gnats (Bradysia spp.) and minimises back-
ground noise in the images, making automated image 
processing much easier.

Images are recorded using a monochrome camera 
(Pike; www.alliedvisiontec.com) mounted on the X–Y 
movement system. An eight-position filter wheel is 
mounted between the lens and the ccd chip of the cam-
era to capture images in different wavelength bands. We 
measure reflectance at 480, 532, 550, 570, 660, 700, 750 
and 790  nm with each filter having a full width at half 
maximum (FWHM) of 10  nm; these narrow spectral 
wavelength measurements allow for estimation of a range 
of plant pigments. The reflection bands at 480, 570 and 
660 nm are used to construct red, green and blue (RGB) 
colour images. Chlorophyll content (Chl) is estimated 
from reflectance (R) at 700 and 790 nm after AA Gitelson 
et al. [20] Chl = (R700−1−R790−1) × R790.

Projected leaf area (PLA) provides a good estimate of 
above ground biomass [29] and is estimated from near 
infrared (NIR) reflection at 790 nm; this wavelength was 
chosen so the plants could be measured both day and 
night without disturbing the day-night cycle. Four NIR 
light emitting diodes (LED) with a FWHM of 40 nm and 
a maximum radiant power of 1 W per LED provide the 
790 nm radiation. NIR measurements are taken every 3 h 
resulting in eight images per day.

We use chlorophyll fluorescence imaging to meas-
ure ΦPSII (the light-use efficiency of PSII electron trans-
port, also known as Fq′/Fm′, or ΔF/Fm) [3, 16, 41] 
using a variation of the method of Genty and Meyer 

Fig. 2 The Phenovator. a The set-up of the growth system. 1 Support grid for the rockwool blocks with support pins for the rockwool block spac-
ing plate and the top plate, 2 the rockwool block spacing plate to position and hold the blocks, 3 this grid with rockwool blocks in place, and 4 
the black PVC top plate. b The Phenovator system in action: 5 the imaging head carrying the camera (the red light is the saturating pulse for ΦPSII 
measurement), 6 the X–Y rails used to position the imaging head

http://www.grodan.com
http://www.grodan.com
http://www.alliedvisiontec.com
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[17]. This method has the advantage of a good signal to 
noise ratio and has proved very suitable for our imaging 
conditions in which the unfiltered background irradi-
ance is low owing to the shadowing effect of the imag-
ing system. Measurements are made by illuminating the 
plants at the growth chamber actinic light level (200 or 
550 µmol m−2  s−1) with a centre wavelength of 630 nm 
and a FWHM of 20 nm for 10 s followed by a 2 s satu-
rating pulse of 5000 µmol m−2  s−1 using LEDs attached 
to the Phenovator camera head. At the end of the 10 s of 
actinic light and prior to the saturating light, 24 images 
are taken and averaged to generate the Fs image. During 
the saturating light pulse six images are taken of which 
that with the highest signal is used for the Fm′ image. 
The LEDs are turned off after the saturating pulse and 
an additional 24 images are taken and averaged in order 
to generate a dark image to account for any background 
light from the fluorescent lamps in the growth chamber. 
A fluorescent target, applied as a rubber compound [pur-
chased from Thorlabs (www.thorlabs.de), but since with-
drawn from the market] that shows fluorescence over a 
wide range of wave lengths, is imaged at the beginning 
of each measurement sequence in order to provide a fac-
tor to correct the Fs and Fm′ measurements for the dif-
ference in light intensity used to produce the images [17]. 
The camera measurement scheme was programmed so 
that immediately neighbouring positions were skipped 
and returned to later, thus allowing time for any distur-
bance of adjacent plants by either an increase or decrease 
of their irradiance to dissipate. Thus the Phenovator com-
prises only four moving parts, the X movement system, 
the Y movement system (these both comprise of motors, 
drive belts and bearings), the filter wheel and the cam-
era focus. This simplicity is a strong advantage when long 
term experiments are undertaken.

Data processing
The growth platform containing the 1440 plants is 
divided up into 120 imaging positions (Additional file 1: 
Figure S1) each of which contains 12 plants (3 × 4) thus 
each measurement cycle results in 120 images each con-
taining 12 plants. Different measurement tasks (imag-
ing ΦPSII, NIR reflectance or spectral imaging) can be 
programmed in a daily schedule, which is used over the 
entire experiment. Analysis software has been developed 
to convert raw images from the imaging system to images 
of physiological parameters (e.g. ΦPSII) or biochemical 
composition (e.g. chlorophyll content). Each image is 
matched to a table position, and the genotype planted 
at each position is provided via a comma separated 
(csv) file, thus enabling the image processing software to 
group images by genotype. Based on images containing 
12 plants the analysis software (available upon request) 

calculates per replicate the parameters for each genotype. 
Each measurement protocol (e.g. measurement of ΦPSII) 
produces its own parameters, which are calculated from 
a selected area within the image using a mask derived 
from the desired plant. A grid of vertical and horizontal 
reference lines (shown in Additional file 1: Figure S1) is 
set by the user and provide the coordinates around which 
a box is drawn to select individual plants. A greyscale 
threshold (or mask), set by the user, is used to distinguish 
the plant from the background within this box. Twelve 
areas are defined and used to obtain a specific plant from 
the image. Only the pixels within the mask are used to 
estimate the phenotypic parameters.

All images (raw data and derived data) are stored, and 
the values of each phenotype are calculated per pixel. 
Both the pixel values and the averages over images are 
available to output in csv format. The spatial distribu-
tion of pixel data within any stored image can be shown 
(Fig. 1; Additional file 1: Figure S1). Since our plants were 
grown for only 4  weeks under non-stressful conditions 
there was no spatial variation in any parameter so we will 
not discuss this further.

Results
System uniformity
The (spatial) uniformity and (temporal) reproducibility 
of the system were assessed by estimating the magni-
tude of several design factors using a mixed model (see 
“Methods” section; Additional file 2: Appendix S1 for an 
overview of the experiments), which included random 
effects for genotype, experiment, basin, and table posi-
tion (Additional file  3: Appendix S2; Additional file  4: 
Data S1, Additional file  5: Data S2). Using this model, 
genotypic means were calculated as the best linear unbi-
ased estimators (BLUEs) for genotype. Spatial variability 
was modelled by row (x) and column (y) effects, as well 
as within image rows xwithin and columns ywithin. While 
x and y modelled the coordinates across the whole plat-
form, xwithin and ywithin modelled the spatial effects within 
images of 12 plants (3  ×  4). In addition to the main 
effects, second and third order interactions between 
design factors were included. A more detailed descrip-
tion of all design factors is given in Additional file  3: 
Appendix S2.

For all traits and time points there is considerable 
genetic variation: the variance component for geno-
type is of a similar order of magnitude as the residual 
error variance, which is consistent with the heritabil-
ity estimates found below. Although the main effect of 
experiment was substantial, the genotype by experiment 
interaction was negligible for almost all traits. Only for 
the spectral measurements at 700 and 750 nm the geno-
type by experiment interaction was larger, but still small 

http://www.thorlabs.de
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compared to the main genotypic variance (Additional 
file 4: Data S1, Additional file 5: Data S2). The phenotypic 
ranking of the genotypes can therefore be expected to 
be consistent across experiments. For ΦPSII and spectral 
measurements, the position within the image showed a 
considerable main effect which is likely due to light gradi-
ents in the camera head. This effect of position within the 
image showed no interaction with genotype (Additional 
file 4: Data S1, Additional file 5: Data S2) and thus could 
be corrected for. In a few cases, there was some interac-
tion between experiment and within image position, but 
never with genotype. Table position and the x and y coor-
dinate across the whole platform showed a small main 
effect for some of the spectral measurements. Neverthe-
less, the very low variances of the interactions between 
genotype, experiment and the design-effects indicate that 
we can combine data from different experiments, allow-
ing phenotyping of potentially thousands of genotypes.

Phenotypic variation
The Phenovator has three main imaging protocols in rou-
tine use (Fig. 3). The first is used to measure photosyn-
thetic efficiency via chlorophyll fluorescence (ΦPSII), the 
second is used to measure pigment content via spectral 
imaging and the third measures PLA via NIR imaging.

Figure  4a, b shows the total variation for ΦPSII for 20 
genotypes grown at 200 and 550  µmol  m−2  s−1 light 
intensity. The two different light intensities were chosen 
both to test the flexibility of the system and to assess the 
response of the genotypes to these different conditions. 
ΦPSII is influenced by both the light intensity and the 
genetic background of the plant measured. In addition 
to these differences, the high resolution measurements 
allow the observation of both a daily fluctuation in ΦPSII 
as well as a gradual upward trend through time at the 
higher light intensity.

The two genotypes with the lowest ΦPSII are Ely, an 
atrazine resistant accession known to have a low light-use 
efficiency for PSII electron transport [11], and RIL BC354 
from the Bur-0 × Col-0 population [38], which is known 
to carry a mutant version of the PDE237 gene affecting 
photosynthesis [43]. However, even without these unu-
sual genotypes there is substantial variation for ΦPSII. The 
variation from approx. 0.62 to 0.72 at 200 µmol m−2 s−1 
and 0.54 to 0.63 at 550  µmol  m−2  s−1 is about 12  % 
(assuming an upper limit of 0.8 for ΦPSII) for normal nat-
ural accessions, extending to almost 40 % when the lines 
with unusually low light-use efficiency are included.

The chlorophyll reflectance index (Fig.  4c, d) is a lin-
ear measure of chlorophyll content and, as expected 
[1], decreases as the irradiance is increased from 200 to 
550 µmol  m−2  s−1. The phenotypic variation in spectral 
reflectance at each wavelength can be observed, with an 
increase in light intensity having opposite effects on dif-
ferent wavelengths (Additional file 6: Figure S2). PLA can 
be measured at short intervals, allowing the construc-
tion of growth curves (Fig.  4e, f ). Both genetic back-
ground and light intensity have a large effect on growth 
rates. Another interesting phenomenon is the undulat-
ing nature of the curves due to leaf movement. The per-
centage difference between images at neighbouring time 
points shows the movement more clearly (Fig. 4g, h). The 
plant growth and leaf movement phenotypes are easily 
revealed and analysed because of the high imaging fre-
quency. The fluctuation in PLA due to leaf movement can 
result in negative apparent growth rates, so we smoothed 
the curves before estimating growth rates (Fig. 5).

Genetic variation
The heritability of a trait is a measure of the proportion 
of phenotypic variance explained by genetic effects [42]. 
Figure  6a shows the heritability through time for ΦPSII. 
Addition of the photosynthetic extremes greatly inflates 
the genotypic variance which results in very high esti-
mates of heritability. The heritability of ΦPSII also shows 
a slight but recurrent daily rise, but is not affected by 
the difference in light intensity. The heritability of chlo-
rophyll reflectance index and PLA show more gradual 

Fig. 3 Examples of images generated by the Phenovator. The first 
column shows false colour images of photosystem II efficiency (ΦPSII) 
running from 0 (black) to 1 (green). The second column shows the 
red–green–blue (RGB) output of the spectral measurements. The 
third column shows the images generated by near infrared imaging 
(NIR) at 790 nm. The rows correspond to four different genotypes, 
accessions Bur-0, Col-0, Can-0 and Ely. Ely is atrazine resistant, hence 
the much lower ΦPSII
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Fig. 4 Phenotypic diversity in twenty Arabidopsis genotypes grown at 200 µmol m−2 s−1 light intensity (a, c, e, g), and 550 µmol m−2 s−1 light 
intensity (b, d, f, h). Graphs (a, b) shows ΦPSII through time; c, d shows chlorophyll reflectance index; e, f shows projected leaf area (PLA). Finally, g, 
h shows percentage change in PLA every 3 h. All data points are genotypic means (BLUEs), combining observations on replicates from different 
experiments into one representative value for each genotype at each time point. Six genotypes, An-2 (yellow circles), BC354 (purple circles), Bur-0 
(green squares), Col-0 (black triangles), Ely (red circles) and Ts-1 (blue squares) are indicated in colour. Error bars have been excluded for clarity, the 
significance of between genotype differences is apparent from the heritability estimates in Fig. 6
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changes through time and are different depending of 
the light intensity (Fig. 6b, c). Heritability of percentage 
change in PLA on the other hand is much more dynamic, 
with values shifting from 0.04 to 0.83 in the course of 6 h 
(Fig. 6d), emphasizing the importance of frequent meas-
urements. In general the heritability was slightly lower at 
higher light intensity, probably due to reduced overall leaf 
movement (Fig. 4g, h). The most pronounced fluctuation 
is between day and night with heritability being much 
higher in the night than during the day. For spectral 
reflectance and growth curve traits the heritability also 
shows variation through time but in a less dynamic fash-
ion, shifting over the course of several days (Additional 
file 7: Figure S4; Additional file 8: Figure S5).

Discussion
Uniformity and reproducibility
Uniformity and reproducibility of the Phenovator is 
essential if it is to be of any use. Although some design 
factors had a considerable main effect on the measure-
ment (see Additional file  4: Data S1, Additional file  5: 
Data S2), the interaction of these design factors with gen-
otype was very small and can be corrected for. The effect 
of the position within the image can be attributed to light 
gradients in the camera head, while the effect of experi-
ment may be due to small accumulated differences which 
are collectively significant but individually minor [32]. 
The correction for design factors is achieved through the 

calculation of BLUEs for each genotype (Fig. 4). The abil-
ity to correct design factors greatly increased the signal-
to-noise ratio of the Phenovator, with signal being the 
genotypic effect and noise being unexplained phenotypic 
variation. This will be important when screening genetic 
mapping populations, as a larger contribution of the gen-
otypic effect to the signal will increase the heritability of 
the measured trait. Finally, the estimation of the effect of 
experiment and its negligible interaction with genotype 
or other design factors allowed the combination of data 
from different experiments, greatly increasing the effec-
tive capacity of the system and the power of our statisti-
cal analysis.

Phenomic data
The only comparable system measuring photosynthetic 
and growth parameters is the GROWSCREEN FLUORO 
[23], which can phenotype up to 60 plants h−1 for growth 
and dark-adapted (maximum) PSII efficiency (Fv/Fm). 
Our system can measure the PLA of 1440 plants in 
20  min, and their light-adapted PSII efficiency, or oper-
ating efficiency (ΦPSII, Fq′/Fm′) [3], in less than an hour. 
The operating efficiency of ΦPSII directly relates to the 
rate of carbon fixation and ultimately growth and thus is 
physiologically more relevant than Fv/Fm when assess-
ing genotype performance in a range of conditions [16]. 
Using measurements of ΦPSII we were able to determine 
differences in the rate of photosynthesis and estimate 
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the genetic contribution to these differences for 20 geno-
types of Arabidopsis grown at two light levels (Figs.  4a, 
b, 6). Of interest is the daily rise in ΦPSII for all genotypes 
at 550  µmol  m−2  s−1 with the exception of RIL BC354, 
which shows a daily decline in ΦPSII. The mutant allele of 
PDE237 (At4g30720), normally encoding an oxidoreduc-
tase/electron carrier residing in the chloroplast stroma 
[43], probably affects ΦPSII due to accumulated PSII dam-
age during the day.

Using NIR light allowed us to measure PLA throughout 
the day and night without disturbing the photoperiod. 
Since one NIR measurement of all 1440 plants takes only 
20 min we could measure all plants 72 times per day. This 
frequency exceeds that required to capture growth or leaf 
movement in most cases, but it could be valuable to cap-
ture rapid responses such as those induced upon water 
stress or disease infection. For measurements of growth 
or leaf movement under non-stressed conditions, imag-
ing once every 3 h has proven to be sufficient (Figs. 4g, 
h, 5).

In addition to our priorities of measuring plant growth 
and photosynthesis we also measured the reflectance of 

individual plants at eight wavelengths of light. This made 
spectral imaging and estimating pigment content pos-
sible, which was also highly reproducible across experi-
ments and genotypes. We were able to show a decline 
in chlorophyll reflectance when the plants were grown 
under high light conditions (Fig. 4c, d) which is expected 
according to literature [1].

Heritability through time
Using the phenotypic values for all traits across all geno-
types we calculated the broad sense heritability of the 
different traits. As expected, heritability was trait spe-
cific, reflecting the genetic variation present for the trait. 
An unexpected finding was the amount this could vary 
through time. Daily fluctuations in heritability for some 
traits ranged from 0.04 to 0.83 (Fig. 6). As far as we know 
it is the first time this has been described in such detail, 
which is the consequence of imaging at such high fre-
quency. We would never have detected this if images 
were taken at single or irregular time points per day. The 
magnitude and frequency of this variation in heritability 
was much greater than expected and strongly argues for 
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high-frequency measurements. In the case of percentage 
change in PLA every 3  h, reflecting leaf angle at differ-
ent time points (Fig.  6b), the fluctuations in heritability 
show a diurnal pattern with a recurrent decline during 
the day under both light intensities. This may indicate the 
higher selection intensities present for leaf angle in light 
than in the dark, or alternatively a wider range of optima 
for leaf angle in the dark. In this case the measurement 
frequency was sufficient to capture changes in leaf move-
ment using a simple difference method (the step change 
in PLA). This is apparent as an episodic, daily event. Note 
that this simple difference method captures the change in 
PLA due to leaf movement, but not that due to growth. 
When the measurements are viewed collectively, growth 
is nonetheless apparent (Fig. 5).

Two recent studies in Arabidopsis used high-through-
put phenotyping to describe changing heritability through 
time. The first showed changes in the heritability for 
rosette compactness, which appears to increase linearly 
until the rosette has fully formed [46]. Two other traits, 
rosette area and circular area, showed fewer changes. 
The second study focused on root gravitropism [33]; after 
being reoriented by 90°, roots of seedlings were imaged 
every 2 min for 8 h. The gravitropic response also showed 
a change in heritability through time. Interestingly some 
of the QTL underlying this changing heritability were 
time specific and only detectable for short periods.

Our results show both large and dynamic fluctuations 
in heritability due to changes in the relative contribu-
tion of genetic diversity to the traits at different time 
points (Fig.  6; Additional file  7: Figure S4; Additional 
file 8: Figure S5). The implications of this dynamic vari-
ation in heritability are wide ranging. For traits with 
such strong fluctuations in heritability, the time they 
are measured at will have a considerable impact on the 
extent of variation found. For crop breeding programs 
this could result in the fixation of alleles which may not 
be optimal for trait improvement. Screening when her-
itability is low will reduce the ability to detect genetic 
variation and the response of the germplasm to selection 
is likely to be curtailed [42]. This can lead to a waste of 
resources in large-scale breeding experiments. Aware-
ness of the fluctuations in heritability can also be used 
to inform the breeder when the variation in phenotypes 
is most relevant. As shown by Moore et  al. [33] the 
genetic loci responsible for the changing heritability can 
change through time. If fixation of a specific locus or set 
of loci is required, then identification of the time when 
they contribute most to phenotypic variance will result 
in more targeted breeding, and again, greater efficiency. 

Awareness of the extent and time dependency of vari-
ation in heritability will thus maximise the return on 
investment in trait selection [4].

From an ecological and evolutionary perspective, 
stronger selection often results in reduced heritability 
[34], thus if the intensity of selection varies with devel-
opmental time, traits which contribute to fitness when 
selection is greatest are likely to show a reduction in 
heritability. While this will require further validation it 
illustrates the value of high-throughput phenotyping for 
generating insights into the genetic architecture of traits 
and the uses of such insights in the fields of breeding and 
evolutionary ecology.

Conclusion: where next?
The objective of our work has been to develop a high 
throughput phenotyping platform for photosynthesis 
(ΦPSII) and growth. The rationale behind this is that phe-
notyping advances are essential for further rapid progress 
in plant genetics and breeding [15, 22, 37]. The choice 
of photosynthesis and growth was key, as they are both 
important traits with a complex polygenic architecture, 
and reliable high throughput phenotyping methods are 
needed if we are to mine natural variation or induced 
mutant libraries for these traits. Photosynthesis is of 
particular importance as it is the only major physiologi-
cal trait not to have been directly bred for, and thus rep-
resents uncharted territory within which there may be 
considerable scope for crop improvement [14, 30]. In 
nature photosynthesis has been shaped by selection in 
environments where many resources are limited but the 
supply of fixed carbon is not usually a limiting factor for 
growth [26], while in agriculture, resources are more 
abundant and the supply of fixed carbon is often limit-
ing [35]. Adaptations which evolved to increase survival 
in the wild, but reduce yield in an agricultural context, 
may be selectively removed [8]. For any such breeding 
program to be a success, there needs to be appropri-
ate phenotyping [6]. We have proved this is possible for 
Arabidopsis, though the system we describe would be 
suitable for any species which forms a flat rosette and for 
seedlings of most other species. Besides their importance 
for crop improvement, high throughput phenotypers are 
essential for quantitative genetic studies such as QTL or 
GWA mapping. High throughput screening will aid for-
ward genetics approaches for the identification of QTL 
and the genes responsible for the phenotypic differences 
in a population [37, 40]. This is especially relevant when 
looking at natural accessions as such differences may rep-
resent adaptive alleles increasing fitness under specific 
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environmental conditions [40]. Identification of such 
alleles is of interest for evolutionary biology and ecology, 
and to plant breeding as a source of genetic adaptations, 
which can be used to tailor crop varieties to specific 
conditions.

The stability and design of the system allowed the com-
bination of data from multiple experiments, increasing 
the effective capacity beyond the 1440 plants which can 
fit in a single screen. The design is such that a range of 
environmental variables, such as temperature, humidity 
and nutrient availability, can be controlled both across 
and during experiments. To illustrate this flexibility we 
conducted one experiment at a higher light intensity. 
Such variation in the growth environment can be used 
to uncover hidden genetic variation not expressed under 
control conditions and identify genes important for adap-
tation to environmental fluctuations [19].

Phenomic data is also essential for the advance of the 
omics revolution. To put all the current omics technolo-
gies into context, whole plant phenotyping of morpho-
logical and physiological traits is necessary. Without 
such phenomic data the relevance of variation in gene 
expression, metabolite or protein abundance to plant 
performance is much more difficult to assess. The inte-
gration of all levels of omics data from gene expression 
to growth rate will allow a systems biology approach to 
be undertaken which should greatly further our under-
standing of plant biology [7, 24, 45]. Our data show how 
informative phenomics data can be, revealing, for exam-
ple, how a basic genetic parameter such as heritability 
can vary through time. This insight is a direct result of 
the expanded throughput, and particularly, intensity of 
measurements. The level of accuracy and throughput 
of our system shows it to be ideally suited for screening 
large populations of plants thus allowing future quanti-
tative genetic studies of photosynthesis, growth, and the 
response of these traits to a range of environmental per-
turbations in Arabidopsis or any rosette species, and thus 
explore a wide range of dynamic responses of plants, in 
detail, over time.

Methods
Plant material and cultivation
Unless otherwise stated all plants were grown as follows: 
seed was sown on wet filter paper and stratified for 6 days 
at 4 °C. After stratification seed was sown directly on wet 
rockwool (www.grodan.com) which had been pre-soaked 
in a nutrient solution designed for Arabidopsis (see Addi-
tional file  9: Table S1 for composition). One seed was 
sown per rockwool block (system described in “System 

design” section). The growth conditions were as follows, 
10/14 h day/night, irradiance normally 200 µmol m−2 s−1, 
and 550  µmol  m−2  s−1 in the high light experiment, 
20/18  °C day/night temperature, 70  % relative humid-
ity, and ambient CO2. Plants were irrigated daily with 
nutrient solution for 5  min. In total 57 genotypes were 
screened across four experiments, see Additional file  2: 
Appendix S1 for details of genotype identity and num-
ber of replicates. The ΦPSII estimates were compared with 
those of a MINI-PAM fluorometer (www.walz.com) to 
validate the measurements and no significant differences 
were found.

Measurement protocols
ΦPSII was measured daily, 1, 4 and 7 h into the photoperiod. 
This was considered sufficient to document any variations 
in the phenotype and allowed time for other measurements 
such as NIR, which was measured every 3 h.

Statistical analysis
Variance components
The importance of several design factors was assessed by 
fitting the following mixed model for each trait and time-
point using asreml-R [5]:

where µ is the overall mean, and G, Exp and Basin are 
the factors for respectively genotype, experiment and 
basin. The factor C represents check-genotypes that were 
not included in subsequent analyses, but included in the 
mixed model in order to better estimate the variance 
components; it has one level for each check-genotype 
and one additional level representing all other genotypes. 
All terms except µ and C are defined as random effects. 
For traits and time-points that were only present in a 
single experiment, all terms involving Exp were dropped 
from the model. Spatial variability was modelled by the 
factors x, y, TablePosition, xwithin and ywithin which rep-
resent respectively rows, columns, table (camera/image) 
position and within image rows and columns. While x 
and y model the coordinates across the whole platform, 
xwithin and ywithin model the spatial effects within images 
of 12 plants (3 ×  4). A more detailed description of all 
design factors is given in Additional file 3: Appendix S2.

(1)

Y = µ+ C + G + Exp+ Basin+ x + y+ TablePosition

+ xwithin + ywithin + G × Exp+ Exp

×
(

Basin+ x + y+ TablePosition+ xwithin + ywithin
)

+ Exp× Basin× G + Exp× G ×
(

xwithin + ywithin
)

+ R(Error)

http://www.grodan.com
http://www.walz.com
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Genotypic means
Genotypic means used in Fig.  4 were calculated as the 
best linear unbiased estimators (BLUEs) for genotype, 
using a mixed model identical to Eq.  (1) but with geno-
type as fixed effect.

Heritability estimates
Defining and estimating heritability in the context of a 
mixed model as defined by Eq.  (1) is known to be diffi-
cult, since not only the residual error contributes to the 
environmental variance (the generalized heritability pro-
posed in Oakey et al. [36] concerns line heritability and 
not the (plot level) heritability σ 2

G/(σ
2
G + σ 2

E ), which is 
of interest here). To obtain more interpretable and com-
monly used heritability estimates we therefore performed 
classical analysis of variance (ANOVA) for the linear 
model with (fixed) effects for genotype, basin nested 
within experiment, and within image xwithin and ywithin 
coordinates. This included the most important main 
effects identified by the mixed model analysis described 
above; the fact that the interactions of design factors with 
genotype were small, justifies the effects being fixed here. 
The genetic and environmental variance were estimated 
by respectively (MS(G)−MS(E))/r̄ and MS(E), where 
MS(G) and MS(E) are the mean sums of squares for gen-
otype and residual error [28, 31]. Broad sense heritability 
was then estimated by the ratio of estimated genetic vari-
ance over the sum of estimated genetic and environmen-
tal variance. To facilitate direct comparison, heritability 
was estimated using 20 genotypes which were screened 
under both light conditions (see Additional file 2: Appen-
dix S1 for details on the genotypes used).

Growth curve characterisation
PLA was measured throughout each experiment from 
NIR images and the masks generated from the ΦPSII 
images, a total of 11 images per day. In order to summa-
rize these data and estimate growth rates from repeated 
plant-size measurements, a flexible curve was fitted to 
the data for each plant. We used P-splines as a flexible 
semiparametric description of the curves [10]. P-splines 
are penalized B-splines resulting in smooth piece-
wise polynomial curves. For the implementation in the 
context of this paper we used the R package mgcv [44] 
with the function gam with its option for P-splines. Fit-
ted curves and addition growth parameters are plotted 
in Fig.  5 and Additional file  10: Figure S3. The (empiri-
cal) slope at all time points is calculated directly from 
the fitted values of the curve. Relative growth rates can 
be calculated based on the raw data series. However, for 
fluctuating time series growth rates are more reliable 
when a smooth curve is base of their calculation (Addi-
tional file 10: Figure S3).

Additional files

Additional file 1: Figure S1. Print screen showing analysis software. The 
top left panel shows all 120 imaging positions in green with the positions 
of the four replicates highlighted in yellow. These images of 12 plants 
are shown in the top row of pictures headed Rep A to Rep D. The plant 
which corresponds to the genotype being analysed is surrounded by a 
red box in each image. This plant is cut from the image using a mask level 
set in the control panel which is shown at the bottom of the image. The 
resulting image is thing shown by the middle row of pictures. Note this 
shows a pixel map of ΦPSII distribution. This pixel map is then plotted as a 
histogram for each image in the last row of pictures.

Additional file 2: Appendix S1. Overview of experiments conducted 
and genotypes used. A list of aliases and geographical origins is also 
included as well as the number of replicates sown and the experiments 
each genotype was included in.

Additional file 3: Appendix S2. Description of design factors 
described in Data S1 and Data S2, calculated across three experiments at 
200 µmol m-2 s-1 and across a single experiment at 550 µmol m-2 s-1. See 
Appendix S1 for further details on experiments and number of replicates 
used.

Additional file 4: Data S1. Variances of all design factors and interac-
tions for each trait at 200 µmol m-2 s-1. Separate excel sheets correspond 
to different traits measured. Raw data and graphs of variance components 
through time are shown on each excel sheet.

Additional file 5: Data S2. Variances of all design factors and interac-
tions for each trait at 550 µmol m-2 s-1. Separate excel sheets correspond 
to different traits measured. Raw data and graphs of variance components 
through time are shown on each excel sheet.

Additional file 6: Figure S2. Phenotypic variation in spectral reflectance 
at eight wavelengths. Phenotypic diversity in twenty Arabidopsis geno-
types grown at 200 μmol m-2 s-1 light intensity (a, c, e, g, i, k, m, o), and 
550 μmol m-2 s-1 light intensity (b, d, f, h, j, l, n, p). Wavelength assessed 
is indicated on the y axis. All data points are genotypic means (BLUEs), 
combining observations on replicates from different experiments into one 
representative value for each genotype at each time point. Six genotypes, 
An-2 (yellow circles), BC354 (purple circles), Bur-0 (green squares), Col-0 
(black triangles), Ely (red circles) and Ts-1 (blue squares) are indicated 
in colour. Error bars have been excluded for clarity, the significance of 
between genotype differences is apparent from the heritability estimates 
in Figure S4.

Additional file 7: Figure S4. Time course of Heritability for spectral 
reflectance at eight wavelengths. (a) 480 nm, (b) 532 nm, (c) 550 nm, (d) 
570 nm, (e) 660 nm, (f )700 nm, (g) 750 nm, and (h) 790 nm. 200 μmol m-2 
s-1 (blue) and 550 μmol m-2 s-1 (red), white and grey bars indicate the day 
night cycle. Error bars are 95% confidence intervals.

Additional file 8: Figure S5. Time course of heritability of growth 
curve parameters for plants grown at 200 µmol m-2 s-1 light intensity. (a) 
Projected leaf area (PLA) from near infrared (NIR) measurements. (b) Data 
from (a) fitted to a curve. (c) The empirical slope of the growth curve and 
(d) the relative growth rate. White and grey bars indicate the day/night 
cycle. Error bars are 95% confidence intervals.

Additional file 9: Table S1. Nutrient solution composition.

Additional file 10: Figure S3. Phenotypic variation in growth curve 
parameters. Phenotypic diversity in twenty Arabidopsis genotypes grown 
at 200 μmol m-2 s-1 light intensity. (a) Projected leaf area (PLA) from near 
infrared (NIR) measurements. (b) Data from (a) fitted to a curve. (c) The 
empirical slope of the growth curve and (d) the relative growth rate. All 
data points are genotypic means (BLUEs), combining observations on 
replicates from different experiments into one representative value for 
each genotype at each time point. Six genotypes, An-2 (yellow circles), 
BC354 (purple circles), Bur-0 (green squares), Col-0 (black triangles), Ely 
(red circles) and Ts-1 (blue squares) are indicated in colour. Error bars have 
been excluded for clarity, the significance of between genotype differ-
ences is apparent from the heritability estimates in Figure S5.
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