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Abstract

The genomic sequences of many important Triticeae crop species are hard to assemble and analyse due to their large
genome sizes, (in part) polyploid genomes and high repeat content. Recently, the draft genomes of barley and bread
wheat were reported thanks to cost-efficient and fast NGS technologies. The genome of barley is estimated to be 5 Gb
in size whereas the genome of bread wheat accounts for 17 Gb and harbours an allo-hexaploid genome. Direct
assembly of the sequence reads and access to the gene content is hampered by the repeat content. As a
consequence, novel strategies and data analysis concepts had to be developed to provide much-needed whole
genome sequence surveys and access to the gene repertoires. Here we describe some analytical strategies that now
enable structuring of massive NGS data generated and pave the way towards structured and ordered sequence data
and gene order. Specifically we report on the GenomeZipper, a synteny driven approach to order and structure NGS
survey sequences of grass genomes that lack a physical map. In addition, to access and analyse the gene repertoire of
allo-hexaploid bread wheat from the raw sequence reads, a reference-guided approach was developed utilizing
representative genes from rice, Brachypodium distachyon, sorghum and barley. Stringent sub-assembly on the reference
genes prevented collapsing of homeologous wheat genes and allowed to estimate gene retention rate and determine
gene family sizes. Genomic sequences from the wheat sub-genome progenitors enabled to discriminate a large
number of sub-assemblies between the wheat A, B or D sub-genome using machine learning algorithms. Many of the
concepts outlined here can readily be applied to other complex plant and non-plant genomes.
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Introduction
The Triticeae tribe comprises some of the most economic-
ally important crops including bread wheat, barley and
rye. Bread wheat ranked third in world crop production
with 681 million tons in 2011 [1], making it an indispens-
able source for our everyday diet. Domestication history of
Triticeae dates back several thousand years. They conse-
quently have a complex genetic history [2].
The genomes of many Triticeae species including wheat

and barley appear to be extremely challenging to assemble
and analyse due to their genome size, high repeat content,
complex transposable element structure and, in part, poly-
ploid genome [3,4].
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With an estimated genome size of ~5 Gb the barley gen-
ome is significantly larger than the human genome, how-
ever exceeded by the bread wheat genome with ~17 Gb.
Bread wheat contains an allo-hexaploid genome with three
sub-genomes, namely the A, B and D sub-genome. It has
been speculated that the bread wheat genome originated
from hybridization between cultivated tetraploid emmer
wheat (AABB) and diploid goat grass (DD) about 8000 years
ago [5].
Complementing the genome size, many Triticeae ge-

nomes show a very high degree of repetitive elements
(~80% in bread wheat [6]). These repetitive stretches
can span several 100kbs and have a complex architec-
ture and composition. Consequently assembly of long
scaffolds or even whole chromosome sequences from
NGS survey sequences using current technology is still
an open problem [Review [7]]. Although synteny is pro-
nounced in grasses and in general the gene order ap-
pears to be well conserved [8], repeat and TE activities
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as well as structural rearrangements contribute to the
formation of pseudogenes, gene fragments and changes
in local gene order [4].
With the availability of economic and rapid NGS tech-

nologies whole-genome sequence surveys of many grass
genomes including a number of Triticeae species were
generated recently [9,10]. While the direct assembly of
reads into pseudo-chromosomes or scaffolds is ham-
pered by the genomes’ repetitiveness and size, the gene
inventory, gene order and chromosomal positioning of
genetic elements such as genes and markers is of high
interest not only for breeders but also helps to shed light
on the evolutionary history of the respective plants and
the Triticeae in general.
Consequently, numerous novel strategies and concepts

were developed over the last few years to order [11,12],
analyse [9] and compare complex Triticeae genomes even
in the light of the challenges and limitations described.
Here, we highlight a few of these concepts that were ap-
plied to analyse the recently published genome sequences
of barley [10] and bread wheat [9] and describe the meth-
odology used in more detail.
Many of the concepts and strategies described and

discussed here are not restricted to the Triticeae but
can be applied to other complex grass and plant ge-
nomes that have not been sequenced and analysed so
far due to their genome size and/or polyploid nature.

A strategy for the comprehensive analysis of polyploid
genomes. an ortholome approach for the analysis of
hexaploid bread wheat
The orthologous group assembly (OA) is a strategy which
aims to identify the gene repertoire of polyploid genomes
based on low- and medium coverage, long-read (454)
whole genome shotgun data. This approach was applied
for the comprehensive sequence analysis of hexaploid
bread wheat [9] and facilitated the identification of 94,000-
96,000 wheat genes. Due to a stringent assembly protocol,
rare sequence polymorphisms are sufficient in order to
maintain and distinguish distinct copies of homeologous
genes, which might be collapsed by a brute-force de novo
assembly. In contrast to traditional assembly approaches,
the orthologous group assembly focuses on the gene space
and uses conserved sequence homology to genes of closely
related plant species of smaller size and repeat content.
Briefly, orthologous genes of multiple species are grouped
and, for each gene family, one representative protein is se-
lected thereby defining an orthologous group representa-
tive (OGR). Subsequently, based on conserved sequence
homology, raw sequencing reads are associated to the
OGRs. These associations define sequence read collections
for each individual OGR. Each of these sequence bins is
independently assembled using stringent parameters that
can be estimated from in silico simulations of whole
genome sequencing experiments. The assembled gene
fragments are re-aligned and ordered along the OGR to
facilitate estimation of the gene copy number of the tar-
get genome and further simplifies downstream analysis
(Figure 1).

Definition of an orthologous gene set
In a first step, orthologous gene clusters were computed
for the reference genomes of three grass genomes
(Brachypodium distachyon [13], Sorghum bicolor [14]
and Oryza sativa [15]) originating from different grass
sub-families plus publicly- available barley full-length
cDNAs. The OrthoMCL software version 1.4 [16] was
used to calculate pairwise sequence similarities between
all input protein sequences using BLASTP [17]. Markov
clustering of the resulting similarity matrix defines the
orthologous cluster structure.
A total of 86,944 coding sequences from these four

grasses were clustered into 20,496 gene families. 9,843
clusters contained sequences from all four genomes.
In a second step, one representative gene model was se-

lected from each of the 20,496 orthologous gene clusters,
using the following strategy: 1. BLASTX [17] of all contigs
from the bread wheat LCG assembly against all grass genes
used in the OrthoMCL analysis; 2. Select the gene in each
cluster that concentrates the most distinct wheat contigs;
3. If genes pool the same number of wheat contigs, select
the one with the longest protein sequence as the represen-
tative gene model.
Genes with associated wheat contigs were identified

for all but 445 gene clusters resulting in a total of 20,051
representative gene models.

Allocating the sequencing reads to orthologous gene
representatives
The 454 sequence reads are clustered to the orthologous
gene representatives using conserved sequence similarity.
Thereby, pre-processing of the raw 454 sequencing data is
a helpful approach to reduce computational complexity.
Especially repetitive sequences, which represent up to 80%
of the grass genomes [18,19], considerably extend search
space, and thus memory as well as time requirements.
Moreover, increased gene copy numbers caused by repeti-
tive mechanisms and transposable element activity com-
plicate and hampers downstream gene family analysis. For
a fivefold whole genome shotgun dataset from hexaploid
wheat using this strategy, 77% of raw sequence data was
removed and 24 Gb out of 83 Gb of sequence kept for the
orthologous group assemblies.
Afterwards reads were aligned to the orthologous gene

representatives using BLASTX [17] and reported align-
ments filtered for minimum alignment length (minimum
of 30 amino acids (AA)) and minimum alignment identity.
Thereby, different alignment identity thresholds were



Figure 1 Schematic representation of the orthologous group assembly workflow and the protocol for the estimation of gene copy
number. Grey boxes represent the protein sequence of orthologous group representative, whereas lines connecting boxes depict exon
boundaries. Coloured boxes visualize sequencing reads and assembled sequences, respectively. The colour code groups sequences that originate
from the same genome and light colouring visualize non-coding regions. A The orthologous assembly algorithm sorts the raw sequencing reads
to corresponding orthologous gene representatives based on sequence similarity (BLASTX). Then, each sequence bin is separately assembled
using NEWBLER, an overlap graph assembler which identifies overlapping sequence reads first and then creates a consensus assembly sequence
based on the overlap graph. B For estimating the gene copy number the orthologous assembly sequences were re-aligned to the corresponding
template (BLASTX) and, thus, ordered along its protein sequence. The alignments are transferred into a position-specific hit count profile that
counts the number of distinct sub-assemblies mapped to each amino acid of the template protein. Based on the cumulative coverage
distribution of the hit-count profile, the final gene copy number is determined as the maximum number of distinct sub-assemblies covering a
defined proportion of the template gene.
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applied accounting for the different evolutionary distances
between bread wheat and the reference species used for the
orthologous group analysis. Overall, 4 million (6%) of the
wheat repeat-filtered sequencing reads passed the applied
alignment criteria, and approximately two-third (68%) of
these matched a single OGR. For the remaining 454 reads,
that map multiple representatives, only the first-best match
(FBH), were considered. Almost all (19,483) of the selected
orthologous representatives were detected by at least one
454 sequence read indicating the good representation of
the majority of wheat genes in the whole genome shotgun
sequence dataset.

Generating gene-centric “sub-assemblies” using the Newbler
overlap assembler
Sequence information and quality scores were extracted for
the 4 million aligned 454 reads from the original sequen-
cing library files. For each orthologous group, individual
assemblies were computed using the Newbler de novo as-
sembly software, which generates larger contigs based on
overlaps between reads [20]. Thereby, the assembly param-
eter specifying the minimum alignment identity (mi) to
accept overlaps between reads has to be selected with cau-
tion. On the one hand, a too relaxed mi parameter may
cause a collapse of homeologous sequence copies, but, on
the other hand, too stringent mi parameter would overesti-
mate gene copies due to sequencing errors. Two methods
applied for selection of the best mi parameter are discussed
in the following section. The final set of “sub-assembly” se-
quences was created by combining singletons (454 reads
that do not overlap with any other reads) and the assem-
bled contigs (> = 100 bp).
The assembly results are strongly dependent on the

chosen minimum alignment identity parameter. Whereas,
76% of reads were assembled into contigs applying 97%
minimum alignment identity, the number of assembled
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reads dropped to 51% applying a minimum alignment
identity of 100%, respectively (Figure 2). On the con-
trary, the number of 454 reads remaining singletons al-
most doubles between 97% and 100% mi. This fact
already indicates that small-scale adjustments of this
parameters influence the assembly results and the sub-
sequent downstream analysis. Since this parameter is
thus of critical importance in the following we discuss
two method for the selection of the minimum overlap
identity parameter in the following sections.
Estimation of gene copy number based on gene coverage
In order to estimate the gene copy number, the ortho-
logous sub-assemblies were re-aligned to the correspond-
ing template gene. The same alignment parameters used
for mapping the raw sequencing reads were applied.
Thereby, spliced alignments of sub-assemblies were add-
itionally considered and all consecutive high-scoring seg-
ment pairs (HSPs) along the template protein sequence
accepted. Using this strategy, we account stretches of non-
coding sequence regions of the sub-assemblies which span
and/or reach into introns or 5′ and 3′ UTRs. Then, the
alignments of the sub-assemblies were transferred into a
position-specific hit count profile by counting the number
of aligned sub-assemblies located at a specific amino acid
position of the template sequence. The algorithm converts
the hit count profiles into a cumulative coverage distribu-
tion. The distribution curve ranges from 1 to the max-
imum hit-count in the profile by only considering template
positions that are tagged by one or more sub-assemblies.
Based on that profile, the gene copy number is determined
as the hit count assigned to C% of the OG representatives,
whereby C is defined as the minimum fraction of the cov-
ered template. As already indicated above, the estimated
gene copy number is dependent on the assembly param-
eters. As shown in Figure 3, the more stringent the mi
parameter was chosen, the higher the estimated gene
copy number.
Figure 2 Newbler assembly statistics of 454 reads for different
minimum overlap identity parameters. Three orthologous
assemblies were performed using 97% minimum alignment identity
(mi), 99% and 100%. For each assembly, the number of 454 remaining
singletons (no significant overlap to any other 454 read), the number
of assembled 454 reads and the number of excluded 454 reads
(ultra-short reads, outlier reads, repeat reads) were counted.
Estimation of assembly parameters and evaluation of the
copy number predictions
As already shown in Figure 2 and Figure 3, the correct se-
lection of the Newbler parameter –mi, which specifies the
minimum identity in order to combine two reads during
the assembly, is a major factor affecting both the assembly
outcome and the downstream gene family analysis based
on predicted gene copy numbers. To estimate the correct
Newbler parameterisation two simulation experiments
were applied: (i) simulation of an whole-genome sequen-
cing experiment for a diploid reference genome of similar
genome size and repeat and gene composition and (ii) an
in silico generation of an hexaploid gene set with similar
sequence differences as in the homeologous genes of the
target species.

Simulation of a whole genome sequencing experiment
Established reference assemblies or complete genome se-
quences of a reference species with similar genome size
and structure can be used for the in silico simulation
reflecting the experimental setting as achieved for the tar-
get genome sequence. Thereby, genomes with different
degree of polyploidy could be used for this evaluation by
adjusting the expectation of the reference gene family size.
For the bread wheat genome analysis, the repeat masked
genome sequence of maize (ZMb73, version 5b.60; http://
www.maizegdb.org) was used and first, the “real” gene
family size (gene count) identified by OrthoMCL cluster-
ing of the 39,656 annotated maize proteins and the refer-
ence protein data sets. However, because highly similar
gene sequences, which could not be discriminated with
the applied identity cut-offs during the sequence assembly,
would artificially lead to significant underestimation of
predicted gene counts, CD-Hit [21] nucleotide similarity
Figure 3 Wheat gene copy number in dependency of the
applied assembly minimum alignment parameter.

http://www.maizegdb.org
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clustering was performed at different similarity levels
(97%, 99% and 100%, respectively) and all but one of the
redundant sequences was retained. We selected more than
15,000 OrthoMCL cluster including one or more maize
genes as well as exactly one OGR. Thus, counting the
number of grouped maize proteins provided reference
values for subsequent analysis and comparisons.
Next, the input data set for the orthologous assembly

was designed and a collection of raw 454 sequencing reads
created from the maize reference genome assembly apply-
ing with 5× genome coverage along with a uniform error
rate of 0.5% [22]. Then, the above described protocol for
the orthologous assembly was carried out with varying
minimum overlap identity between 97% mi and 100% mi,
respectively, and the gene copy number was predicted for
the orthologous assembly.

Simulation of a polyploidy gene catalogue
Complementary to the above described evaluation method,
a second evaluation was implemented, which in addition
to the gene count simulates the polyploid effect size in the
whole genome sequencing experiment. For this purpose,
the transcript sequences of the 28,236 rice gene models
(RAP2 annotation), including coding sequences as well
as non-coding 3′ and 5′ UTRs and introns, were aligned
against the orthologous gene representatives. Thereby the
gene copy number in the rice data set was determined for
each OG representative. Then, the aligned rice transcripts
were triplicated and random single nucleotide variants
(SNVs) were introduced to simulate the sequence similarity
of the homeologous genes in the polyploid target genome.
For example, for bread wheat nucleotides were randomly
exchanged with p = 0.01 (1 nucleotide change per 100 bp)
in coding transcript sequences and p = 0.04 (4 nucleotide
exchanges per 100 bp) in non-coding transcript sequences,
respectively. Then, 454-like shotgun reads were simulated
(5× genome coverage), re-mapped against their corre-
sponding OG representatives, sub-assembled with varying
minimum overlap identity (97% mi, 99% mi and 100% mi)
and, finally, the gene copy number predicted.
As expected, depending on the required stringency for

read overlaps, the copy number prediction largely differs.
In both evaluation methods 454 reads of different gene
copy were collapsed by using 97% mi, whereas, requiring
perfect alignment overlaps (100% mi) clearly results in an
overestimation of the gene family sizes. As expected, we
observed nearly perfect agreement of the expected 1:1 re-
lationship between the expected and observed gene family
size in the maize simulation, as well as the 1:3 relationship
in the polyploidy simulation by using 99% alignment iden-
tity. This parameterisation allows compensating for se-
quencing errors, by simultaneously maintaining distinct
gene copies that share high sequence similarity in coding
regions. However, highly similar gene copies from large
gene families may still collapse into single assemblies
resulting in slight overall gene number underestimates.

Sub-genome classification of bread wheat transcripts
using machine learning
Besides sheer size and high repeat content hexaploidy
makes the genome of bread wheat extremely challenging
to analyse. Being able to differentiate between homologous
genes of the three wheat sub-genomes (A, B and D) is of
high importance not only for marker design and breeding
but also to address open questions in the evolution and
domestication of bread wheat.
Recent NGS sequencing approaches of the bread wheat

genome generated a 5-fold 454 survey sequence, without
being able to separate A, B and D sub-genome directly [9].
In principle, this can be facilitated applying a chromosome
sorting technology [23], however, sorted sequences were
only available for wheat linkage group 1 at this time [4].
As a consequence, an alternative approach was es-

tablished to classify wheat sub-assembly sequences for the
A, B and D sub-genomes. Wheat sub-assemblies were
generated by a stringent assembly of reads mapped to rep-
resentative (for orthologous groups defined by OrthoMCL
[16]) genes from the reference organisms Brachypodium
distachyon [13], Hordeum vulgare, Oryza sativa [15] and
Sorghum bicolor [14] as well as the genome sequences of
the D genome donor species Ae. tauschii [24], and the A
genome relative Triticum monococcum (NCBI archive
SRP004490.3), and cDNA sequence assemblies from
Ae. speltoides (Trick&Bancroft, unpublished data) a mem-
ber of the Sitopsis section to which the putative B genome
donor belongs. Expecting that A- related sub-assemblies
are more related to T. monococcum sequences, D- related
sub-assemblies to Ae. tauschii, and B-related sub-
assemblies to Ae. speltoides, sequence similarities of the
sub-assemblies to each of these datasets would define and
discriminate their origin.
In a first step, sequence similarities of each sub-assembly

sequence to the wheat progenitor sequences were com-
puted using BLAST [17]. Only sub-assemblies with BLAST
hits to all three wheat progenitor sequences were consid-
ered for classification. Although a classification into A, B or
D sub-genome derived transcripts seemed possible for
many sub-assemblies by applying simple similarity cut-offs
or rules, fixed similarity cut-offs appeared not suitable to
separate the majority of sub-assemblies with confidence [9].
Consequently, several machine learning approaches

were applied to the similarity matrix and evaluated for
their performance. A major prerequisite represents the
identification of a suitable training and test data set. We
made use of wheat group 1 chromosome sequences which
were separated into their sub-genomes (A, B and D) using
flow-sorted chromosomes [4]. We extracted all wheat sub-
assemblies associated with wheat group 1 chromosome
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sequences and classified them into A, B or D depending on
their best hit. Every sub-genome classification was then
complemented with the sub-assemblies’ similarities to T.
monococcum, Ae. speltoides and Ae. tauschii sequences to
create a training set compatible to all non-chr1 related
sequences.
We applied a number of machine learning algorithms

(e.g. Logistic Regression, Naive Bayes, Decision Trees and
Support Vector Machine algorithms) from the WEKA
package [25] (http://www.cs.waikato.ac.nz/ml/weka/) to
this training set and evaluated the results by stratified k-
fold cross-validation. The best compromise between preci-
sion and recall was observed for the Support Vector
Machine algorithm (libSVM). This trained libSVM classi-
fier was used to classify the set of genic wheat sub-
assemblies into A-, B- or D-related sequences. The results
of this classification are summarized in Table 1. Below de-
fined libSVM probability estimate thresholds the classifi-
cation was considered unreliable (e.g. in cases where a
sub-assembly sequence matches equally well to all three
progenitor sequence sets).
With the recently published draft genome sequences of

Aegilops tauschii [26] and Triticum urartu [27] two add-
itional WGS datasets from wheat progenitors have since
become available. As T.urartu is thought to represent the
wheat A sub-genome progenitor even better than T.
monococcum [28], using these datasets in an analysis up-
date could potentially further improve the separation of
sub-assemblies generated from the A sub-genome and
therefore re-fine the overall result.
An alternative approach was taken in the separation of

homeologs in the tetraploid wheat (AABB; “pasta wheat”)
transcriptome, published by Krasileva et al. [29]. Here, a
post-assembly pipeline including polymorphism identifica-
tion, phasing of SNPs, read sorting and re-assembly of
phased reads was used to separate homeologs.

Physical, genetic and functional assembly of the
barley genome
Barley is diploid and diverged from wheat approximately
12 million years ago (Mya) [30]. Barley is the first cereal
genome where an anchored physical map has been
reported on the basis of the entire genome. The physical
Table 1 Support Vector Machine classification results on
wheat genic sub-assemblies

Classification category Wheat sub-assembly sequences
with intact open reading frame

Used for classification 462,803 (100%)

Classified as A 94,949 (20.5%)

Classified as D 113,065 (24.4%)

Classified as B 97,923 (21.2%)

Not classified 157,166 (33.9%)
map was constructed by combining different clone librar-
ies using FPC [31] to assemble clones into contigs.
The genome size of 5 Gb made barley the largest gen-

ome for which a physical map has been constructed.
570,000 BAC clones were assembled into 9,265 finger-
printed contigs (contigs). Several clone libraries were com-
bined to prevent that genomic regions would remain
unrepresented. End-merging of contigs allowed to bridge
overlapping contigs together, possible when marker evi-
dences on both ends would indicate a merge. A wealth of
different marker resources mostly linked to transcripts [32]
but also by using genotyping by sequencing (GBS) technol-
ogy helped to assign a majority of contigs to a genetic pos-
ition. To increase the robustness of the resulting map,
experimental markers were included. Apart from the con-
struction of the physical map three different barley culti-
vars were sequenced under high coverage resulting in
whole genome shotgun (WGS) assembly with approxi-
mately 2 gigabases (Gb) each. These WGS contigs, apart
from forming the basis to derive gene models also helped
to extend sequences on the physical map by extending
clone end sequences. The WGS contig decorated physical
map was then taken to infer a genetic position for physical
contigs. Altogether 4 Gb out of the 5 Gb cumulative contig
map length was anchored.
The anchoring and ordering of FPC and sequence

contigs along the barley genome demonstrates that GBS
technology combined with a transcript derived map is
powerful to develop a rich and deep physical map even for
the complex and large barley genome. Along with the an-
notation of genes it describes the functional and physical
assembly of a cereal genome.
The GenomeZipper approach
The GenomeZipper (GZ) [11,12] is a synteny driven ap-
proach to order and structure NGS survey sequences of
grass genomes that lack a physical map. The approach can
be applied to a variety of different data sets, i.e. 454 reads,
contigs, or scaffolds grouped in individual chromosomes
or chromosome arms. The approach exploits the widely
conserved synteny among grasses [33] and uses corre-
sponding syntenic intervals, as defined by heterologous,
corresponding marker intervals among the species under
investigation and suitable reference genomes to deduce a
tentative ordering of genes in the corresponding regions.
This approach can be undertaken for smaller regions of
interest, whole chromosome arms and chromosomes on a
genome wide level. The outcome is a virtual gene order
map which integrates gene-based marker maps as well as
conserved syntenic information from at least one se-
quenced model grass genome and NGS data. Initially ap-
plied on the barley genome [11,12], the genome zipper
approach has now also been used with other grass species,

http://www.cs.waikato.ac.nz/ml/weka/
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such as wheat chromosome 4A [34], rye chromosome B
[35] and Lolium [36].
The GenomeZipper approach consists of three discrete

steps: repeat filtering, detection of syntenic conserved
Figure 4 GenomeZipper workflow. The GenomeZipper approach can be
repeat masking (A), detection of syntenic conserved blocks (B) and the ‘zip
model. A) The repetitive sequences (grey boxes) were filtered out from the
v9.0 library. Only sequences without repetitive elements or with at least 10
steps. B) The syntenic conserved regions between target and reference ge
approach. The sequences were aligned against the reference genome(s) an
used for the construction of the gene map. C) The virtual gene map is con
multiple reference genomes and the NGS survey sequences along a backb
target or a very closely related one. In a first step all conserved genes with
the zipper backbone. The remaining conserved genes (depicted in the clou
corresponding reference genome. The NGS data (orange boxes) are ancho
regions and an integration step which provides an an-
chored, information-rich scaffold (Figure 4).
In the first step, filtering repeat regions out of the

query sequence reduces computational effort in gene
divided into three individual steps which can be run independently:
ping’/integration (C) of all data sets into a virtual linear gene order
NGS data (orange boxes) using Vmatch and the MIPS REdat Poaceae
0 base pairs repeat-free regions were considered for the next analysis
nome(s) were determined using BLASTX and a sliding window
d the highly conserved genes (coloured boxes) were extracted and
structed by integrating the syntenic conserved genes of one or
one build by a genetic marker map of the same organisms as the
a bi-directional blast hit to the gene-based marker are integrated into
ds) are indirectly incorporated using the order deduced from the
red to the ordered map by first best blast hits.



Spannagl et al. Plant Methods 2013, 9:35 Page 8 of 9
http://www.plantmethods.com/content/9/1/35
space estimation. In barley and wheat the repetitive
amount was identified by aligning the 454 reads against
the MIPS REdat Poaceae repeat library using Vmatch
(http://vmatch.de).
In the next step, the conserved homologs between query

sequence and one or multiple reference genomes are de-
termined. For barley, three model grass genomes -
Brachypodium distachyon [13], rice [15] and Sorghum
bicolor [14] - were used to identify homologous regions.
The sequence comparisons were done using BLASTX and
only first best hits with at least 75%/70% sequence identity
and a minimal alignment length of 30 amino acids were
considered. The syntenic conserved regions are defined by
the density of homologous matches between query and
reference genome using a sliding window approach.
During the last step, the NGS data is structured and or-

dered using a high resolution genetic map and orthologous
genes obtained in the previous step. Thereby the intervals
as defined by genetically ordered markers are used as a
scaffold to project the likely order of corresponding genes
in these intervals. Gene order in these intervals is deduced
from the order found in the respective reference genomes,
whereby evolutionary closest reference genomes get highest
rank. Once ordered, additional evidences, such as full
length cDNAs and/or ESTs can be attached to the ordered
gene scaffold.
The linear ordered gene maps provide a valuable resource

for a variety of applications: (i) for marker development and
to assist positional cloning [37], (ii) for comparative ana-
lyses of the conserved gene space [4], and (iii) to resolve the
structure of a genome/chromosome and to establish the
colinearity between grass genomes[34,35].

Conclusions
Next generation sequencing technologies now start to en-
able to decipher large plant genomes such as those from
many Triticeae (wheat, barley, rye) which until recently
were difficult to access due to severe technological and eco-
nomic restrictions. The assembly and analysis of these com-
plex genomes remains a challenge and requires novel
concepts and strategies. Here, we outlined and described a
number of these concepts, that were developed and used to
analyse and order genes from the recently published gen-
ome sequences of barley and hexaploid wheat. For barley, a
physical and genetic map integration approach allows to
positionally anchor ~21,000 genes. A complimentary ap-
proach, the GenomeZipper concept, makes use of the
conserved gene order between grass reference genomes
and many monocot crop genomes to anchor and order
genes by an in silico approach in the complex wheat and
barley genomes.
The hexaploid nature with three highly homologous

sub-genomes makes the genome of bread wheat extremely
challenging to assemble and analyse. To access the gene
inventory, a set of orthologous representative genes was
constructed from related and finished reference grass ge-
nomes. Wheat NGS reads from a 454 5× whole genome
sequence survey were mapped onto these orthologous
representatives and separately assembled in a stringent
way to avoid collapsing of homologous (sub-genome de-
rived) genes. Genic sub-assembly sequences were subse-
quently classified into A, B or D- sub-genome derived
with a machine-learning assisted approach making use of
differing sequence similarities to the A, B and D sub-
genomes progenitor species.
The approaches and concepts outlined here may be

readily applied to other complex genomes, even beyond
plants, where direct sequence assembly and analysis is
hampered by size and/or polyploidy but related, less com-
plex reference genomes are available.
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