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Abstract

Background: Flowering (spikelet anthesis) is one of the most important phenotypic characteristics of paddy rice,
and researchers expend efforts to observe flowering timing. Observing flowering is very time-consuming and
labor-intensive, because it is still visually performed by humans. An image-based method that automatically detects
the flowering of paddy rice is highly desirable. However, varying illumination, diversity of appearance of the
flowering parts of the panicles, shape deformation, partial occlusion, and complex background make the development
of such a method challenging.

Results: We developed a method for detecting flowering panicles of rice in RGB images using scale-invariant feature
transform descriptors, bag of visual words, and a machine learning method, support vector machine. Applying the
method to time-series images, we estimated the number of flowering panicles and the diurnal peak of flowering on
each day. The method accurately detected the flowering parts of panicles during the flowering period and quantified
the daily and diurnal flowering pattern.

Conclusions: A powerful method for automatically detecting flowering panicles of paddy rice in time-series RGB
images taken under natural field conditions is described. The method can automatically count flowering panicles. In
application to time-series images, the proposed method can well quantify the daily amount and the diurnal changes
of flowering during the flowering period and identify daily peaks of flowering.

Keywords: Time-series RGB image, SIFT, BoVWs, SVM
Background
The dynamics of flowering is an important trait for
paddy rice and affects the maturation timing of rice
grain [1,2]. Great effort is invested in observing flo-
wering time. Diurnal variance in flowering time is also
important because heat reduces pollen fertility and pol-
lination efficiency, reducing yield and degrading grain
quality. Facing global warming, rice breeders are now
trying to find early-morning flowering lines to avoid heat
at the time of flowering [3,4]. The search for early-
morning-flowering lines requires observers to remain in
fields, for several hours daily, starting early morning.
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Machine learning and digital image processing tech-
niques are becoming readily available for field-based
agronomic applications. For example, methods for mea-
suring or estimating crop growth parameters such as
canopy coverage, leaf area index, and plant height [5-12]
and for monitoring crop growth status [13-15] have been
recently proposed. In particular, methods for extracting
the phenotypic characteristics of specific plant organs
(leaf, fruit, flower, grain, etc.) have been helpful for re-
searchers and breeders attempting to understand the
performance of crop genetic resources [16-20]. In view
of such innovative applications of image analysis for
crops, an image-based method that automatically detects
and quantifies the flowering behavior of paddy rice ap-
pears feasible.
Generally, flowering in paddy rice occurs by anther ex-

trusion between the opening and closing of the spikelet.
Active flowering generally lasts for 1–2.5 h daily during
is is an Open Access article distributed under the terms of the Creative
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Figure 1 An example of the same panicles’ appearance in one day. The daily active flowering time is short. In this example, active flowering
starts around 11:00 and lasts until anthers begin shrinking around 13:00. The red elliptic circles indicate examples of actively flowering panicles.
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the reproductive phase, and it is very sensitive to exter-
nal environmental factors such as temperature, solar
radiation, etc. [21,22]. For example in Figure 1 active
flowering is observed only in the image acquired at
around 12 PM. Moreover, because the crop grows under
natural conditions, varying illumination, diverse orienta-
tions, various appearances of panicles, shape defor-
mation by wind and rain, partial occlusion, and complex
background make image-based methods challenging.
Figure 2 shows examples of various appearances of flo-
wering panicles of rice, and Figure 3 demonstrates how
they change with growth and the external environment.
Figure 3a shows physical size and shape changes due to
growth in two panicles taken over three days. Figure 3b
and c show images taken within a 5-min interval may be
very different because of color changes under natural light
conditions and shape changes due to leaf overlapping.
In this study, we combined a local feature descriptor,

the scale-invariant feature transform (SIFT) [23], an image
representation method, the bag of visual words (BoVWs)
[24,25], and a machine learning model, the support vector
machine (SVM) [26] to overcome these difficulties, and
attempted to develop a model able to detect flowering
panicles of paddy rice in normal RGB images taken under
natural field conditions. The method is based on generic
object-recognition technology, which is still challenging in
machine vision. We evaluated the performance of the
Figure 2 Various appearances of flowering panicles.
proposed method by monitoring the diurnal/daily flower-
ing pattern and the flowering extent of paddy rice during
the flowering period. Although some methods such as the
color based method for lesquerella [27] and the spectral
reflectance based method for winter wheat [28] have been
studied to identify flowers under natural condition, no
digital image-based identification method of paddy rice
flowering has been proposed to date.

Results
We acquired two independent time series images of two
paddy rice varieties, Kinmaze and Kamenoo and pro-
vided three datasets, Dataset 1, Dataset 2 and Dataset 3
to verify the flowering identification capabilities of the
proposed method. The images were taken every 5 mi-
nutes from 8:00 to 16:00 between days 84 and 91 after
transplanting considering the flowering period of the
varieties. Dataset 1 and Dataset 3 are composed of the
original 645 and 768 full size images of Kinmaze and
Kamenoo respectively whereas Dataset 2 is composed of
the central parts of the images cropped from Dataset 1.
A total of 700 image patches sampled from 21 images of
Dataset 1 were used to train the support vector machine
(SVM) model for detecting the flowering in the pro-
posed method. The 21 images were removed from Data-
set 1 and Dataset 2 when the datasets were used for the
model verifications.



Figure 3 Changes in the appearance of identical flowering panicles. (a) Images of two identical flowering panicles taken over three
consecutive days. Physical size and shape change owing to growth; (b) Images of an identical flowering panicle. The appearance changes under
different light conditions; (c) Images of an identical flowering panicle. The appearance is changed by an overlapping leaf.
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Figures 4 and 5 show examples of the flowering detec-
tions in Dataset 1 and Dataset 2. Each small block of
violet red color shown in Figures 4b and 5b indicates a
sliding window that was assessed as a flowering part (s).
The red rectangles in Figure 5c show the regions which
surround the connected violet red blocks in Figure 5b
and they successfully detected most of the flowering
panicles. In additional, a video was provided to demon-
strate the detected result during whole experimental
period (Additional file 1), the image Datasets and demo
matlab Pcode used in this experiment also available on
our websitea. Figure 6a and b show the results of flowe-
ring detection between days 84 and 91 after transplan-
ting of Dataset 1 and Dataset 2. Because of transmission
errors of the image acquisition system for Kinmaze,
some of the images, particularly on day 86, are missing.
Green, black, and blue circles indicate the number of
blocks assigned as flowering parts of panicles (FBN), the
number of regions of connected blocks (FCBN), and the
number of visually counted flowering panicles (FPN),
respectively. The daily flowering patterns shown by FBN
and FCBN were similar to the actual number of



Figure 4 An example of flowering panicle detection of Dataset 1(variety, Kinmaze) by the method developed in this study. (a) Original
image from Dataset 1; (b) Each violet block indicates a sliding window in which part of a flowering panicle was detected.
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flowering panicles (FPN). Thus, the method quantified
well the daily amount and the diurnal changes of flower-
ing, including identifying the daily peak of flowering.
The correlation coefficients between FPN and FBN and
between FPN and FCBN were 0.80 and 0.82 respectively
for Dataset_1 whereas those for Dataset 2 were 0.81 and
0.82. FCBN was close to FPN, suggesting that FCBN can
be used to estimate the number of flowering panicles.
Dataset 2 (cropped images) was used to evaluate the in-
fluence of the marginal image distortion by the 24 mm
wide lens on the detection accuracy but the results did
not indicate any influence on the accuracy. Moreover,
the curves for FCBN and FBN for Dataset 1 were much
smoother than those for Dataset 2, indicating that the
larger images could provide more stable detections
because of the larger number of the target crops to be
detected in an image.
Figure 6 shows that the flowering number normally

reached a maximum around 12:00 on all days except day
87, when it reached a maximum around 15:00, Rice does
not start flowering under rainy conditions [21,29,30] and
it was in fact raining on the morning of day 87 (Figure 7).
We observed that the rain delayed flowering on this day.
Figure 5 An example of flowering panicle detection of Dataset 2 by t
(b) Each violet block indicates a sliding window in which part of a flowering
of connected blocks.
This result shows that the proposed method can accur-
ately detect such sensitive physiological responses of rice
by identifying flowering timing and extent.
Dataset 3 (Kamenoo) was used to verify the applicabi-

lity of the above model used for Dataset 1 and Dataset 2.
Figures 8 and 9 show the results of the flowering detec-
tion on Dataset 3. The correlation coefficients between
FPN and FBN and between FPN and FCBN were 0.64
and 0.66, respectively. Although the correlation coeffi-
cients were lower than those for Dataset 1 and Dataset
2, the detected patterns of daily and diurnal flowering of
Kamenoo were well quantified by the model which
was trained only by the images of a different variety,
Kinmaze. Note that the sliding window size used for
Dataset 3 to detect the flowering blocks was different
from that used for Dataset 1 and Dataset 2 as mentioned
in the Method section. We will discuss this point in the
Discussion section.
Using our computer system (Microsoft Windows 8 PC

with a 4-core i7 CPU and 16 GB of memory), the learning
process with 600 training image patches (300 flowering
and 300 non-flowering) takes approximately 30s. Using
only 60 training image patches (30 flowering and 30 non-
he method developed in this study. (a) Original image from Dataset 2;
panicle was detected. (c) Each red-outlined rectangle indicates a region



Figure 6 (See legend on next page.)
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(See figure on previous page.)
Figure 6 Comparison of manually and automatically determined numbers of flowering panicles of Dataset 1 and Dataset 2. FBN: the
number of the blocks which are judged to contain the flowering parts of panicles; FCBN: the number of the regions of connected blocks; FPN:
the number of visually counted flowering panicles. (a) Dataset 1 for the original full size time series images of Kinmaze; (b) Dataset 2 for the
cropped time series images of Kinmaze; The images were acquired every 5 minutes from 08:00 to 16:00 during the flowering period between
days 84 and 91 after transplanting. Note that the system sometimes failed to acquire the images, which is particularly obvious on day 86. The
failure was caused mainly by unstable network status in the field.

Guo et al. Plant Methods  (2015) 11:7 Page 6 of 14
flowering) takes only 10s. The detection process requires
approximately 480 s for each test image of Dataset 1 and
Dataset 3 (5184 × 3456 pixels), and 70s for Dataset 2
(2001 × 1301 pixels). Although parallel computing helps
us to process four images simultaneously, detection is still
computationally expensive (22 ~ 30 h for Dataset 1 and
Dataset 3, and 5 ~ 6 h for Dataset 2). We accordingly con-
ducted a preliminary test on Dataset 2 to evaluate the ef-
fect of image resolution on the accuracy of the detection,
aiming to reduce the computational cost of the method.
The original images were resized to 75% and 50% of their
original resolution and the accuracy of detection was
evaluated (Figure 10). The 75% reduction did not affect
accuracy (the correlation coefficient between FPN and
FCBN was 0.83), whereas the 50% reduction clearly de-
creased accuracy (the correlation coefficient was 0.72).
These results show that reduction of the test image reso-
lution in an appropriate range reduced computing cost
without loss of detection accuracy.

Discussion
The developed method accurately detected flowering
rice panicles in time series of RGB images taken under
natural field conditions. It was suggested to use the lar-
ger images to cover the larger number of crops, because
the detections seemed to be more stable with more
crops in a scene. The fact that the distortion of the im-
ages in the marginal parts did not influence the accuracy
of the detections supported the suggestion. Although, the
time series images in this study were acquired regardless
Figure 7 Hourly precipitation during seven consecutive flowering day
hourly precipitation from 8:00 to 16:00. Note that it was raining on the mo
of light condition which varied from time to time, the
results indicated that the proposed method was rather ro-
bust in detecting daily and diurnal flowering patterns.
However, we also observed that the detection sometimes
failed by specular reflection over panicles caused by ex-
tremely strong sunny illumination, degrading the accuracy
of the detection. At this moment, we do not have any
solution for the issue but it might be a good idea to auto-
matically remove such images with specular reflections as
outliers from frequently acquired images. To do so, we
need to develop a new algorithm to identify such specular
reflections in images.
The general versatility is required for the method to

be widely used. As the first step, we examined the
applicability of the model trained by the images of
Kinmaze to a different variety Kamenoo. The result indi-
cated that the model could quantify the daily and diurnal
patterns of the flowering of the different variety but
the correlation coefficients between FPN and FBN and
between FPN and FCBN were worse than those for
Kinmaze. We expect that many factors can cause such
degradation. One possible cause of the degradation is
the difference in the resolution of the panicle images
between two varieties, because the proposed method de-
tects the flowering depending on the spatial features of
the images and the spatial features vary with image reso-
lution. Actually, the observed plant heights of Kinmaze
and Kamenoo at the flowering stage were around
107 cm and 145 cm respectively, so that the positions
of the panicles of Kamenoo were much closer to the
s from days 84 to 91 after transplanting. Each line indicates the
rning of day 87 (green line).



Figure 8 An example of flowering panicle detection of Dataset 3 (variety, Kamenoo) by the method developed in this study. (a) Original
image from Dataset 3; (b) Each violet block indicates a window in which part of a flowering panicle was detected.
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camera lens, making the resolution of the panicle images
of Kamenoo higher. We tried to compensate this issue
by adjusting the optimal size of the sliding window to
detect the flowering for each variety in a preliminary
test. Currently, the adjustment was done ad hoc through
trial and error and we first need to develop an algorithm
to conduct automatic adjustments of the sliding window
size. In order to improve the proposed method for its
Figure 9 Comparison of manually and automatically determined num
blocks which are judged to contain the flowering parts of panicles; FCBN: t
visually counted flowering panicles. The images were acquired every 5 min
and 91 after transplanting.
general applicability in paddy rice, we also need to iden-
tify other causes of the degradation by using a wide
range of varieties.
Generic object recognition is still an important target

of pattern recognition studies and continues to be deve-
loped. For example, BoVWs count only the occurrences
of visual words based on local image features, and
ignores location and color information of each feature
bers of flowering panicles of Dataset 3. FBN: the number of the
he number of the regions of connected blocks; FPN: the number of
utes from 08:00 to 16:00 during the flowering period between days 84



Figure 10 An example of flowering detection at three different image resolutions. The resolution of the original image (2001 × 1301 pixels)
was reduced by 75% (1501 × 976) and 50% (1001 × 651) and the efficiencies of detection were compared. The detection in the 75% reduction
case (b) was almost the same as that in the original resolution (a) and the correlation coefficient between FPN and FCBN is 0.83, whereas the
missed detection in the 50% case (c) was obvious and the correlation was 0.73.

Guo et al. Plant Methods  (2015) 11:7 Page 8 of 14
that may improve the accuracy of the model. For this
reason, studies are now focusing on increasing the di-
mensions of BoVWs by adding more statistical variables
such as a vector of locally aggregated descriptors [31],
super vector coding [32], a Fisher vector [33], and a vec-
tor of locally aggregated tensors [34]. These new con-
cepts have been proposed to accurately recognize and
classify large scale images in the real world. We expect
that such concepts will contribute to the improvement
of our flowering detection method as well as the de-
velopment of other agricultural applications for high-
throughput phenotyping in future studies. Our next step
is to improve the accuracy and general versatility of the
flowering detection method. To reach this goal, we will
also need to identify the optimal quantity and quality of
the training image patches in addition to improving the
model.
In this study, a camera was fixed, targeting a single

plot. However, providing a camera for each plot is im-
practical when a number of plots are to be observed.
Therefore, we are now developing a movable camera
system, which can cover several plots only with a single
camera. We also expect to use an unmanned aerial ve-
hicle (UAV) to cover a large numbers of plots.
Though we need further improvements of the method

as discussed above, the overall results in this study
showed a high performance in detecting the flowering
panicles of rice. We expect that our method will contri-
bute to practical rice farming management as well as to
rice research. Although flowering timing is one of the
most important indicators in optimal management and
characterization of rice, it is still judged visually, requir-
ing much time. In particular, when a large number of
small plots with different flowering timings are to be ob-
served, our method can be especially useful. A typical
example is rice breeding, where a large number of plots
must be observed efficiently. We expect that the com-
bination of a movable camera system/UAV and the im-
proved version of the proposed method applicable to
paddy rice in general will dramatically ease and accele-
rate the breeding process.
Notably, the diurnal flowering timing of rice is beco-

ming important because of the trend of global warming.
The pollination of rice occurs at the timing of spikelet
anthesis and the fertility depends strongly on the air
temperature at pollination. Therefore, rice varieties flo-
wering early morning before the temperature rises are
being sought [3]. In breeding for such varieties, breeders
at present must observe many plots of candidate lines
continuously for a few hours early morning every day
during the expected flowering period. The proposed
method, which can accurately detect diurnal flowering
timing, is expected to be highly helpful in such cases.

Methods
Experimental materials and growth conditions
In this study, the japonica rice (Oryza sativa L.) varieties,
Kinmaze and Kamenoo, were used. Seeds were sown on
April 26 and transplanted on May 31, 2013 in the field at
the Institute for Sustainable Agro-ecosystem Services,
University of Tokyo (35°44′22″N, 139°32′34″E and 67 m
above the sea level). The area of the experimental field



Figure 11 The field server system used for image acquisition.

Figure 12 Cropping of the original image. The central region
of each original image of the variety Kinmaze was cropped. The
cropped region was corresponded to a field size of 30 × 45 cm that
contained three rice plants.
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was approximately 250 m2, and the planting density was
28 plants/m2. From June to September, the average
temperature, the average humidity, total rainfall, and total
solar radiation were 26.2°C, 62%, 653.0 mm, and
1980.5 MJ/m2, respectively.

Image acquisition
A Field Server system [35,36] was used to acquire the
experimental images (Figure 11). The camera module of
the system is based on a digital single-lens reflex (DSLR)
camera, the Canon EOS Kiss X5 camera, with an
EF-S18-55 mm lens (Canon Inc., Tokyo) that provides
high-quality and high-resolution (18 megapixels) image
data. The power and shutter of the camera are con-
trolled by a preprogrammed microcontroller board, the
Arduino Uno (http://arduino.cc). The captured image
data were sent to a free cloud service, Flickr (www.flickr.
com) by a wireless uploading SD card, Eye-Fi (Eye-Fi,
Inc., Mountain View) through WI-FI hotspots provided
by the Field Servers at the field site. The Agent System
[37] automatically grabs the images from the webpage of
Flickr, arranges them, and saves them into a database at
the National Agriculture and Food Research Organization
using their EXIF data.
The cameras are set to view the rice canopy from 2 m

above the ground. At this distance, the image resolution
is approximately 43 pixels/cm at the ground level and
the resolution of crop images increases according to the
crop growth. Using the system, time-series images of
two paddy varieties were acquired every 5 min from
08:00 to 16:00 between days 84 and 91 after transplan-
ting. Some of the images of the variety Kinmaze are
missing because the system failed to acquire them. The
failure was mainly due to the unstable network status in
the field and was particularly obvious on day 86. Finally,
a total of 645 images for Kinmaze (Dataset 1) and 768
images for Kamenoo (Dataset 3) were obtained. The im-
ages (5184 × 3456 pixels) corresponded to a field size of
138 cm × 98 cm and the number of the crops included
in an image was around 30. Then, we cropped the
original images of Kinmaze (Dataset 1) to the central re-
gions in order to create a new time series image dataset
named Dataset 2. The cropped image corresponded to a
field size of 30 × 45 cm that contained three rice plants.
Figure 12 shows the cropping, by which the original
image of 5184 × 3456 pixels was cropped to a central re-
gion of 2001 × 1301 pixels. We used Dataset 2 to evalu-
ate the influences of both the crop number included in
an image and the distortion of the marginal area of the
image caused by the camera lens on the accuracy of the
flowering detection, comparing with the full size image
dataset of Kinmaze (Dataset 1). To evaluate the flowering

http://arduino.cc
http://www.flickr.com
http://www.flickr.com


Figure 13 Flowchart of the proposed flowering detection method.
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detection performance by the proposed method, the num-
bers of flowering panicles in all of the acquired images
were counted visually.
Flowering panicle detection
The full process is illustrated in Figure 13 and can be
separated into two parts: training and testing. The
process comprises the following steps:
Figure 14 Some examples of training image patches. (a) Positive data wh
does not contain flowering parts of panicle (s), the training image patches we
1. Creating the training database by manually cropping
the experimental images to yield rectangular regions.
We created a database of training image patches of
two classes, the positive class (flowering panicles) and
the negative class (the background). Twenty one
images from Dataset 1 were selected to obtain
training data, considering the variation of the weather
conditions in photographing (sunny, rainy, and cloudy
conditions), the growth stage during the flowering
ich contain flowering parts of panicle (s); (b) Negative data which
re sampled from 21 images of Dataset 1.



Figure 15 An example of dense sampling and SIFT feature point description. (a) SIFT descriptors are computed at regular grid points with
a spacing of 15 pixels, as represented by the red circle; (b - e) At each point, SIFT descriptors are calculated on four different scales using four
different radii: r = 4, 6, 8, and 10 pixels. The descriptor of each scale has 16 patches, represented by the red rectangles, which are rotated to the
dominant orientation of the feature point. Each patch is described in gradient magnitudes of eight directions (red bins inside the red rectangles).
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period (initial, middle, and final flowering stages), and
the positions (with and without occlusions and
overlaps by other panicles and leaves). Finally, we
obtained 300 image patches that contained part (s) of
rice flowering panicles and 400 image patches that did
not contain any part (s) of flowering panicles. An
example of those training image patches are shown in
Figure 14. Note that the sizes of the training image
patches are not necessarily the same.

2. Extracting local feature points and descriptors of
those points from training image patches. In this
study, we used SIFT descriptors [23] and dense
sampling [38] to extract the points. In dense sampling,
regular grid points with a space of M pixels are
overlaid on an image and the SIFT descriptors are
computed at each grid point of the image (Figure 15).
In this study, we used M= 15 based on a preliminary
test and used four circular support patches with radii
r = 4, 6, 8, and 10 pixels to calculate scale-invariant
SIFT descriptors. Consequently, each point was char-
acterized by four SIFT descriptors, each of which
comprised a 128-dimensional vector (Figure 15). The
descriptor of each scale is based on a square with 16
patches [red squares in Figure 15 (b–e)]. The square is
rotated to the dominant orientation of the feature
point, and each patch in the square is described in the
gradient magnitudes of eight different directions
resulting in a total of 128 variables for each scale.

3. Generating visual words using the k-means method,
which has been reported to perform well in object-
recognition approaches [25,39]. The choice of the
initial centroid position and the number of clusters
(k) affects the resulting vocabulary in the k-means
ble 1 Relationship between the number of training images a

aining number 5 15 30

curacy(+) 0.74± 0.05 0.81± 0.04 0.8

rate(+) 0.65± 0.13 0.61± 0.12 0.5

rate(+) 0.8 ± 0.09 0.95± 0.03 0.9

ccuracy, TP rate, and TN rate, were defined as follows:
curacy ¼ TP þ TN

TP þ FP þ TN þ FN ; TPrate ¼ TP
TPþFN ; TN rate ¼ TP

FPþTN
ere TP, TN, FP, and FN represent the numbers of true positives, true negatives, false
clustering method. In this study, we predefined
k = 600 (number of visual words). We then ran
k-means several times with random initial assign-
ments of points as cluster centers, and used the
best result to select the best-performing vocabulary.
Note that these visual words do not contain
location information of points.

4. Training the SVM as a flowering detection model,
using the visual words as training data. SVM is one of
the most popular machine learning models for object
generic recognition. We used the SVM with a χ2

kernel, which is particularly powerful with data in
histogram format [40,41]. A homogeneous kernel map
was used to approximate the χ2 kernel to accelerate the
learning process. The map transforms the data into a
compact linear representation that reproduces the
desired kernel to a very good level of approximation.
This representation enables very fast linear SVM
solvers [42]. The source code is available from the
VLFeat open source library [43].

5. Verifying the performance of the generated SVM
model for detecting the flowering parts of panicles in
the test images. We used a sliding-window approach
to apply the SVM model to the test images. The con-
cept of the sliding window is to scan a whole test
image without any overlaps using a predefined win-
dow size and then decide whether or not each scan
window contains flowering parts, with reference to
the trained model. In each scan window, the distribu-
tion of the visual words by the k-means method based
on the entire set of sampling grid points where SIFT
descriptors were calculated was used as an input to
the generated SVM model. The most appropriate
nd the performance of flowering detection

50 100 300

3± 0.03 0.79± 0.03 0.73± 0.02 0.64

9± 0.09 0.49± 0.08 0.31± 0.04 0.09

9± 0.00 0.99± 0.00 1 ± 0.00 1.0

positives, and false negatives, respectively, of the confusion matrix.



Figure 16 Performance of SVM models under different numbers of training image patches. Please see Table 1 for the definition of
Accuracy, TPrate and TNrate. Considering Accuracy, TP rate and TN rate, the performance of the model is most well balanced when 30 training
image patches were used.
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sliding-window size was determined by a preliminary
test as 140 × 140 pixels for Dataset_1 and Dataset_2,
and 170 × 170 pixels for Dataset_3, given that the size
strongly affects flowering detection by the method.

The whole process was implemented using the soft-
ware package MATLAB (MathWorks Inc., Natick) on a
Microsoft Windows 8 PC with a 4-core CPU and 16 GB
memory. Correlation analysis was performed with the
statistical software package R (R Development Core
Team, 2012).
Figure 17 Relationship between numbers of training image patches a
by the correlation coefficients between visually determined numbers of flo
flowering panicles (FCBN) in each case. The performance is best when 30 t
Training data selection
Because the training image patches were manually se-
lected, there was no guarantee that all of them provided
“good” training data sets for training the flowering de-
tection model. In addition, our preliminary test showed
that the full use of the 300 positive and 400 negative
training image patches did not provide the best perform-
ance compared with the use of the smaller number.
Therefore, in lieu of using all the training image patches,
we sought to determine how to select the most appro-
priate training image patches. We evaluated the accuracy
nd flowering detection performance. Performance is represented
wering panicles (FPN) and automatically detected numbers of
raining image patches were used.
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of flowering detection using a different number of trai-
ning image patches, for both positive and negative data
with the aim of determining the optimal number, as fol-
lows: 5, 15, 30, 50, 100, and 300 (full use). Each set of
images was randomly selected from the training image
database with 10 replications, except when all 300 im-
ages were used. Then, using each of the training data
sets, the SVM model was trained and its accuracy for
flowering detection in the training image patches was
evaluated. To evaluate the performance of the detection,
three indices, accuracy, TP rate, and TN rate, were used.
They are defined as follows:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

TP rate ¼ TP
TP þ FN

TN rate ¼ TN
FP þ TN

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false negatives
of the confusion matrix, respectively. Accuracy measures
the model detection ability for both flowering and back-
ground classes over the whole test data. The true positive
rate, TP rate, measures the proportion of detected flowering
images in the flowering class, whereas the true negative
rate, TN rate, measures the detected background images in
the background class. The means and standard deviations
of the values from the 10 replications under different train-
ing image numbers are shown in Table 1 and Figure 16.
The result shows that the performance of the model as
measured by accuracy, TP rate, and TN rate is most well
balanced with the training image number 30.
To verify the performance of flowering panicle detec-

tion by each model, we calculated the correlation coeffi-
cient (R) between visually determined flowering panicle
numbers and numbers of blocks detected that contain
flowering panicles (Figure 17). The R values increased
with the number of training image patches until it
reached 30, and then declined rapidly as the number in-
creased. Thus, we again concluded that the training
image number of 30 was optimal for flowering detection
and used the training data set of 30 images that per-
formed best among the 10 replicates in this study.
We originally expected that the full set of training

image patches would perform best, but a much smaller
number actually demonstrated the best performance in
flowering detection. We can expect that the complexity
of the background class generates widely varying SIFT
descriptors within the class, and the more the training
data, the more variation will appear. Such a variation in
the SIFT features within a class may affect accuracy, al-
though further studies are needed to identify the reason.
Endnote
ahttp://park.itc.u-tokyo.ac.jp/nino-lab/labhome/Pheno-

typingTools/RiceFlower.html

Additional file

Additional file 1: A demo video that shows flowering panicle
detection on Dataset_1.

Abbreviation
SIFT: Scale-Invariant feature transform; BoVWs: Bag of visual words;
SVM: Support Vector Machine; DSLR: Digital Single-Lens Reflex; TP: True
positive; TN: True negative; TPrate: True positive rate; TNrate: True negative
rate; FBN: The number of the blocks which are judged to contain the
flowering parts of panicles; FCBN: The number of the regions of connected
blocks; FPN: The number of visually counted flowering panicles.
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