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Abstract

Microarrays are routine tools for transcript profiling, and genomic tiling arrays such as the Arabidopsis
AGRONOMICS1 arrays have been found to be highly suitable for such experiments because changes in genome
annotation can be easily integrated at the data analysis level. In a transcript profiling experiment, RNA labeling is a
critical step, most often initiated by oligo-dT-primed reverse transcription. Although this has been found to be a
robust and reliable method, very long transcripts or non-polyadenylated transcripts might be labeled inefficiently. In
this study, we first provide data handling methods to analyze AGRONOMICS1 tiling microarrays based on the
TAIR10 genome annotation. Second, we describe methods to easily quantify antisense transcripts on such tiling
arrays. Third, we test a random-primed RNA labeling method, and find that on AGRONOMICS1 arrays this method
has similar general performance as the conventional oligo-dT-primed method. In contrast to the latter, however,
the former works considerably better for long transcripts and for non-polyadenylated transcripts such as found in
mitochondria and plastids. We propose that researchers interested in organelle function use the random-primed
method to unleash the full potential of genomic tiling arrays.
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Background
Transcript profiling has become a routine experimental
approach in many fields of biology. One way to perform
such profiling is to use DNA microarrays. For the model
plant Arabidopsis thaliana, microarrays that probe the
transcriptome have been used for more than ten years
[1-8], and ATH1 arrays manufactured by Affymetrix
have probably been used most widely [9]. Although
ATH1 arrays proved to generate robust and reliable data,
they lack probes for one third of the annotated Arabi-
dopsis genes. For genome-wide profiling, researchers
have started to use transcriptome arrays from other
manufacturers or genome tiling arrays, which contain
probes against the entire genome. Tiling arrays are not
restricted to probe mRNA but also other transcripts
such as sRNA (small RNA), tRNA (transfer RNA) and
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miRNA (micro RNA), and yield information on splicing.
In Arabidopsis, tiling arrays have already identified many
novel genes, intergenic non-coding RNAs and antisense
transcripts [10-16]. Tiling arrays have also frequently
been used in Arabidopsis epigenome profiling such as
with chromatin-immunoprecipiation (ChIP-chip) (for re-
view see [17]) and for detection of deletion mutations
[18]. Another major advantage of tiling arrays is that
they are not limited to current genome annotations but
can be re-analyzed when new genome annotation infor-
mation becomes available. In Arabidopsis thaliana, the
Affymetrix Arabidopsis 1.0R tiling array was used in di-
verse applications ranging from transcript discovery to
ChIP-chip [13,15,19-23]. An alternative Arabidopsis til-
ing array is the recently developed AGRONOMICS1
Affymetrix array [24]. The design of the AGRO-
NOMICS1 array is similar to the Affymetrix Arabidopsis
1.0R array but lacks mismatch probes. Instead, it con-
tains probes against both genome strands while the Affy-
metrix Arabidopsis 1.0R array probes only one strand.
This allows strand-specific transcriptome profiling on
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single AGRONOMICS1 arrays and gives doubled probe
density for epigenome profiling applications.
Since its release, AGRONOMICS1 arrays have been used

for many experiments some of which have been published
[25-27]. Initially, the GeneChip©3’ IVT Express kit (Affyme-
trix) was utilized to prepare samples for hybridization to
AGRONOMICS1 arrays because this kit was also widely
used to prepare samples for ATH1 arrays. Nevertheless, this
method has some disadvantages, mostly because it is based
on oligo-dT priming. Oligo-dT priming disfavors labeling
of long transcripts. In addition, non-polyadenylated tran-
scripts are labeled only poorly. Because transcripts in orga-
nelles usually lack polyA tails [28], oligo-dT-based labeling
methods are not suitable for projects where expression data
for plastidial or mitochondrial genes are needed. In
addition, it has been reported that the use of T7 sequences
in common oligo-dT priming protocols can cause artifacts
on tiling arrays [29]. Labeling methods based on random
priming at the reverse transcription step carry the potential
to overcome the limitations of oligo-dT-based labeling [30-
34].
Here, we tested an alternative labeling method based on

random priming at the reverse transcription step and de-
velop appropriate data analysis routines. The comparison
of this and the previously used protocols revealed, in gen-
eral, a very good agreement between fold change values
from both methods. Considerable differences between
both methods were observed for transcript signal esti-
mates for long transcripts and for organellar transcripts,
which both are only inefficiently labeled by oligo-dT
priming. In both cases, expression estimates were much
larger for the method based on random priming. In sum-
mary, we present an RNA labeling procedure together
with an appropriate data analysis pipeline that can replace
established oligo-dT based methods in projects where ex-
pression of plastidial or mitochondrial genes is of interest.

Results and discussion
Analyzing AGRONOMICS1 arrays based on the TAIR10
genome version
A major advantage of genome tiling microarrays is that
they can accommodate changes in genome annotation.
Table 1 Properties of custom-made CDF files for AGRONOMIC

CDF file Genome
version

# of probes
(ath1) + control
probes)

# of
(ath
pro

agronomics1_ TAIR9_gene TAIR9(2009) 1,246,484
(1,093,816 + 152,668)

30,6
(30,2

agronomics1_ TAIR10_gene TAIR10(2010) 1,626,780
(1,474,112 + 152,668)

31,0
(30,6

agronomics1_TAIR10_gene_sense TAIR10(2010) 1,397,929
(1,245,261 + 152,668)

30,7
(30,3

1) ath probes, probes against Arabidopsis sequences.
2) M, mitochondrial genes; P, plastidial genes.
After the AGRONOMICS1 array was developed, the
TAIR10 version of the Arabidopsis genome was released.
We generated new TAIR10-based CDF (chip description
format) files, which can be used to generate expression
estimates from raw data (CEL files) not only for new but
also for past experiments (Table 1). We compared ex-
pression estimates derived from a published data set
from dark-grown and illuminated seedlings, which was
based on labeling with the Affymetrix IVT Express kit
[24], using the TAIR9- and the TAIR10-based CDF files,
and as expected found very high agreement between
both (Additional file 1: Figure S1). Because antisense
transcripts have attracted much attention in recent
years, we generated a second TAIR10-based CDF file
that can be used to profile antisense transcripts. Note
that originally most labeling protocols for Affymetrix ex-
pression arrays generated labeled aRNA (antisense
RNA), which hybridizes with probes against the anti-
sense strand. Nowadays, however, protocols generating
labeled cDNA or labeled aRNA are both common.
Table 2 summarizes usage of the new CDF files.
Applying the new CDF files to the dataset of RNA

from dark-grown and illuminated seedlings, we identi-
fied 780 and 333 genes that were induced or repressed
by light, respectively (p< 0.01, fold change> 2). With
the same criteria, 5 and 0 genes had no significant differ-
ence in abundance of sense transcripts but had antisense
transcripts that were induced or repressed by light, re-
spectively. Three of the 5 genes overlapped with anno-
tated genes on the opposite genome strand. Visual
inspection of the tiling array data suggested that in these
cases the apparent antisense signal was caused by a
sense signal from the overlapping gene. In contrast, for
two genes (AT4G31875 and AT5G64401) strong anti-
sense signals could not be explained by an overlap with
known genes (Figure 1). Note that the IVT Express la-
beling protocol used here was earlier shown to have high
strand-specificity [24]. Thus, the new antisense-CDF file
can be used to quantify antisense transcripts.
The approach presented here differs from that of

Coram and colleagues, who also quantified antisense
transcript [35]. These authors used Affymetrix GeneChip
S1 arrays

probe sets
+ control
be sets)

# of genes
probed(M+P) 2)

Description

08
37 + 371)

29,920(33+ 67) Gene-specific probe sets of all suitable
probes from the antisense strand

27
56 + 371)

30,466(35+ 85) Gene-specific probe sets of all suitable
probes from the antisense strand

57
86 + 371)

30,174(36+ 84) Gene-specific probe sets of all suitable
probes from the sense strand



Table 2 Matching CDF files and RNA labeling protocols

CDF file 3’-IVT kit WT kit

agronomics1_ TAIR10_gene Detection of
sense transcripts

Detection of
antisense
transcripts

agronomics1_TAIR10_gene_antisense Detection of
antisense
transcripts

Detection of
sense transcripts
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Wheat Genome arrays, which are 3'IVT expression
arrays and carry probes only for the sense strand. There-
fore, two alternative labeling methods were used to label
transcripts derived from sense or antisense transcription,
respectively. Labeled samples were separately hybridized
to arrays making two arrays per sample needed. It also
required sufficient RNA for two labeling reactions per
sample, which could be limiting for rare samples. In
addition, the different labeling protocols imposed differ-
ent sensitivities. In contrast, our approach relies on only
one labeling reaction and hybridization and does not in-
crease required amounts of RNA or experimental costs.
Instead, labeled antisense transcripts are directly probed by
complementary oligonucleotides present on the AGRO-
NOMICS1 array. Because different probes are used to inter-
rogate sense and antisense transcripts, signal intensities can
also in this case not directly be compared. In most cases,
Figure 1 Detection of antisense transcript signals on AGRONOMICS1
other genes grey. Probe signals from the plus strand are cyan and from the
irradiated seedlings, the lower two rows RNA from dark-grown seedlings. (
from annotated exons and on the plus strand. (B) AT1G31130, a gene on th
(C-D) AT5G64401 (C) and AT4G31875 (D) are genes on the minus strand. H
antisense transcription. Note that the signals are specific for irradiated seed
however, such probe-specific effects will have a minor im-
pact on the expression signals generated by RMA. It should
also be noted that this approach approximates potential
antisense transcripts based on the annotation of the sense
transcript. To accurately determine transcript boundaries,
algorithms to segment the hybridization signal along
chromosomal coordinates are needed [36].

Performance of the oligo-dT-based and random-primed
labeling protocols
Aliquots from the same RNA preparations that were
used previously with an oligo-dT-based protocol [24]
were used for the random-primed protocol. Two tech-
nical replicates of a rosette leaf RNA sample and three
technical replicates of a flower RNA sample were labeled
and hybridized to AGRONOMICS1 tiling arrays. Table 3
shows the correlation among the technical replicates
from the oligo-dT-based and the random-primed proto-
cols. Although both protocols resulted in high data con-
cordance, the random-primed protocol generated data
with a slightly higher correlation.
Next, we tested how well results based on the two la-

beling protocols correlated with each other. As evident
from Figure 2, correlation between replicates of the same
protocol was considerable higher than correlation be-
tween replicates of different protocols. This result sug-
gested that array-based expression signals differed for many
arrays. Bars represent gene annotations. Genes of interest are yellow,
minus strand green. The upper two rows of signals show RNA from

A) AT1G15950, a gene on the plus strand. Signals are highest for probes
e minus strand. Signals are highest for probes on the minus strand.
owever, signals are highest on the plus strand strongly suggesting
lings.



Table 3 Correlation of probe set summary signals

oligo-dT primed random primed

Index.R

Leaves 0.815 ± 0.023 0.861 ± 0.009

Flowers 0.889 ± 0.011 0.920

cPearson

Leaves 0.982 ± 0.003 0.977 ± 0.004

Flowers 0.962 ± 0.004 0.991

Mean and S.D. are listed for technical replicates. Correlation was expressed as
index.R value [37] and as pair-wise Pearson correlation coefficient.
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genes. Because transcripts in plastids and mitochondria are
only polyadenylated as part of a polyadenylation-dependent
RNA degradation mechanism [28], we hypothesized that
expression signals for organellar genes would differ most
between the two labeling protocols. Consistent with this hy-
pothesis, there were mostly small differences between ex-
pression signals from nuclear genes while plastidial and in
particular mitochondrial genes had consistently much
higher expression signals when using the random-primed
labeling protocol (Figure 3A). Expression signals of mito-
chondrial genes were independently of the protocol similar
between flowers and leaves but about sixteen times larger
when using the random-primed labeling protocol
(Figure 3B). While signals were usually close to the detec-
tion limit when using the oligo-dT-primed method, many
mitochondrial transcripts gave signals that were among the
strongest in the genome when using the random-primed
method. Expression signals of plastidial genes were inde-
pendently of the protocol higher in leaves than in flowers.
Nevertheless, these signals were about eight times larger
when using the random-based labeling protocol and among
the highest signals obtained on this array (Figure 3C). Sig-
nals for nuclear transcripts, in contrast, did not globally dif-
fer strongly between flowers and leaves, and also the
labeling protocol had only a mild effect on these genes
(Figure 3D).
Figure 2 Correlation of probe set summary values. Pair-wise
Pearson correlation is shown.
In addition to organellar transcripts, also very long
transcripts are expected to yield signals that differ par-
ticularly strongly between the labeling protocols, because
multiple priming events in a random-primed protocol
will generate more cDNA than single priming events in
an oligo-dT-primed protocol. We tested this hypothesis
by grouping the nuclear genes in 20 bins according to
transcript lengths and plotting signal differences be-
tween protocols separately for each bin for flowers
(Figure 4A) and leaves (Figure 4B). Indeed, signals for
the ~25% shortest transcripts proved to be independent
of the labeling protocol while signals for longer tran-
script were usually considerably larger when using the
random-primed protocol. In contrast, differences in sig-
nal strength between leaves and flowers were independ-
ent of transcript length regardless of the labeling
protocol (Figure 4C,D). These results show that expres-
sion signals are strongly affected by the labeling proto-
col, and thus direct comparisons of expression signals
from experiments using different labeling protocols
should be avoided. In contrast to expression signals, sig-
nal ratios did not strongly depend on transcript length
(Additional file 1: Figure S2) suggesting that signal ratios
can be compared even between experiments using differ-
ent labeling methods. Because long transcripts can be
interrogated by more probes than short transcripts, til-
ing array-based expression signals for long transcripts
are expected to have higher precision than the signals
for short transcripts. This effect is clearly visible in data
based on oligo-dT priming for the shortest transcripts
(Figure 5A,B). In contrast, for transcripts of intermediate
length no such effect is evident, and for the longest tran-
scripts signal variability even increases considerably. This
increase in signal variability indicates variable labeling effi-
ciency for long transcripts. In contrast, variability of ex-
pression signals based on random priming decreases over
almost the entire range of transcript sizes (Figure 5C,D),
suggesting that a major effect of reduced labeling effi-
ciency of oligo-dT priming is increased measurement
variability.
Finally, we tested whether the used random-primed

labeling method has sufficient strand-specificity to
allow simultaneous detection of sense and antisense
transcripts as shown above for data based on oligo-
dT-primed labeling. Plotting sense and antisense sig-
nals for each gene revealed that even for genes with
high sense transcript signals the antisense signal was
usually very low (Figure 6A). For comparison, a plot
of sense signals from leaf and flower samples showed
a high correlation despite the great difference in tis-
sue composition (Figure 6B). These results show that
the used random-primed labeling method has a suffi-
cient strand-specificity to justify quantification of
antisense transcription.
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Figure 4 Effect of gene length on expression signals. (A-B) Differences of signals based on oligo-dT and random priming. Values larger than
0 indicate higher signals when using random priming. Nuclear genes were sorted into 20 bins according to transcript length. Signals from flower
RNA (A) and leaf RNA (B). (C-D) Differences of signals from flowers and leaves. Values larger than 0 indicate higher signals in leaf RNA. Signals are
based on oligo-dT (C) and on random priming (D).

BA

C D

Figure 3 Expression signals of organellar genes. (A) Differences of signals from oligo-dT and random priming. Values larger than 0 indicate
higher signals when using random priming. Mitochondrial, plastidial and nuclear genes were analyzed separately. Note that RMA-derived
expression signals are in logarithmic scale. Therefore, differences in RMA-derived signals are equivalent to log2 of ratios (i.e. fold change) of
signals in linear scale. (B-D) Expression signals in flowers (grey) and leaves (green) for mitochondrial (B), plastidial (C) and nuclear genes (D).
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Figure 5 Effect of gene length on expression variance. Log2 of signal variance for oligo-dT (A-B) and random priming (C-D). Nuclear genes
were sorted into 20 bins according to transcript length.
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Together, we found that the random-primed labeling
protocol performed similar to the oligo-dT-primed
protocol in most comparisons, but was more sensitive
for organellar and long transcripts.
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Conclusions
Genomic tiling microarrays are valuable tools for biol-
ogy, and we have developed two extensions that expand
the application range of AGRONOMICS1 tiling arrays.
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First, we developed new CDF files for these arrays.
Because the CDF files are based on the latest Arabi-
dopsis genome version (TAIR10), estimation of gene
expression levels will be more reliable. Importantly,
raw data from past experiments can easily be re-
analyzed with the new files. The AGRONOMICS1 til-
ing array contains probes from both genome strands,
and we developed CDF files that contain probes
located within annotated exons and match either the
sense or the antisense strand. The CDF files can be
used to simultaneously estimate levels of sense and
antisense transcripts without the need for additional
experiments or array hybridization.
Second, we tested an alternative labeling protocol

that is not based on oligo-dT priming. Oligo-dT-
based labeling methods are reliable and widely used
for transcript profiling, but they suffer from certain
deficiencies. In particular, oligo-dT priming fails to ef-
ficiently label organellar and very long transcripts.
We found that when using AGRONOMICS1 tiling
arrays a random-primed protocol compares favorably
to the conventional oligo-dT-primed protocol. First,
reproducibility of technical replicates was similar or
even higher for the random-primed protocol. In
addition, signal log ratios did not globally differ be-
tween both labeling methods, indicating that overall
results are consistent and comparable. In contrast to
signal ratios, signal values were less similar between
the two methods. Therefore, a direct comparison of
expression values is only justified for one and the
same labeling method. Second, expression signals for
long transcripts were considerably higher when using
random priming. This causes an improved signal-to-
noise ratio specifically for long transcripts. Third, ex-
pression signals of organellar transcripts were
detected with much greater sensitivity and greater
precision when using random priming.
In summary, alternative CDF files or labeling proto-

cols enable the utilization of AGRONOMICS1 tiling
arrays to interrogate antisense transcripts, transcripts
from organelles or transcripts of very long genes in
addition to the commonly probed nuclear mRNAs.

Methods
Plant material and RNA extraction
RNA samples were as described [24]. Briefly, Arabi-
dopsis thaliana accession Columbia-0 plants were
grown on soil at 23 °C in a photoperiod of 16 h of
light and 8 h of darkness. Leaves (no. 4 from 10–15
plants per sample) and flowers (stage 15; 20–25 per
sample) were harvested after 10 and 25 d, respect-
ively. Total RNA was isolated using the Qiagen Plant
RNeasy MiniKit according to the manufacturer’s
instructions.
Microarray target preparation
Method 1. GeneChip© IVT express kit
Microarray target preparation with the GeneChip© IVT
Express Kit (Affymetrix, Santa Clara, CA) was described
before [24].

Method 2. GeneChip© whole transcript (WT) sense target
labeling assay
The starting material was 1 μg of total RNA. Then,
microarray target preparation with the GeneChip©
Whole Transcript (WT) Sense Target Labeling Assay
(Affymetrix, Santa Clara, CA) was carried out as recom-
mended by the manufacturer. Briefly, ribosomal RNA
was removed using a RiboMinus™ Plant Kit (Invitrogen,
Zug, Switzerland), which is not dependent on the polya-
denylation status or the presence of 5'cap structure on
the RNA. Then, random hexamers tagged with T7 pro-
motor sequence are used to conduct a two-cycle cDNA
synthesis following.

Array hybridization
Biotin-labeled microarray target samples were mixed in
300 μl of Hybridization Mix (Affymetrix) containing
Hybridization Controls and Control Oligonucleotide B2
(Affymetrix). Samples were hybridized onto Affymetrix
AGRONOMICS1 Arabidopsis tiling array for 16 h at
45 °C. Arrays were then washed using an Affymetrix Flu-
idics Station 450 following the FS450_0004 protocol. An
Affymetrix GeneChip Scanner 3000 was used to measure
the fluorescence intensity emitted by the labeled target.

Generation of CDF files
Custom-made CDF files were generated as described
[24]. Briefly, probes were mapped to the TAIR 10
genome sequence, and only probes with a single
match inside an annotated exon (excluding untrans-
lated regions) were used. Probe sets were generated
if at least three such probes existed for a gene. For
genes with multiple transcripts with little overlap,
more than one probe set was generated per gene
(see Table 4). The CDF file contains three types of
probe sets, which can be discriminated by their
names. The naming scheme is< locus name> .< vari
ant> .< chromosome> .< strand> .<mRNA_start> .
<mRNA_end> (e.g. AT1G01010.0.Chr1.plus.3631.5899).
The meaning of the variant component is as follows:
0, there is only one transcript annotated for the gene,
and the probe set matches this transcript; X, there
are multiple transcripts with a large overlap anno-
tated for the gene, and the probe set matches the
intersection of all these transcripts; [1,N], there are
multiple transcripts with little overlap annotated for
the gene, and each probe set contains all probes that
match the corresponding. Finally, there is a number



Table 4 Summary of probe sets on custom-made CDF files for AGRONOMICS1 arrays

agronomics1_
TAIR9_gene

agronomics1_
TAIR10_gene

agronomics1_
TAIR10_gene_antisense

Number of probe sets 30,608 31,027 30,757

Control probe sets 371 371 371

Probe sets for Arabidopsis genes 30,237 30,656 30,386

Probe sets for nuclear genes 30,137 30,536 30,266

Probe sets for plastid genes 67 85 84

Probe sets for mitochondrial genes 33 35 36

One annotated transcript uniquely probed 25,387 24,426 24,139

The intersection of a set of annotated transcripts uniquely
probed

4,325 5,661 5,644

Several annotated transcript exist with little overlap; 0 90 160

1 is specifically probed

Several annotated transcript exist with little overlap; 131 70 86

2 are specifically probed

Several annotated transcript exist with little overlap; 54 36 44

3 are specifically probed

Several annotated transcript exist with little overlap; 15 6 6

4 are specifically probed

Several annotated transcript exist with little overlap; 7 1 4

5 are specifically probed

Several annotated transcript exist with little overlap; 1 1 1

6 are specifically probed

2 largely overlapping genes probed 0 90 85

3 largely overlapping genes probed 0 2 2

4 largely overlapping genes probed 0 2 2
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of overlapping genes annotated in the genome for
which no gene-specific probes sets could be formed.
Thus, 94 probe sets were included that probe more than
one annotated gene (90 probe 2 genes, 2 probe 3 genes, 2
probe 4 genes; e.g. AT1G06149_AT1G06150.X.Chr1.
minus.1867015.1873718).

Data analysis
All analysis was performed in R 2.12.1 [38]. Visualization
of tiling array data was done using the Integrated Gen-
ome Browser at http://igb.bioviz.org [39]. Library files
and scripts are freely available as Supplemental Data,
at http://www.agron-omics.eu/index.php/resource_center/
tiling-array or upon request from the authors. Expression
signals were extracted from CEL files using RMA [40]
implemented in the aroma.affymetrix package [41] as
described earlier [24]. For the comparison of labeling
methods, only genes with unique probe sets in both CDF
files were used. Quantile normalization as implemented in
the limma package [42] was used for normalization of ex-
pression values to achieve consistency between arrays.
Availability
Library files and scripts are freely available as Supplemen-
tal Data S1 at www.agron-omics.eu/index.php/resource_
center/tiling-array and at www.slu.se/genetics/resources/
agronomics1
Additional file

Additional file 1: Figures S1. Correlation of expression signals from
TAIR9- and TAIR10-based CDF files. Correlation is measured with index.R.
The axis label sig1 denotes replicates of TAIR9, sig2 replicates of TAIR10.
F1, F2, F3 are the flower replicates; L1, L2, L3 are the leaf replicates. (A)
oligo-dT priming, (B) random priming. Figure S2. Signal ratios are not
affected by gene length. Signal log ratios (SLR) between flowers and
leaves were calculated, and differences between the SLR values based on
oligo-dT and random priming were plotted. Values larger than 0 indicate
higher fold changes when using oligo-dT priming. Nuclear genes were
sorted into 20 bins according to transcript length.
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