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Abstract
Background: Roots are the classical model system to study the organization and dynamics of
organ growth zones. Profiles of the velocity of root elements relative to the apex have generally
been considered to be sigmoidal. However, recent high-resolution measurements have yielded bi-
linear profiles, suggesting that sigmoidal profiles may be artifacts caused by insufficient spatio-
temporal resolution. The decision whether an empirical velocity profile follows a sigmoidal or bi-
linear distribution has consequences for the interpretation of the underlying biological processes.
However, distinguishing between sigmoidal and bi-linear curves is notoriously problematic. A
mathematical function that can describe both types of curve equally well would allow them to be
distinguished by automated curve-fitting.

Results: On the basis of the mathematical requirements defined, we created a composite function
and tested it by fitting it to sigmoidal and bi-linear models with different noise levels (Monte-Carlo
datasets) and to three experimental datasets from roots of Gypsophila elegans, Aurinia saxatilis, and
Arabidopsis thaliana. Fits of the function proved robust with respect to noise and yielded statistically
sound results if care was taken to identify reasonable initial coefficient values to start the automated
fitting procedure. Descriptions of experimental datasets were significantly better than those
provided by the Richards function, the most flexible of the classical growth equations, even in cases
in which the data followed a smooth sigmoidal distribution.

Conclusion: Fits of the composite function introduced here provide an independent criterion for
distinguishing sigmoidal and bi-linear growth profiles, but without forcing a dichotomous decision,
as intermediate solutions are possible. Our function thus facilitates an unbiased, multiple-working
hypothesis approach. While our discussion focusses on kinematic growth analysis, this and similar
tailor-made functions will be useful tools wherever models of steadily or abruptly changing
dependencies between empirical parameters are to be compared.

Background
Kinematic growth analysis aims at the quantitative
description of spatial growth patterns to provide a basis
for the study of developmental mechanisms [1,2]. As the

term kinematic indicates, this approach focuses on the
movement of parts of a growing organ relative to each
other. The concepts for kinematic growth analysis were
laid out half-a-century ago for the root, which was
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assumed for simplicity to grow uni-directionally (i.e. pure
elongation or axial growth) [3-5]. The assumption of pure
elongation keeps the mathematics manageable. Conse-
quently, the vast majority of studies applying kinematic
growth analysis to physiological problems have focused
on pure elongation in suitable organs such as roots [6-8]
and grass leaves [9-11].

The key parameter is the velocity field, the spatial distribu-
tion of the velocities at which these displacements occur.
For uni-directional expansion, the velocity field reduces to
a velocity profile. The derivative of the velocity profile has
often been referred to as the relative elemental elongation
rate. This rate is relative because it is a measure of growth
that is independent of the size of the growing entity, with
the dimension of reciprocal time, and it is elemental
because it represents a calculus-based description of infin-
itesimal elements of tissue [2]. However, an elemental
rate is by definition a relative rate. To avoid this redun-
dancy, we drop the relative and use simply elemental growth
(or elongation) rate to refer to the spatial derivative of a
velocity profile. This usage also helps to avoid confusion
between an elemental growth rate, which describes
motion within a spatial system of reference, and the rela-
tive growth rate, a well-established concept in classical
growth analysis which describes changes in size over time.
Here we are concerned primarily with the former type of
rate, although the analytic tool we introduce might prove
useful in classical growth analysis as well.

Velocity profiles along growing root tips and leaves have
been widely reported to be sigmoidal; concomitantly, the
corresponding elemental growth rate profiles reported
were bell-shaped, with a single, smooth peak. Recently,
for the root, determination of velocity profiles at greatly
increased temporal and spatial resolution has produced
distributions that appeared to be bi-linear ([12]; for a
comparison of sigmoidal and bi-linear velocity profiles,
see Fig. 1). Accordingly, the corresponding elemental
growth rate profiles had "step-stool"-shapes, showing two
relatively stable plateaus (Fig. 1B). Intriguingly, profiles
along growth zones of anatomic parameters such as cell
length, which under steady state conditions and in the
absence of cell division are geometrically similar to the
corresponding velocity profiles [13], have occasionally
been interpreted as being bi-linear [14-16]. The recent
report provides experimental support to the suspicion
that sigmoidal velocity profiles might, at least in some
cases, be artifacts resulting from measurement error, aver-
aging, or insufficient spatial or temporal resolution [12].

The distinction between sigmoidal and bi-linear velocity
profiles is important biologically. As a root cell traverses a
sigmoidal growth zone, it increases and then decreases its
elongation rate steadily and smoothly from one end of the

Schematic comparison of sigmoidal and bi-linear growth pro-filesFigure 1
Schematic comparison of sigmoidal and bi-linear 
growth profiles. (A) Sigmoidal (blue) and bi-linear (red) 
model profiles of velocity; zero on the abscissa corresponds 
to the root tip. (B) Derivatives of the velocity profiles in (A) 
with respect to position, yielding profiles of elemental elon-
gation rates. The distinct character of the two growth pro-
files becomes more evident in (B) than in (A). (C) Time-
courses of elemental elongation rates calculated from the 
velocity profiles (A). Time 0 was chosen to correspond to 
the position at which the two rate profiles cross over for the 
first time (position 0.155 in (B)). The curves show the ele-
mental elongation rate experienced over time by a point ini-
tially located at that position on the root.
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zone to the other. In contrast, as a cell traverses a bi-linear
growth zone, it elongates at one steady rate for part of the
zone, rapidly increases to a new rate for the rest of the
growth zone, and then stops (Fig. 1C). In the sigmoidal
case, regulation of elongation rate is expected to be con-
tinuously variable whereas in the bi-linear case, the regu-
lation should establish two distinct rates of elongation as
well as the positions where the transitions occur. In real-
ity, no growth zone will be exactly bi-linear because ele-
mental growth rates cannot be perfectly constant and
change instantaneously in a mathematical sense. It is an
open question whether some growth zones are purely sig-
moidal but it appears possible that all or most root growth
zones have a mixture of sigmoidal and bi-linear character-
istics.

The analytical power of kinematic growth analysis rests on
the fact that knowledge of the velocity field enables one
not only to calculate the local rates of deposition of any
parameter of interest, whether it be cells, cell wall mate-
rial, solutes, or water, but also to compute time-courses of
these and other parameters as experienced by cells that
traverse the growth zone [17-20]. To exploit this analytical
power in full, the profiles of velocity and elongation rate
need to be rendered as continuous functions. For this rea-
son, kinematic growth analysis is associated with curve-
fitting, where some function (or group of functions) is fit-
ted to the raw velocity data.

Because at present there is no mechanistic model for the
regulation of the velocity field within a growth zone, the
choice of a function to fit is arbitrary. As velocity profiles
generally resemble sigmoid curves, authors have applied
sigmoid functions previously established in classical
growth analysis (such as the Gompertz or Richards func-
tions; [21]) as well as versions developed specifically for
kinematic growth analysis [22,23]. However, such func-
tions will smooth out regions of the profile whose behav-
iour departs from the sigmoid. Alternatively, one may use
a piecewise approach where polynomials are fit to small,
overlapping subsets of the data [2,7]. This approach excels
at capturing local behaviour but nevertheless smoothes
abrupt transitions [12] and can be difficult to apply to
noisy data. Alternatively, van der Weele et al. [12] fitted
linear regression lines to the velocity data, but this
approach yields profiles with discontinuous derivatives
and allows no possibility for any sigmoid character.
Describing stem elongation over time, Fisher et al. [24]
introduced a 3-phasic equation which avoided discontin-
uous derivatives, but which was based on the assumption
that a linear growth phase did in fact exist.

To analyze velocity profiles without forcing them to be
either sigmoids or to contain a straight line, we formu-
lated a function which describes sigmoidal and bi-linear

profiles equally well. The result of fitting such a function
provides an independent criterion to distinguish between
the two types of profile, as well as an estimate of the tran-
sition point positions and their degree of abruptness. The
function is a composite of terms chosen to satisfy defined
requirements. We suggest that this kind of tailor-made
function created for specified purposes can be a useful
tool for solving various analytical problems in growth
research.

Theory
Requirements of the function
The desired function must demonstrate the following
properties of velocity profiles:

• At x = 0, y = 0. That is, velocity is defined to be zero at
the point of reference. Note that this definition inverts the
intuitive frame of reference. With respect to the plant's
environment, the root tip has the maximal velocity and
velocity falls to zero at a point that defines the end of the
growth zone. In contrast, when the root tip is chosen as
the reference point, velocity is zero at the tip and rises to a
maximum at the point defining the end of growth zone.
This inversion of the reference frame provides a host of
mathematical advantages and is ubiquitously employed
in kinematic analyses [1].

• It must be able to describe a series of three intervals of
linear relationship between x and y: the slopes of the first
and second intervals will be positive with the second
slope greater than the first, and the slope of the third inter-
val will usually be zero. The transitions between linear
domains must be continuous.

• It also must be able to describe a sigmoidal relation
between x and y. In other words, the function should be
able to mimic conventional growth equations up to prac-
tical identity.

As we will see, a function that satisfies these requirements
can be assembled using six coefficients. Two are needed to
determine the non-zero slopes of the first two linear
domains; we call these linear factors b1 and b2, respec-
tively, with the subscript indicating which of the two lin-
ear domains the coefficient controls. Two coefficients are
required to determine the positions (c1 and c2) of the two
transitions, and the final pair of coefficients (d1 and d2)
determine the extent of the transitions. The extent of the
transitions defines the linear versus sigmoidal character of
the profile: the more extensive the transitions relative to
the overall length of the profile, the more sigmoid-like the
curve. In the following, we describe the function by break-
ing it down into its component building blocks.
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Assembly of the step-stool function
The basic element of the function is an exponential term
which can be used to create a smooth transition between
two linear domains. Let us consider this term first in a
form that resembles the so-called "expolinear" expression
used in classical growth analysis [25,26]:

where b, c, and d are constants and x is the variable. When
c >> exp(b d x), then y reduces to the constant (ln c)/d,
indicating that at small values of x, there is a linear
domain that has zero slope. On the other hand, when c <<
exp(b d x), then y approaches (b x). Therefore, the function
defines a transition between a line of zero slope at small x
and one of slope b at large x. The transition is character-
ized by its location and width, which are determined by
the coefficients c and d.

However, with equation (1), there is no direct corre-
spondence between c or d and the location of the transi-
tion. Such a direct correspondence is desirable, though,
because it would facilitate the process of initial value esti-
mation, important for practical curve-fitting. Looking
again at equation (1), we note that the center of the tran-
sition zone is located at the x value at which c = exp(b d x).
Thus, if we replace the coefficient c in equation (1) by the
expression exp(b c1d), the new coefficient c1 will have the
value of x at the center of the transition. We now rewrite
equation (1) using the conventions for coefficient identi-
fication defined above, and arrive at

A sample yI with rather narrow transition zone centered
on x = 0.3 is shown in Fig. 2.

Obviously, the assumption that the first linear domain
has zero slope does not necessarily hold for real velocity
profiles. To allow for non-zero slopes, a linear term, b1x,
has to be added to yI:

where, for simplification, we define:

K = ln (exp [b2 c1 d1] + exp [b2 d1 x])  (4)

In yII, the slope of the first linear domain is b1, while that
of the second equals b1 + b2 (Fig. 2). As we will use it later

in forcing the complete function to attain the value 0 at x
= 0, we note that the value of yII at x = 0 is

To create a second transition between the second linear
domain and a third one with zero slope (which corre-
sponds to the non-growing parts of the root proximal of
the growth zone), we employ the same tools. Taking
another look at equation (2), we see that the variable x
appears only in the term b2d1x in the second exponential
expression, and that the first exponential expression con-
tains the same term with x replaced by the constant, c1.
The simple function of x, f(x) = b2x, in the second expo-
nent can be replaced by any function of x, call it g(x), and
the first exponent can be exchanged for g(x) with x
replaced by a new constant, c2. The result will always be a
transition between a zero-slope linear domain and g(x).
For example, we could insert yII as g(x), and subtract the
resulting term from yII itself:
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Assembly of the step-stool functionFigure 2
Assembly of the step-stool function. Four consecutive 
steps (yI to yIV) in the assembly of a continuous function capa-
ble of describing sigmoidal and bi-linear growth profiles 
equally well. See Theory section for details. Coefficients are 
b1 = 0.2, b2 = 1.69, c1 = 0.3, c2 = 0.8, d1 = d2 = 50.
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With c2 and d2 appropriately adjusted, we thus create a sec-
ond transition zone right of the first one (Fig. 2; yIII). For
x values significantly greater than x at the position of this
second transition, this results in a third linear domain
with zero slope.

At x = 0, equation 6 becomes:

where, for simplification, we define

L = ln (exp [b2 c1 d1] + exp [b2 c2 d1])  (8)

By definition, velocity equals zero at the point of reference
(conventionally the root apex, i.e. x = 0 in our model),
and we would like to see this feature in our function.
Therefore we subtract yIII,0 from yIII:

yIV = yIII - yIII,0  (9)

This function passes through the origin and asymptoti-
cally approaches a constant maximal value after the sec-
ond transition zone (Fig. 2). In contrast to most classical
growth equations, there is no parameter in our function
which directly corresponds to this asymptote; it rather is
determined indirectly by the geometry of the curve which
results from the cooperation of all of the function's coeffi-
cients. The coefficients control the graph's shape in spe-
cific ways: b's determine the slopes of the linear domains,
which are b1 (first linear domain) and b1 + b2 (second lin-
ear domain). The c's are the x values at the positions of the
first and second transition zone (c1 and c2, respectively),
while d's define the width of the transition zones (the
greater d, the narrower the transition zone). When equa-
tion 9 is used to describe root growth zones, negative val-
ues of any b's and c's will be meaningless; similarly, d's
will be positive and c2 > c1 will always hold. When fitting
the function to experimental data, it is advisable to imple-
ment these restrictions of possible coefficient values in the
automated fitting algorithm to avoid unexpected results.

The complete function can be shifted along the y-axis by
adding a constant q:

yV = yIV + q  (10)

When fitting datasets which do not cover the region close
to x = 0 (i.e. the root apex), this may be useful although it

formally is a violation of the assumption that velocity is
zero at x = 0.

Derivatives of the step-stool function
The derivative of yIV, equalling that of yV, is:

where

and

This derivative gives us the profile of elemental growth
rate along the growth zone. The second derivative of yIV
also is helpful as it facilitates the identification of station-
ary points in the growth rate profile such as the position
of its maximum:

Results
First, we explored the flexibility of the step-stool function,
yIV, and found that it could model any desired stage in the
transition from bi-linear to sigmoidal growth profiles
(Fig. 3A–D). As illustrated in Fig. 1, one of the biologically
relevant differences between sigmoidal and bi-linear
velocity profiles is the length of the period in which grow-
ing cells remain at their maximal growth rate. To quantify
this parameter, we computed the time-course of elemental
growth rate and expressed the flatness, F, of the curve as
the ratio of the periods in which the root elements grew at
greater than 90% and at greater than 50% of their maxi-
mal rate. As expected, flatness decreased with increasing
sigmoidal character of the profile (Fig. 3F; is shown to the
right).

Our function also could produce asymmetric profiles (Fig.
3E, F). The ability to describe asymmetric sigmoidal pro-
files is the hallmark of the Richards-function, a classical
growth equation with four coefficients [27], which added
flexibility to the so-called functional approach of growth
analysis [28]. Figure 3E, F illustrates that our function
achieved the aim of mimicking flexible growth equations
such as Richards'.

Having established a step-stool function with promising
features, we tested its behavior in automated curve fitting
procedures. To this end, we created Monte-Carlo datasets
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Sample profiles demonstrating the flexibility of the step-stool modelFigure 3
Sample profiles demonstrating the flexibility of the step-stool model. Growth zone models of increasing sigmoidal 
character (strongly bi-linear, A, to strongly sigmoidal, D), and two asymmetric examples with pronounced right (E) and left (F) 
skew. From left to right, columns show profiles of velocity, elemental elongation rates (first derivatives of the velocity profiles), 
second derivatives of the velocity profiles, and time-courses of elemental elongation rate, with time = 0 taken at the position 
where the rate reaches 50% of its maximal value. Grey shading highlights the period during which the organ element grows at 
>90% of its maximal elemental elongation rate (parameter F; see text for details). All models: b1 = 0.1, b2 = 1.84, c1 = 0.3, and c2 
= 0.8. A: d1 = d2 = 50; B: d1 = d2 = 15; C: d1 = d2 = 9; D: d1 = d2 = 5; E: d1 = 5, d2 = 30; F: d1 = 30, d2 = 5.
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[29]: various levels of Gaussian noise were added to sev-
eral model velocity profiles, such as those shown in Figure
3, with a number of data points that was comparable to
that of our empirical datasets. Then, the function was fit-
ted using the Marquardt-Levenberg algorithm included in
the non-linear regression tool of SigmaPlot, a scientific
graphics and data analysis package widely distributed
among biologists. Briefly, this algorithm searches for coef-
ficient values for a best-fit of a given function as defined
by the least-sum-of-squares criterion. The search proce-
dure is an iterative improve-by-guess-and-try process
which does not establish the correct result, but rather pro-
vides an estimate of an acceptable solution. The signifi-
cance of the estimated coefficients and their mutual
dependences need to be assessed by statistical analyses of
the fitting results, which are provided automatically by
modern software packages such as the one used here. Par-
ticularly in the case of complex, versatile functions, the fit-
ting algorithm is sensitive to the initial coefficient values
from which it starts, and a smart guess of these values is an
essential step [30]. As expected, the step-stool function
was sensitive in this respect (Fig. 4). However, when rea-
sonable coefficient values had been established by an ini-
tial round of manual curve fitting (see Additional File 1
for details), the results of the subsequent automated fit-
ting procedure were reproducible, robust against small
changes in coefficient initial values, and insensitive to
Gaussian noise in the datasets, for all bi-linear and sig-
moidal velocity profiles examined (Fig. 5 gives two exam-
ples).

On this basis, we proceeded to test the function on real
root growth data. We selected three datasets produced by
the high-resolution methodology recently introduced
[12]; visual inspection suggested that these datasets pos-
sessed sigmoidal-like (Gypsophila elegans; Fig. 6), inter-
mediate (Aurinia saxatilis; Fig. 7), and strong bi-linear
(Arabidopsis thaliana; Fig. 8) characteristics. Fitting of the
step-stool function invariably started with a manual
adjustment of the coefficients to provide a "smart guess"
of initial values for the subsequent automated fitting pro-
cedure. As the fitting of the step-stool function was
intended to provide an independent criterion to decide
whether a given dataset had more or less sigmoidal prop-
erties, we routinely included the following check for relia-
bility of the fitting results. As the samples in Fig. 3A to 3D
demonstrate, the degree of step-stool-likeness of the
derivative of a fitted curve depends mostly on the coeffi-
cients d, which determine the abruptness of the transi-
tions; the greater d1 and d2, the more abrupt the
transitions and the less sigmoid-like the curve. To see
whether the degree of sigmoid likeness indicated by the
automated fit was robust, we repeated the fitting proce-
dure twice, starting with initial values of the coefficients d
either doubled or halved. In all our examples (Figs. 6, 7,

8), the differences between the fitting results were insig-
nificant, indicating that the curves obtained represented
the best fit of the step-stool function to the datasets.

Inspection of the dataset obtained from a G. elegans root
(n = 3678) revealed a pronounced sigmoidal character;
fitting of the step-stool function supported this conclu-

Effects of initial values of coefficients on automated curve fit-tingFigure 4
Effects of initial values of coefficients on automated 
curve fitting. A 10% level of Gaussian noise was added to a 
bi-linear model velocity profile to create a "Monte-Carlo-
dataset" (gray dots, n = 1301; coefficients are b1 = 0.1, b2 = 
1.84, c1 = 0.3, c2 = 0.8, d1 = d2 = 50), and the step-stool equa-
tion was fitted using three different sets of coefficient values 
to initiate the fitting algorithm. The graphs of three of these 
sets are shown in (A); the blue and the green curves are 
deliberately inappropriate, whereas the red one represents a 
"smart guess". The result of automated curve fitting starting 
from the initial values depicted in (A) is shown in (B) in cor-
responding colours. In the cases of poor initial value choice, 
the fitting algorithm became stuck at unacceptable solutions; 
in contrast, the "smart guess" provided a satisfying result.
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sion (Fig. 6A; the derivative of the function fitted is shown
in Fig. 6B). Because the dataset showed no indication of a
non-zero slope for the linear domain close to the root
apex, a truncated version of the step-stool function (yIV,

equation 9) was used in which b1, the coefficient control-
ling the slope of the first linear domain, was set to 0. Thus,
the fitted function had only five coefficients instead of the
six of the complete version. To test for the appropriateness

Effects of noise on fitting the step-stool functionFigure 5
Effects of noise on fitting the step-stool function Increasing levels of Gaussian noise (from top to bottom) were added to 
a strongly bi-linear (left; b1 = 0.1, b2 = 1.84, c1 = 0.3, c2 = 0.8, d1 = d2 = 50) and a strongly sigmoidal (right; b1 = 0.1, b2 = 1.84, c1 
= 0.3, c2 = 0.8, d1 = d2 = 5) model velocity profile to create "Monte-Carlo-datasets" (gray dots; n = 1301). A person unaware of 
the nature of this study produced "smart guesses" of coefficient values for the 50% noise level versions of both models (bot-
tom), which were used to initiate the fitting for all of the noise levels; the fitted curves are shown in red. Derivatives (elemental 
elongation rate profiles) are given on the right of the corresponding velocity profile. Fitted profiles (blue) are practically identi-
cal with those expected (black).
Page 8 of 14
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of our decision, we also fitted the complete version of the
function. The resulting curve was practically the same as
was the sum of squared residuals, with the estimated b1
having a value close to 0 and an enormous variance, indi-

Analysis of a velocity field from an Au. saxatilis rootFigure 7
Analysis of a velocity field from an Au. saxatilis root. 
(A) A 6-parameter step-stool function including the parame-
ter q but not b1 (red) and the 5-parameter version of the 
Richards function (blue) were fitted to the velocity data (gray 
dots; n = 3366). For details of (B), (C), and (D), see Fig. 6.

Analysis of a velocity field from a G. elegans rootFigure 6
Analysis of a velocity field from a G. elegans root. (A) 
A 5-parameter version of the step-stool function lacking 
paremeters b1 and q (red) and the 4-parameter Richards 
function (blue) were fitted to the experimental velocity data 
(gray dots; n = 3678). (B) Derivatives of the velocity curves 
(elemental elongation rate profiles). The flatness, F, of the 
time-course of elemental elongation rate was determined for 
the step-stool model. (C) Standardized residuals for the step-
stool model and (D) for the Richards model. The value of the 
primary criterion of goodness-of-fit, the sum of squared 
residuals (SS), is indicated in (C) and (D).
Page 9 of 14
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cating that b1 had virtually no effect on the goodness-of-
fit (all other coefficients were significant and non-corre-
lated). Thus, the fitting statistics confirmed that there was

no justification to include the sixth coefficient, b1, in the
fitted function for this data set.

To test the accuracy of the fit, we used Durban-Watson sta-
tistics (a test for correlation between residuals [31]) and
the Levene median test for the homogeneity of variances
of residuals [32], as implemented by the software package
employed. The fit of the step-stool function failed in these
tests, which could be explained by the presence of signifi-
cant trends in the dataset that were not accounted for by
the fitted function. To discover such trends, we examined
a standardized residual plot (Fig. 6C). Residuals are the
differences between the predicted and measured values;
standardization divides them by the standard deviation of
the particular set of residuals [33]. The plot showed that
the residuals were distributed around the expected values
in a non-stochastic manner; oscillatory deviations of vari-
ous wavelengths from the predicted value were evident.
This qualitative observation can be quantitatively assessed
by a so-called runs analysis; here, a run is defined as a
series of observations consisting of at least one measure-
ment, in which all observations are either above or below
the predicted values. For datasets comprising 3678 obser-
vations and fit to the correct model, residuals distributed
stochastically would be expected to show 1840 runs
(standard deviation = 30) [31]. However, the fit of the
step-stool function in Fig. 6A produced only 181 runs,
confirming the significance of the trends observed in the
residual plot (Fig. 6C).

For comparison, we fitted the Richards function to the
dataset (blue curve in Fig. 6A) and also plotted its deriva-
tive (Fig. 6B) and distribution of residuals (Fig. 6D). For
this fit, the coefficient of determination was only slightly
lower than for the step-stool function (r2 = 0.995 com-
pared to r2 = 0.997). In contrast, the sum of squared resid-
uals, the primary measure of goodness-of-fit used by the
fitting algorithm, was almost doubled (0.173 compared
to 0.094). Intriguingly, the estimate of the location of the
maximal elemental elongation rate differed notably
between the Richards and the step-stool function, because
the profile defined by the Richards fit was left-skewed (Fig.
6B). Comparison of the standardized residual plots (Fig.
6C, D,) shows that a long-wavelength deviation from the
measured values was more pronounced in the fitted Rich-
ards function, especially around the position of maximal
growth rate. We conclude that the step-stool function,
while not able to describe all minor trends present in this
high-resolution dataset, provides a more accurate descrip-
tion of the data than does the Richards function.

For this data set, we were surprised by the inferior fits from
the Richards function, given that it has a pronounced sig-
moidal character and therefore falls within the purview of
classical, sigmoidal growth functions such as Richards'.

Analysis of a velocity field from an A. thaliana rootFigure 8
Analysis of a velocity field from an A. thaliana root. 
(A) A 6-parameter step-stool function lacking the parameter 
q (red) and the 4-parameter Richards function (blue) were 
fitted to the velocity data (gray dots; n = 2729). For further 
details, see Fig. 6.
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For the step-stool function, the fitting result statistics indi-
cated highly significant contributions to the prediction of
the independent variable by all of the five coefficients of
the truncated function used. This finding justified the
inclusion of a fifth coefficient (as compared to the Rich-
ards function, which has four) on statistical grounds; we
further verified the conclusion by comparing the step-
stool and Richards models by the corrected Akaike's infor-
mation criterion (AICC; [30]). This information theory-
based criterion provides information on whether an
improvement of goodness-of-fit due to the inclusion of
additional parameters is significant. This stringent test is
preferable to the popular F-test, particularly when com-
paring non-nested models, as done here [30] ([34] gives
an in-depth discussion of the information-theoretical
basis; for a more condensed introduction, see [35]). The
AICC score (equation 17) of the step-stool model was
smaller than that of the Richards function (-38881 com-
pared to -36640; ΔAICC = 2241), confirming that the five-
parameter step-stool-fit provided a better description of
this particular dataset than the four-parameter Richards
fit. To appreciate the robustness of this conclusion, note
that a ΔAICC of 4.6 implies that the model with the lower
score is 10 times more likely to be true than its competitor
[[30]; equation [18]]: with a ΔAICC of 2241, the factor by
which the step-stool model is more likely than the Rich-
ards function to be a correct description of this dataset is
10487!

The second dataset, this time from an Au. saxatilis root (n
= 3366), did not extend to position x = 0 (Fig. 7A), exem-
plifying a situation that frequently occurs because the col-
lection of reliable data from the root meristem where
velocities approach zero is difficult. Moreover, the data
available seemed to include an initial, zero-slope linear
domain. Therefore, we fitted a truncated version of the
step-stool function lacking the coefficient b1 as in the pre-
vious example, but including the constant, q, to enable
non-zero values of the function at position x = 0 (equa-
tion 10). The fitted curve described the data well (Fig. 7A),
and the analysis of variances of the estimated coefficient
values showed that all six coefficients, including q, made
significant contributions to the prediction of the depend-
ent variable.

The shape of the fitted curve resembled that seen in the
previous example, but the graph of its derivative appeared
wider and flatter (Fig. 7B). As a consequence, the flatness
value was increased to almost 0.4, indicating that in this
root, cells grew near their maximal growth rate for a rela-
tively longer proportion of their phase of expansion.
Again, there were non-stochastic components visible in
the residual plot, showing up as long-wavelength and
short-wavelength oscillatory deviations (Fig. 7C). The fit
of a five-coefficient version of the Richards function

(including a constant, q, as in the step-stool function; Fig.
7A) produced a coefficient of determination slightly lower
than that of the step-stool function (0.997 compared to
0.999), but the sum of squared residuals was twice as high
(0.269 compared to 0.136) and the non-stochastic oscil-
lations in the residual plot were more pronounced (Fig.
7D). Thus, the step-stool function provided a more accu-
rate description of the dataset than the classical sigmoidal
model, which was confirmed by its lower AICC score (-
34038 as compared to -31745).

In the third example, an A. thaliana root, the bi-linear
character of the velocity profile was unambiguously visi-
ble in the raw data plot (Fig. 8A; n = 2729). As expected,
the superiority of the description provided by fitting the
step-stool function (the complete six-coefficient version,
equation 9) as compared to the four-parameter Richards
function was obvious from the plots of the fitted velocity
curves alone (Fig. 8A; coefficients of determination were
0.999 and 0.992, and sums of squared residuals were
0.084 and 0.509 for the step-stool and the Richards func-
tion, respectively). As expected, the AICC scores for the
step-stool and the Richards model (-28337 and -23424,
respectively), as well as the tests of significance and inde-
pendence, showed that the inclusion of two additional
parameters in the step-stool fit was justified. The biphasic
character was clearly expressed in the derivative of the
step-stool function (Fig. 8B); the flatness value of 0.86
indicated that cells in this root expanded near their maxi-
mal growth rate for a substantial part of their elongation
phase. Comparison of the residual plots (Fig. 8C, D) con-
firmed that the sigmoidal Richards function provided an
inappropriate description of this dataset. However, as in
the cases discussed before, the fit of the step-stool func-
tion failed to pass the Durban-Watson and Levene median
tests, indicating non-stochastic factors in the distribution
of residuals (Fig. 7C) and consequently, the existence of
significant trends in the dataset unresolved by the step-
stool fit.

Discussion
Recent technical advances have facilitated the demonstra-
tion of velocity profiles along root growth zones that con-
sist of two distinct, nearly linear domains rather than
being sigmoidal [12]. In contrast to the sigmoidal models,
which dominate text-books and previous research reports,
bi-linear growth profiles imply that cells switch between
two distinct expansion modes when going through their
period of elongation (Fig. 1). Because of this implication,
the distinction of bi-linear from sigmoidal growth zones
is essential in kinematic growth studies. The step-stool
function was created as a tool to characterize the shape of
velocity profiles without imposing either a sigmoidal or a
bi-linear character. Because we currently do not possess a
physiological hypothesis from which to derive a mecha-
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nistic, quantitative model of the regulation of velocity
across a growth zone, the coefficients in the step-stool
model refer to readily observed features of the profile,
including slope, transition position and abruptness,
rather than to underlying physiological processes. Biolog-
ical meaning enters our analyses via the geometry of the
fitted curve, which ultimately reflects the characteristics of
the time-courses of physiological parameters experienced
by cells traversing the growth zone (Figs. 1, 3).

Some velocity profiles may be truly sigmoidal while oth-
ers may be bi-linear. Insofar as the possible results of fit-
ting our function include both alternative extremes, our
approach is a multiple-working-hypotheses one, which
conceptually complements conventional model testing
based on statistical quantification of the goodness-of-fit
(as exemplified by the comparative evaluations of the
step-stool and the Richards function; for a general discus-
sion of multiple-working-hypotheses approaches in bio-
logical modelling, see [29]). In this context, the increased
number of parameters in the step-stool function as com-
pared to conventional growth models such as the Rich-
ards function should not be viewed as merely a means of
improving the goodness-of-fit. Rather, it is the cost of
gaining an additional criterion for model choice by fitting
an equation capable of describing two competing models
equally well. Because there is no exclusive answer as to
whether a given dataset is either sigmoidal or bi-linear, a
pragmatic measure of "bi-linearity" has to be defined. As
one possibility, we here introduced F, the flatness of the
time-course of elemental growth rate.

Our analyses of noisy Monte-Carlo-datasets and three
exemplary experimental profiles demonstrated the success
of our approach: the step-stool function provided better
fits in all cases than did the Richards function; notewor-
thily, the latter is superior to other sigmoid functions due
to its flexibility and therefore is considered a standard in
growth analysis [27,28,36]. The flexible application of the
step-stool function, which includes "smart guessing" of
initial parameter values as well as the addition or deletion
of coefficients depending on the properties of a particular
dataset, certainly requires some familiarity with the math-
ematical basis of non-linear curve fitting. However, this
should not be a major obstacle, given the availability of
powerful, user-friendly software and desktop computing
power that was unthinkable of at the time the Richards
function was introduced. In general, the flexibility of tai-
lor-made modular functions created to assist the solution
of specific analytical problems is an asset in cases in which
no mechanistic hypothesis has been developed, and from
which explanatory mathematical models with biologi-
cally meaningful interpretations of parameters could be
derived.

The application of the step-stool function may not be lim-
ited to kinematic growth analysis, as the necessity to dis-
tinguish between continously and abruptly changing
curves is a notorious source of problems in classical plant
growth analysis [24] as well as in the analysis of procary-
otic [37-39] and eucaryotic [39-41] cell expansion. For-
mally similar problems exist in the field of biochemical
[42,43] and transport kinetics [44]. Moreover, we cur-
rently are applying extended, tri-linear versions of the
step-stool function in the description of polyphasic sto-
matal movements and the spatio-temporal quantification
of volume changes in contractile forisomes [45].

With respect to the kinematic analyses discussed in this
study, the finding of a velocity profile that is unambigu-
ously a sigmoid implies that under certain conditions cells
may regulate elemental elongation rate rather smoothly as
they traverse the growth zone. This possibility merits fur-
ther study; however, the purpose of the present work is to
test the behavior of the step-stool function, and it will be
up to subsequent investigation to determine whether a
sigmoid profile for G. elegans indeed represents root
growth in that species.

The application of the step-stool function will also form
the basis for further investigations into the causes of the
non-stochastic trends evident in the residual plots (subfig-
ures D in Figures 6, 7, 8). It cannot be excluded that such
deviations may occur as artifacts in the high-resolution
computational analysis applied to serial images of grow-
ing roots [12]. However, we consider it more likely that
the oscillatory deviations reflect the behaviour of cells or
cell groups that grow slightly faster or slower than the
average growth curve suggests. This interpretation is sub-
stantiated by a previous report suggesting that local
minima and maxima of growth rate travel along the
growth zone similarly as cells do [46]. Future studies will
aim to establish the nature of these local deviations of
growth rate.

Conclusion
We present here an empirical function, with six coeffi-
cients, that is able to fit one-dimensional velocity profiles
regardless of whether they are bi-linear or sigmoidal. Fur-
thermore, the values of the coefficients provide analytical
estimates of the key parameters of the profile, including
the local slope, the position where the change of slope is
centered, and a parameter characterizing the abruptness of
the change in slope. The function is appropriate for data
sets with thousands of points, as generated by modern,
digital methods of velocity estimation, and fitting the
function is robust to Gaussian noise. Finally, we demon-
strate examples of velocity profiles from real roots that are
sigmoidal, bi-linear, and intermediate. We suggest that
this function will facilitate kinematic analysis of growth
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and that our strategy for constructing the function may
prove to be useful in general for quantitative biology.

Methods
Plant material and growth measurement
The plant material and growth measurement have been
described in full previously [12]. Briefly, seedlings of Ara-
bidopsis thaliana (L.) Heynh. Columbia background,
Aurinia saxatilis (L.) Desv., and Gypsophila elegans Bieb.
were grown on the surface of a nutrient-agar medium in
vertical Petri dishes under continuous light. A plate was
put on the stage of a horizontal microscope and a stack of
nine images collected of the primary root with 10 seconds
between images. A series of four to eight stacks, depending
on the root, was captured, from the root tip to an area
with mature root hairs. The velocity field was recovered
from these image sequences by RootflowRT, software that
recovers dense velocity fields for deformable motion
based on principles of optical flow. Velocities are
obtained for essentially each pixel in the image and the
component parallel to the local tangent of the root's mid-
line is averaged perpendicular to the midline to produce
the one-dimensional velocity fields used here. Further
details available in [12] and [47]. RootflowRT may be
downloaded from [48].

Curve fitting
All mathematical operations including the generation of
model velocity fields, creation of Monte-Carlo datasets by
adding Gaussian noise to these models, and numerical
integration were performed using SigmaPlot (version
7.101, SPSS Inc., Chicago IL, USA) and TableCurve 2D
(version 5.1, Systat Software Inc., Richmond CA, USA).
Plotting of graphs and automated curve fitting was carried
out with SigmaPlot; standard procedures implemented in
this software were used to statistically analyze the fitting
results. These tests included estimations of the standard
errors, coefficients of variation, dependencies, t-statistics
and P values of the parameters fitted, which were used to
judge parameter significance and non-correlatedness. Spe-
cial attention was paid to the residuals, which were tested
routinely for correlation by Durbin-Watson statistics, nor-
mal distribution around the regression, and constant var-
iance by the Levene median test.

The construction of the step-stool-function is described in
detail in the Theory section. For comparison, the Richards
function (Richards, 1959) was also fitted to experimen-
tally determined velocity profiles (a, b, c, d are constants,
x is the variable):

y = a (1 - exp [b - cx])d  (15)

It should be noted that the graph of this function invaria-
bly intersects the ordinate at a(1 - exp [b])d; a fifth param-

eter has to be added if flexible intersections are required.
The derivative of the Richards function is

To determine whether an improvement of the goodness-
of-fit due to the inclusion of additonal parameters in a
model was significant, we calculated the corrected
Akaike's information criterion (AICC) according to [30]:

where n is the number of datapoints, k is the number of
parameters fitted plus one, and SS is the sum of squared
residuals. The difference of the AICC scores (ΔAICC) of two
competing models is a function of the relative likelihood
of each of them to be a true description of the particular
dataset to which they have been fitted; the model with the
lower AICC is more likely to be true by a factor known as
the evidence ratio:

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
T.I.B. contributed the experimental growth data, W.S.P.
formulated the step-stool equation and performed the sta-
tistical analyses. Both authors conceived of this study
while discussing their previous work and produced the
manuscript cooperatively.

Additional material

Acknowledgements
This work was supported by the U.S. National Science Foundation (award 
no. IBN 0316876 to T.I.B.). W.S.P. thanks Ch. Roth-Käppchen for clarifying 
discussion of conceptual issues.

Additional File 1
PETERS_BASKIN_Manual_Fit. Template file for manual fitting of the 
step-stool function. See sheet 1 for instructions on how to operate the man-
ual curve-fitting template on sheet 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-11-S1.xls]

d 
d 

  
y

x
a c d b cx b cx

d
= −( ) − −[ ]( ) ( )−

exp exp
( )

1 16
1

AIC  
SS

C = ⎛
⎝⎜

⎞
⎠⎟

+ +
+( )

− −
( )n

n
k

k k

n k
ln 2

2 1

1
17

evidence ratio
  AICC

=
−( ) ( )1

0 5
18

exp . Δ
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1746-4811-2-11-S1.xls


Plant Methods 2006, 2:11 http://www.plantmethods.com/content/2/1/11
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Silk WK: Quantitative descriptions of development.  Annu Rev

Plant Physiol 1984, 35:479-518.
2. Erickson RO: Modeling of plant growth.  Annu Rev Plant Physiol

1976, 27:407-434.
3. Erickson RO, Sax KB: Elemental growth rates of the primary

roots of Zea mays.  Proc Am Phil Soc 1956, 100:487-498.
4. Goodwin RH, Avers CJ: Studies on roots. III. An analysis of root

growth in Phleum pratense using photomicrographic
records.  Am J Bot 1956, 43:479-487.

5. Hejnowicz Z: Growth and differentiation in the root of
Phleum pratense. II. Distribution of cell divisions in the root.
Acta Soc Bot Polon 1956, 25:615-628. (in Polish)

6. Sharp RE, Silk WK, Hsiao TC: Growth of the maize primary root
at low water potentials.  Plant Physiol 1988, 87:50-57.

7. Beemster GTS, Baskin TI: Analysis of cell division and elongation
underlying the developmental acceleration of root growth in
Arabidopsis thaliana.  Plant Physiol 1998, 116:1515-1526.

8. Peters WS, Felle HH: The correlation of profiles of surface pH
and elongation growth in maize roots.  Plant Physiol 1999,
121:905-912.

9. Schnyder H, Nelson CJ, Coutts JH: Assessment of spatial distri-
bution of growth in the elongation zone of grass leaf blades.
Plant Physiol 1987, 85:290-293.

10. Ben-Haj-Salah H, Tardieu F: Temperature affects expansion rate
of maize leaves without change in spatial distribution of cell
length.  Plant Physiol 1995, 109:861-870.

11. Fricke W, Peters WS: The biophysics of leaf cell growth in salt-
stressed barley: a study at the cell level.  Plant Physiol 2002,
129:374-388.

12. van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan
K, Baskin TI: A new algorithm for computational image analy-
sis of deformable motion at high spatial and temporal reso-
lution applied to root growth. Roughly uniform elongation in
the meristem and also, after an abrupt acceleration, in the
elongation zone.  Plant Physiol 2003, 132:1138-1148.

13. Silk WK, Lord EM, Eckard KJ: Growth patterns inferred from
anatomical records.  Plant Physiol 1989, 90:708-713.

14. Brumfield RT: Cell growth and division in living root meris-
tems.  Am J Bot 1942, 29:533-543.

15. Paolillo DJ, Sorrells ME, Keyes GJ: Gibberellic acid sensitivity
determines the length of the extension zone in wheat leaves.
Ann Bot 1991, 67:479-485.

16. Ivanov VB, Maximov VN: The change in the relative rate of cell
elongation along the root meristem and the apical region of
the elongation zone.  Russ J Plant Physiol 1999, 46:73-82.

17. Silk WK, Erickson RO: Kinematics of plant growth.  J Theor Biol
1979, 76:481-501.

18. Gandar PW: Growth in root apices.  Bot Gaz 1983, 144:1-19.
19. Peters WS, Bernstein N: The determination of relative elemen-

tal growth rate profiles from segmental growth rates.  Plant
Physiol 1997, 113:1395-1404.

20. Peters WS: Growth and extracellular pH in roots: How to con-
trol an explosion.  New Phytol 2004, 162:571-574.

21. Hunt R: Plant Growth Curves London: Edward Arnold; 1982. 
22. Barlow PW, Brain P, Parker JS: Cellular growth in roots of a gib-

berellin-deficient mutant of tomato (Lycopersicon esculen-
tum Mill.) and its wild-type.  J Exp Bot 1991, 42:339-351.

23. Morris AK, Silk WK: Use of a flexible logistic function to
describe axial growth of plants.  Bull Math Biol 1992,
54:1069-1081.

24. Fisher PR, Heins RD, Lieth JH: Quantifying the relationship
between phases of stem elongation and flower initiation in
Poinsettia.  J Amer Soc Hort Sci 1996, 121:686-693.

25. Goudriaan J, Monteith JL: A mathematical function for crop
growth based on light interception and leaf area expansion.
Ann Bot 1990, 66:695-701.

26. Yin X, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ: A flexible sig-
moid function of determinate growth.  Ann Bot 2003,
91:361-371.

27. Richards FJ: A flexible growth function for empirical use.  J Exp
Bot 1959, 10:290-300.

28. Causton DR, Venus JC: The Biometry of Plant Growth London: Edward
Arnold; 1981. 

29. Hilborn R, Mangel M: The Ecological Detective: Confronting Models with
Data Princeton: Princeton University Press; 1997. 

30. Motulsky H, Christopoulos A: Fitting Models to biological Data using lin-
ear and non-linear Regression Oxford: Oxford University Press; 2004. 

31. Draper NR, Smith H: Applied Regression Analysis 3rd edition. New
York: John Wiley & Sons; 1998. 

32. Conover WJ, Johnson ME, Johnson MM: A comparative study of
tests for homogeneity of variances, with applications to the
outer continental shelf bidding data.  Technometrics 1981,
23:351-361.

33. Glantz SA, Slinker BK: Primer of applied Regression and Analysis of Vari-
ance 2nd edition. NewYork: McGraw-Hill; 2001. 

34. Burnham KP, Anderson DR: Model Selection and multimodel Inference –
A practical information-theoretic Approach 2nd edition. New York:
Springer; 2002. 

35. Myung JI, Pitt MA: Model comparison methods.  Meth Enzymol
2004, 383:351-366.

36. Richards FJ: The quantitative analysis of growth.  In Plant Physiol-
ogy: A Treatise Volume 5A. Edited by: Steward FC. New York: Aca-
demic Press; 1969:3-76. 

37. Kubitschek HE: Bilinear cell growth of Escherichia coli.  J Bacte-
riol 1981, 148:730-733.

38. Cooper S: What is the bacterial growth law during the divi-
sion cycle?  J Bacteriol 1988, 170:5001-5005.

39. Mitchison JM: Growth during the cell cycle.  Int Rev Cytol 2003,
226:165-258.

40. Cooper S: Length extension in growing yeast: is growth expo-
nential? – Yes.  Microbiology 1998, 144:263-265.

41. Mitchison JM, Sveiczer A, Novak B: Length extension in growing
yeast: is growth exponential? – No.  Microbiology 1998,
144:265-266.

42. Cornish-Bowden A: Abrupt transitions in kinetic plots: an arti-
fact of plotting procedures.  Biochem J 1988, 250:309-310.

43. Engel PC, Syed SEH: Abrupt transitions in kinetic plots: an
empirical reality.  Biochem J 1988, 250:310-311.

44. Nissen P: Multiphasic uptake mechanisms in plants.  Intern Rev
Cytol 1991, 126:89-134.

45. Knoblauch M, Peters WS: Forisomes, a novel type of Ca2+-
dependent protein motor.  Cell Motil Cytoskel 2004, 58:137-142.

46. Salamon P, List A, Grenetz PS: Mathematical analysis of plant
growth. Zea mays primary roots.  Plant Physiol 1973, 51:635-640.

47. Palaniappan K, Jiang H, Baskin TI: Non-rigid motion estimation
using the robust tensor method.  In IEEE Computer Vision & Pat-
tern Recognition Workshop on Articulated and Nonrigid Motion Washing-
ton DC: IEEE Computer Society; 2004:25-33. 

48.  [http://www.bio.umass.edu/biology/baskin/research_rootflow.htm].
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16666126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16666126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9536070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9536070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9536070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10557239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10557239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16665672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16665672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12228638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12228638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12228638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12857796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12857796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12857796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16666832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16666832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=439916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15063657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7028727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3053639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3053639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12921238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9493363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9493363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9556367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9556367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3355519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3355519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16658385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16658385
http://www.bio.umass.edu/biology/baskin/research_rootflow.htm
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Theory
	Requirements of the function
	Assembly of the step-stool function
	Derivatives of the step-stool function

	Results
	Discussion
	Conclusion
	Methods
	Plant material and growth measurement
	Curve fitting

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

